| 1 | //===-- NullabilityChecker.cpp - Nullability checker ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This checker tries to find nullability violations. There are several kinds of |
| 10 | // possible violations: |
| 11 | // * Null pointer is passed to a pointer which has a _Nonnull type. |
| 12 | // * Null pointer is returned from a function which has a _Nonnull return type. |
| 13 | // * Nullable pointer is passed to a pointer which has a _Nonnull type. |
| 14 | // * Nullable pointer is returned from a function which has a _Nonnull return |
| 15 | // type. |
| 16 | // * Nullable pointer is dereferenced. |
| 17 | // |
| 18 | // This checker propagates the nullability information of the pointers and looks |
| 19 | // for the patterns that are described above. Explicit casts are trusted and are |
| 20 | // considered a way to suppress false positives for this checker. The other way |
| 21 | // to suppress warnings would be to add asserts or guarding if statements to the |
| 22 | // code. In addition to the nullability propagation this checker also uses some |
| 23 | // heuristics to suppress potential false positives. |
| 24 | // |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| 28 | |
| 29 | #include "clang/Analysis/AnyCall.h" |
| 30 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| 31 | #include "clang/StaticAnalyzer/Core/Checker.h" |
| 32 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| 33 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 34 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| 35 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
| 36 | |
| 37 | #include "llvm/ADT/STLExtras.h" |
| 38 | #include "llvm/ADT/StringExtras.h" |
| 39 | #include "llvm/Support/Path.h" |
| 40 | |
| 41 | using namespace clang; |
| 42 | using namespace ento; |
| 43 | |
| 44 | namespace { |
| 45 | |
| 46 | /// Returns the most nullable nullability. This is used for message expressions |
| 47 | /// like [receiver method], where the nullability of this expression is either |
| 48 | /// the nullability of the receiver or the nullability of the return type of the |
| 49 | /// method, depending on which is more nullable. Contradicted is considered to |
| 50 | /// be the most nullable, to avoid false positive results. |
| 51 | Nullability getMostNullable(Nullability Lhs, Nullability Rhs) { |
| 52 | return static_cast<Nullability>( |
| 53 | std::min(a: static_cast<char>(Lhs), b: static_cast<char>(Rhs))); |
| 54 | } |
| 55 | |
| 56 | const char *getNullabilityString(Nullability Nullab) { |
| 57 | switch (Nullab) { |
| 58 | case Nullability::Contradicted: |
| 59 | return "contradicted" ; |
| 60 | case Nullability::Nullable: |
| 61 | return "nullable" ; |
| 62 | case Nullability::Unspecified: |
| 63 | return "unspecified" ; |
| 64 | case Nullability::Nonnull: |
| 65 | return "nonnull" ; |
| 66 | } |
| 67 | llvm_unreachable("Unexpected enumeration." ); |
| 68 | return "" ; |
| 69 | } |
| 70 | |
| 71 | // These enums are used as an index to ErrorMessages array. |
| 72 | // FIXME: ErrorMessages no longer exists, perhaps remove this as well? |
| 73 | enum class ErrorKind : int { |
| 74 | NilAssignedToNonnull, |
| 75 | NilPassedToNonnull, |
| 76 | NilReturnedToNonnull, |
| 77 | NullableAssignedToNonnull, |
| 78 | NullableReturnedToNonnull, |
| 79 | NullableDereferenced, |
| 80 | NullablePassedToNonnull |
| 81 | }; |
| 82 | |
| 83 | class NullabilityChecker |
| 84 | : public CheckerFamily< |
| 85 | check::Bind, check::PreCall, check::PreStmt<ReturnStmt>, |
| 86 | check::PostCall, check::PostStmt<ExplicitCastExpr>, |
| 87 | check::PostObjCMessage, check::DeadSymbols, eval::Assume, |
| 88 | check::Location, check::Event<ImplicitNullDerefEvent>, |
| 89 | check::BeginFunction> { |
| 90 | |
| 91 | public: |
| 92 | // If true, the checker will not diagnose nullabilility issues for calls |
| 93 | // to system headers. This option is motivated by the observation that large |
| 94 | // projects may have many nullability warnings. These projects may |
| 95 | // find warnings about nullability annotations that they have explicitly |
| 96 | // added themselves higher priority to fix than warnings on calls to system |
| 97 | // libraries. |
| 98 | bool = false; |
| 99 | |
| 100 | void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const; |
| 101 | void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const; |
| 102 | void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
| 103 | void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; |
| 104 | void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
| 105 | void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
| 106 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
| 107 | void checkEvent(ImplicitNullDerefEvent Event) const; |
| 108 | void checkLocation(SVal Location, bool IsLoad, const Stmt *S, |
| 109 | CheckerContext &C) const; |
| 110 | void checkBeginFunction(CheckerContext &Ctx) const; |
| 111 | ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond, |
| 112 | bool Assumption) const; |
| 113 | |
| 114 | void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, |
| 115 | const char *Sep) const override; |
| 116 | |
| 117 | StringRef getDebugTag() const override { return "NullabilityChecker" ; } |
| 118 | |
| 119 | // FIXME: All bug types share the same Description ("Nullability") since the |
| 120 | // creation of this checker. We should write more descriptive descriptions... |
| 121 | // or just eliminate the Description field if it is meaningless? |
| 122 | CheckerFrontendWithBugType NullPassedToNonnull{"Nullability" , |
| 123 | categories::MemoryError}; |
| 124 | CheckerFrontendWithBugType NullReturnedFromNonnull{"Nullability" , |
| 125 | categories::MemoryError}; |
| 126 | CheckerFrontendWithBugType NullableDereferenced{"Nullability" , |
| 127 | categories::MemoryError}; |
| 128 | CheckerFrontendWithBugType NullablePassedToNonnull{"Nullability" , |
| 129 | categories::MemoryError}; |
| 130 | CheckerFrontendWithBugType NullableReturnedFromNonnull{ |
| 131 | "Nullability" , categories::MemoryError}; |
| 132 | |
| 133 | // When set to false no nullability information will be tracked in |
| 134 | // NullabilityMap. It is possible to catch errors like passing a null pointer |
| 135 | // to a callee that expects nonnull argument without the information that is |
| 136 | // stored in the NullabilityMap. This is an optimization. |
| 137 | bool NeedTracking = false; |
| 138 | |
| 139 | private: |
| 140 | class NullabilityBugVisitor : public BugReporterVisitor { |
| 141 | public: |
| 142 | NullabilityBugVisitor(const MemRegion *M) : Region(M) {} |
| 143 | |
| 144 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
| 145 | static int X = 0; |
| 146 | ID.AddPointer(Ptr: &X); |
| 147 | ID.AddPointer(Ptr: Region); |
| 148 | } |
| 149 | |
| 150 | PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| 151 | BugReporterContext &BRC, |
| 152 | PathSensitiveBugReport &BR) override; |
| 153 | |
| 154 | private: |
| 155 | // The tracked region. |
| 156 | const MemRegion *Region; |
| 157 | }; |
| 158 | |
| 159 | /// When any of the nonnull arguments of the analyzed function is null, do not |
| 160 | /// report anything and turn off the check. |
| 161 | /// |
| 162 | /// When \p SuppressPath is set to true, no more bugs will be reported on this |
| 163 | /// path by this checker. |
| 164 | void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, |
| 165 | const BugType &BT, ExplodedNode *N, |
| 166 | const MemRegion *Region, CheckerContext &C, |
| 167 | const Stmt *ValueExpr = nullptr, |
| 168 | bool SuppressPath = false) const; |
| 169 | |
| 170 | void reportBug(StringRef Msg, ErrorKind Error, const BugType &BT, |
| 171 | ExplodedNode *N, const MemRegion *Region, BugReporter &BR, |
| 172 | const Stmt *ValueExpr = nullptr) const { |
| 173 | auto R = std::make_unique<PathSensitiveBugReport>(args: BT, args&: Msg, args&: N); |
| 174 | if (Region) { |
| 175 | R->markInteresting(R: Region); |
| 176 | R->addVisitor<NullabilityBugVisitor>(ConstructorArgs&: Region); |
| 177 | } |
| 178 | if (ValueExpr) { |
| 179 | R->addRange(R: ValueExpr->getSourceRange()); |
| 180 | if (Error == ErrorKind::NilAssignedToNonnull || |
| 181 | Error == ErrorKind::NilPassedToNonnull || |
| 182 | Error == ErrorKind::NilReturnedToNonnull) |
| 183 | if (const auto *Ex = dyn_cast<Expr>(Val: ValueExpr)) |
| 184 | bugreporter::trackExpressionValue(N, E: Ex, R&: *R); |
| 185 | } |
| 186 | BR.emitReport(R: std::move(R)); |
| 187 | } |
| 188 | |
| 189 | /// If an SVal wraps a region that should be tracked, it will return a pointer |
| 190 | /// to the wrapped region. Otherwise it will return a nullptr. |
| 191 | const SymbolicRegion *getTrackRegion(SVal Val, |
| 192 | bool CheckSuperRegion = false) const; |
| 193 | |
| 194 | /// Returns true if the call is diagnosable in the current analyzer |
| 195 | /// configuration. |
| 196 | bool isDiagnosableCall(const CallEvent &Call) const { |
| 197 | if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader()) |
| 198 | return false; |
| 199 | |
| 200 | return true; |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | class NullabilityState { |
| 205 | public: |
| 206 | NullabilityState(Nullability Nullab, const Stmt *Source = nullptr) |
| 207 | : Nullab(Nullab), Source(Source) {} |
| 208 | |
| 209 | const Stmt *getNullabilitySource() const { return Source; } |
| 210 | |
| 211 | Nullability getValue() const { return Nullab; } |
| 212 | |
| 213 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 214 | ID.AddInteger(I: static_cast<char>(Nullab)); |
| 215 | ID.AddPointer(Ptr: Source); |
| 216 | } |
| 217 | |
| 218 | void print(raw_ostream &Out) const { |
| 219 | Out << getNullabilityString(Nullab) << "\n" ; |
| 220 | } |
| 221 | |
| 222 | private: |
| 223 | Nullability Nullab; |
| 224 | // Source is the expression which determined the nullability. For example in a |
| 225 | // message like [nullable nonnull_returning] has nullable nullability, because |
| 226 | // the receiver is nullable. Here the receiver will be the source of the |
| 227 | // nullability. This is useful information when the diagnostics are generated. |
| 228 | const Stmt *Source; |
| 229 | }; |
| 230 | |
| 231 | bool operator==(NullabilityState Lhs, NullabilityState Rhs) { |
| 232 | return Lhs.getValue() == Rhs.getValue() && |
| 233 | Lhs.getNullabilitySource() == Rhs.getNullabilitySource(); |
| 234 | } |
| 235 | |
| 236 | // For the purpose of tracking historical property accesses, the key for lookup |
| 237 | // is an object pointer (could be an instance or a class) paired with the unique |
| 238 | // identifier for the property being invoked on that object. |
| 239 | using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>; |
| 240 | |
| 241 | // Metadata associated with the return value from a recorded property access. |
| 242 | struct ConstrainedPropertyVal { |
| 243 | // This will reference the conjured return SVal for some call |
| 244 | // of the form [object property] |
| 245 | DefinedOrUnknownSVal Value; |
| 246 | |
| 247 | // If the SVal has been determined to be nonnull, that is recorded here |
| 248 | bool isConstrainedNonnull; |
| 249 | |
| 250 | ConstrainedPropertyVal(DefinedOrUnknownSVal SV) |
| 251 | : Value(SV), isConstrainedNonnull(false) {} |
| 252 | |
| 253 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 254 | Value.Profile(ID); |
| 255 | ID.AddInteger(I: isConstrainedNonnull ? 1 : 0); |
| 256 | } |
| 257 | }; |
| 258 | |
| 259 | bool operator==(const ConstrainedPropertyVal &Lhs, |
| 260 | const ConstrainedPropertyVal &Rhs) { |
| 261 | return Lhs.Value == Rhs.Value && |
| 262 | Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull; |
| 263 | } |
| 264 | |
| 265 | } // end anonymous namespace |
| 266 | |
| 267 | REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *, |
| 268 | NullabilityState) |
| 269 | REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair, |
| 270 | ConstrainedPropertyVal) |
| 271 | |
| 272 | // We say "the nullability type invariant is violated" when a location with a |
| 273 | // non-null type contains NULL or a function with a non-null return type returns |
| 274 | // NULL. Violations of the nullability type invariant can be detected either |
| 275 | // directly (for example, when NULL is passed as an argument to a nonnull |
| 276 | // parameter) or indirectly (for example, when, inside a function, the |
| 277 | // programmer defensively checks whether a nonnull parameter contains NULL and |
| 278 | // finds that it does). |
| 279 | // |
| 280 | // As a matter of policy, the nullability checker typically warns on direct |
| 281 | // violations of the nullability invariant (although it uses various |
| 282 | // heuristics to suppress warnings in some cases) but will not warn if the |
| 283 | // invariant has already been violated along the path (either directly or |
| 284 | // indirectly). As a practical matter, this prevents the analyzer from |
| 285 | // (1) warning on defensive code paths where a nullability precondition is |
| 286 | // determined to have been violated, (2) warning additional times after an |
| 287 | // initial direct violation has been discovered, and (3) warning after a direct |
| 288 | // violation that has been implicitly or explicitly suppressed (for |
| 289 | // example, with a cast of NULL to _Nonnull). In essence, once an invariant |
| 290 | // violation is detected on a path, this checker will be essentially turned off |
| 291 | // for the rest of the analysis |
| 292 | // |
| 293 | // The analyzer takes this approach (rather than generating a sink node) to |
| 294 | // ensure coverage of defensive paths, which may be important for backwards |
| 295 | // compatibility in codebases that were developed without nullability in mind. |
| 296 | REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool) |
| 297 | |
| 298 | enum class NullConstraint { IsNull, IsNotNull, Unknown }; |
| 299 | |
| 300 | static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val, |
| 301 | ProgramStateRef State) { |
| 302 | ConditionTruthVal Nullness = State->isNull(V: Val); |
| 303 | if (Nullness.isConstrainedFalse()) |
| 304 | return NullConstraint::IsNotNull; |
| 305 | if (Nullness.isConstrainedTrue()) |
| 306 | return NullConstraint::IsNull; |
| 307 | return NullConstraint::Unknown; |
| 308 | } |
| 309 | |
| 310 | static bool isValidPointerType(QualType T) { |
| 311 | return T->isAnyPointerType() || T->isBlockPointerType(); |
| 312 | } |
| 313 | |
| 314 | const SymbolicRegion * |
| 315 | NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const { |
| 316 | if (!NeedTracking) |
| 317 | return nullptr; |
| 318 | |
| 319 | auto RegionSVal = Val.getAs<loc::MemRegionVal>(); |
| 320 | if (!RegionSVal) |
| 321 | return nullptr; |
| 322 | |
| 323 | const MemRegion *Region = RegionSVal->getRegion(); |
| 324 | |
| 325 | if (CheckSuperRegion) { |
| 326 | if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) { |
| 327 | if (const auto *ER = dyn_cast<ElementRegion>(Val: FieldReg->getSuperRegion())) |
| 328 | FieldReg = ER; |
| 329 | return dyn_cast<SymbolicRegion>(Val: FieldReg->getSuperRegion()); |
| 330 | } |
| 331 | if (auto ElementReg = Region->getAs<ElementRegion>()) |
| 332 | return dyn_cast<SymbolicRegion>(Val: ElementReg->getSuperRegion()); |
| 333 | } |
| 334 | |
| 335 | return dyn_cast<SymbolicRegion>(Val: Region); |
| 336 | } |
| 337 | |
| 338 | PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode( |
| 339 | const ExplodedNode *N, BugReporterContext &BRC, |
| 340 | PathSensitiveBugReport &BR) { |
| 341 | ProgramStateRef State = N->getState(); |
| 342 | ProgramStateRef StatePrev = N->getFirstPred()->getState(); |
| 343 | |
| 344 | const NullabilityState *TrackedNullab = State->get<NullabilityMap>(key: Region); |
| 345 | const NullabilityState *TrackedNullabPrev = |
| 346 | StatePrev->get<NullabilityMap>(key: Region); |
| 347 | if (!TrackedNullab) |
| 348 | return nullptr; |
| 349 | |
| 350 | if (TrackedNullabPrev && |
| 351 | TrackedNullabPrev->getValue() == TrackedNullab->getValue()) |
| 352 | return nullptr; |
| 353 | |
| 354 | // Retrieve the associated statement. |
| 355 | const Stmt *S = TrackedNullab->getNullabilitySource(); |
| 356 | if (!S || S->getBeginLoc().isInvalid()) { |
| 357 | S = N->getStmtForDiagnostics(); |
| 358 | } |
| 359 | |
| 360 | if (!S) |
| 361 | return nullptr; |
| 362 | |
| 363 | std::string InfoText = |
| 364 | (llvm::Twine("Nullability '" ) + |
| 365 | getNullabilityString(Nullab: TrackedNullab->getValue()) + "' is inferred" ) |
| 366 | .str(); |
| 367 | |
| 368 | // Generate the extra diagnostic. |
| 369 | PathDiagnosticLocation Pos(S, BRC.getSourceManager(), |
| 370 | N->getLocationContext()); |
| 371 | return std::make_shared<PathDiagnosticEventPiece>(args&: Pos, args&: InfoText, args: true); |
| 372 | } |
| 373 | |
| 374 | /// Returns true when the value stored at the given location has been |
| 375 | /// constrained to null after being passed through an object of nonnnull type. |
| 376 | static bool checkValueAtLValForInvariantViolation(ProgramStateRef State, |
| 377 | SVal LV, QualType T) { |
| 378 | if (getNullabilityAnnotation(Type: T) != Nullability::Nonnull) |
| 379 | return false; |
| 380 | |
| 381 | auto RegionVal = LV.getAs<loc::MemRegionVal>(); |
| 382 | if (!RegionVal) |
| 383 | return false; |
| 384 | |
| 385 | // If the value was constrained to null *after* it was passed through that |
| 386 | // location, it could not have been a concrete pointer *when* it was passed. |
| 387 | // In that case we would have handled the situation when the value was |
| 388 | // bound to that location, by emitting (or not emitting) a report. |
| 389 | // Therefore we are only interested in symbolic regions that can be either |
| 390 | // null or non-null depending on the value of their respective symbol. |
| 391 | auto StoredVal = State->getSVal(LV: *RegionVal).getAs<loc::MemRegionVal>(); |
| 392 | if (!StoredVal || !isa<SymbolicRegion>(Val: StoredVal->getRegion())) |
| 393 | return false; |
| 394 | |
| 395 | if (getNullConstraint(Val: *StoredVal, State) == NullConstraint::IsNull) |
| 396 | return true; |
| 397 | |
| 398 | return false; |
| 399 | } |
| 400 | |
| 401 | static bool |
| 402 | checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params, |
| 403 | ProgramStateRef State, |
| 404 | const LocationContext *LocCtxt) { |
| 405 | for (const auto *ParamDecl : Params) { |
| 406 | if (ParamDecl->isParameterPack()) |
| 407 | break; |
| 408 | |
| 409 | SVal LV = State->getLValue(VD: ParamDecl, LC: LocCtxt); |
| 410 | if (checkValueAtLValForInvariantViolation(State, LV, |
| 411 | T: ParamDecl->getType())) { |
| 412 | return true; |
| 413 | } |
| 414 | } |
| 415 | return false; |
| 416 | } |
| 417 | |
| 418 | static bool |
| 419 | checkSelfIvarsForInvariantViolation(ProgramStateRef State, |
| 420 | const LocationContext *LocCtxt) { |
| 421 | auto *MD = dyn_cast<ObjCMethodDecl>(Val: LocCtxt->getDecl()); |
| 422 | if (!MD || !MD->isInstanceMethod()) |
| 423 | return false; |
| 424 | |
| 425 | const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl(); |
| 426 | if (!SelfDecl) |
| 427 | return false; |
| 428 | |
| 429 | SVal SelfVal = State->getSVal(R: State->getRegion(D: SelfDecl, LC: LocCtxt)); |
| 430 | |
| 431 | const ObjCObjectPointerType *SelfType = |
| 432 | dyn_cast<ObjCObjectPointerType>(Val: SelfDecl->getType()); |
| 433 | if (!SelfType) |
| 434 | return false; |
| 435 | |
| 436 | const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl(); |
| 437 | if (!ID) |
| 438 | return false; |
| 439 | |
| 440 | for (const auto *IvarDecl : ID->ivars()) { |
| 441 | SVal LV = State->getLValue(D: IvarDecl, Base: SelfVal); |
| 442 | if (checkValueAtLValForInvariantViolation(State, LV, T: IvarDecl->getType())) { |
| 443 | return true; |
| 444 | } |
| 445 | } |
| 446 | return false; |
| 447 | } |
| 448 | |
| 449 | static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N, |
| 450 | CheckerContext &C) { |
| 451 | if (State->get<InvariantViolated>()) |
| 452 | return true; |
| 453 | |
| 454 | const LocationContext *LocCtxt = C.getLocationContext(); |
| 455 | const Decl *D = LocCtxt->getDecl(); |
| 456 | if (!D) |
| 457 | return false; |
| 458 | |
| 459 | ArrayRef<ParmVarDecl*> Params; |
| 460 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
| 461 | Params = BD->parameters(); |
| 462 | else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 463 | Params = FD->parameters(); |
| 464 | else if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
| 465 | Params = MD->parameters(); |
| 466 | else |
| 467 | return false; |
| 468 | |
| 469 | if (checkParamsForPreconditionViolation(Params, State, LocCtxt) || |
| 470 | checkSelfIvarsForInvariantViolation(State, LocCtxt)) { |
| 471 | if (!N->isSink()) |
| 472 | C.addTransition(State: State->set<InvariantViolated>(true), Pred: N); |
| 473 | return true; |
| 474 | } |
| 475 | return false; |
| 476 | } |
| 477 | |
| 478 | void NullabilityChecker::reportBugIfInvariantHolds( |
| 479 | StringRef Msg, ErrorKind Error, const BugType &BT, ExplodedNode *N, |
| 480 | const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr, |
| 481 | bool SuppressPath) const { |
| 482 | ProgramStateRef OriginalState = N->getState(); |
| 483 | |
| 484 | if (checkInvariantViolation(State: OriginalState, N, C)) |
| 485 | return; |
| 486 | if (SuppressPath) { |
| 487 | OriginalState = OriginalState->set<InvariantViolated>(true); |
| 488 | N = C.addTransition(State: OriginalState, Pred: N); |
| 489 | } |
| 490 | |
| 491 | reportBug(Msg, Error, BT, N, Region, BR&: C.getBugReporter(), ValueExpr); |
| 492 | } |
| 493 | |
| 494 | /// Cleaning up the program state. |
| 495 | void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR, |
| 496 | CheckerContext &C) const { |
| 497 | ProgramStateRef State = C.getState(); |
| 498 | NullabilityMapTy Nullabilities = State->get<NullabilityMap>(); |
| 499 | for (const MemRegion *Reg : llvm::make_first_range(c&: Nullabilities)) { |
| 500 | const auto *Region = Reg->getAs<SymbolicRegion>(); |
| 501 | assert(Region && "Non-symbolic region is tracked." ); |
| 502 | if (SR.isDead(sym: Region->getSymbol())) { |
| 503 | State = State->remove<NullabilityMap>(K: Reg); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | // When an object goes out of scope, we can free the history associated |
| 508 | // with any property accesses on that object |
| 509 | PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); |
| 510 | for (ObjectPropPair PropKey : llvm::make_first_range(c&: PropertyAccesses)) { |
| 511 | const MemRegion *ReceiverRegion = PropKey.first; |
| 512 | if (!SR.isLiveRegion(region: ReceiverRegion)) { |
| 513 | State = State->remove<PropertyAccessesMap>(K: PropKey); |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // When one of the nonnull arguments are constrained to be null, nullability |
| 518 | // preconditions are violated. It is not enough to check this only when we |
| 519 | // actually report an error, because at that time interesting symbols might be |
| 520 | // reaped. |
| 521 | if (checkInvariantViolation(State, N: C.getPredecessor(), C)) |
| 522 | return; |
| 523 | C.addTransition(State); |
| 524 | } |
| 525 | |
| 526 | /// This callback triggers when a pointer is dereferenced and the analyzer does |
| 527 | /// not know anything about the value of that pointer. When that pointer is |
| 528 | /// nullable, this code emits a warning. |
| 529 | void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const { |
| 530 | if (Event.SinkNode->getState()->get<InvariantViolated>()) |
| 531 | return; |
| 532 | |
| 533 | const MemRegion *Region = |
| 534 | getTrackRegion(Val: Event.Location, /*CheckSuperRegion=*/true); |
| 535 | if (!Region) |
| 536 | return; |
| 537 | |
| 538 | ProgramStateRef State = Event.SinkNode->getState(); |
| 539 | const NullabilityState *TrackedNullability = |
| 540 | State->get<NullabilityMap>(key: Region); |
| 541 | |
| 542 | if (!TrackedNullability) |
| 543 | return; |
| 544 | |
| 545 | if (NullableDereferenced.isEnabled() && |
| 546 | TrackedNullability->getValue() == Nullability::Nullable) { |
| 547 | BugReporter &BR = *Event.BR; |
| 548 | // Do not suppress errors on defensive code paths, because dereferencing |
| 549 | // a nullable pointer is always an error. |
| 550 | if (Event.IsDirectDereference) |
| 551 | reportBug(Msg: "Nullable pointer is dereferenced" , |
| 552 | Error: ErrorKind::NullableDereferenced, BT: NullableDereferenced, |
| 553 | N: Event.SinkNode, Region, BR); |
| 554 | else { |
| 555 | reportBug(Msg: "Nullable pointer is passed to a callee that requires a " |
| 556 | "non-null" , |
| 557 | Error: ErrorKind::NullablePassedToNonnull, BT: NullableDereferenced, |
| 558 | N: Event.SinkNode, Region, BR); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | void NullabilityChecker::checkBeginFunction(CheckerContext &C) const { |
| 564 | if (!C.inTopFrame()) |
| 565 | return; |
| 566 | |
| 567 | const LocationContext *LCtx = C.getLocationContext(); |
| 568 | auto AbstractCall = AnyCall::forDecl(D: LCtx->getDecl()); |
| 569 | if (!AbstractCall || AbstractCall->parameters().empty()) |
| 570 | return; |
| 571 | |
| 572 | ProgramStateRef State = C.getState(); |
| 573 | for (const ParmVarDecl *Param : AbstractCall->parameters()) { |
| 574 | if (!isValidPointerType(T: Param->getType())) |
| 575 | continue; |
| 576 | |
| 577 | Nullability RequiredNullability = |
| 578 | getNullabilityAnnotation(Type: Param->getType()); |
| 579 | if (RequiredNullability != Nullability::Nullable) |
| 580 | continue; |
| 581 | |
| 582 | const VarRegion *ParamRegion = State->getRegion(D: Param, LC: LCtx); |
| 583 | const MemRegion *ParamPointeeRegion = |
| 584 | State->getSVal(R: ParamRegion).getAsRegion(); |
| 585 | if (!ParamPointeeRegion) |
| 586 | continue; |
| 587 | |
| 588 | State = State->set<NullabilityMap>(K: ParamPointeeRegion, |
| 589 | E: NullabilityState(RequiredNullability)); |
| 590 | } |
| 591 | C.addTransition(State); |
| 592 | } |
| 593 | |
| 594 | // Whenever we see a load from a typed memory region that's been annotated as |
| 595 | // 'nonnull', we want to trust the user on that and assume that it is is indeed |
| 596 | // non-null. |
| 597 | // |
| 598 | // We do so even if the value is known to have been assigned to null. |
| 599 | // The user should be warned on assigning the null value to a non-null pointer |
| 600 | // as opposed to warning on the later dereference of this pointer. |
| 601 | // |
| 602 | // \code |
| 603 | // int * _Nonnull var = 0; // we want to warn the user here... |
| 604 | // // . . . |
| 605 | // *var = 42; // ...and not here |
| 606 | // \endcode |
| 607 | void NullabilityChecker::checkLocation(SVal Location, bool IsLoad, |
| 608 | const Stmt *S, |
| 609 | CheckerContext &Context) const { |
| 610 | // We should care only about loads. |
| 611 | // The main idea is to add a constraint whenever we're loading a value from |
| 612 | // an annotated pointer type. |
| 613 | if (!IsLoad) |
| 614 | return; |
| 615 | |
| 616 | // Annotations that we want to consider make sense only for types. |
| 617 | const auto *Region = |
| 618 | dyn_cast_or_null<TypedValueRegion>(Val: Location.getAsRegion()); |
| 619 | if (!Region) |
| 620 | return; |
| 621 | |
| 622 | ProgramStateRef State = Context.getState(); |
| 623 | |
| 624 | auto StoredVal = State->getSVal(R: Region).getAs<loc::MemRegionVal>(); |
| 625 | if (!StoredVal) |
| 626 | return; |
| 627 | |
| 628 | Nullability NullabilityOfTheLoadedValue = |
| 629 | getNullabilityAnnotation(Type: Region->getValueType()); |
| 630 | |
| 631 | if (NullabilityOfTheLoadedValue == Nullability::Nonnull) { |
| 632 | // It doesn't matter what we think about this particular pointer, it should |
| 633 | // be considered non-null as annotated by the developer. |
| 634 | if (ProgramStateRef NewState = State->assume(Cond: *StoredVal, Assumption: true)) { |
| 635 | Context.addTransition(State: NewState); |
| 636 | } |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | /// Find the outermost subexpression of E that is not an implicit cast. |
| 641 | /// This looks through the implicit casts to _Nonnull that ARC adds to |
| 642 | /// return expressions of ObjC types when the return type of the function or |
| 643 | /// method is non-null but the express is not. |
| 644 | static const Expr *lookThroughImplicitCasts(const Expr *E) { |
| 645 | return E->IgnoreImpCasts(); |
| 646 | } |
| 647 | |
| 648 | /// This method check when nullable pointer or null value is returned from a |
| 649 | /// function that has nonnull return type. |
| 650 | void NullabilityChecker::checkPreStmt(const ReturnStmt *S, |
| 651 | CheckerContext &C) const { |
| 652 | auto RetExpr = S->getRetValue(); |
| 653 | if (!RetExpr) |
| 654 | return; |
| 655 | |
| 656 | if (!isValidPointerType(T: RetExpr->getType())) |
| 657 | return; |
| 658 | |
| 659 | ProgramStateRef State = C.getState(); |
| 660 | if (State->get<InvariantViolated>()) |
| 661 | return; |
| 662 | |
| 663 | auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>(); |
| 664 | if (!RetSVal) |
| 665 | return; |
| 666 | |
| 667 | bool InSuppressedMethodFamily = false; |
| 668 | |
| 669 | QualType RequiredRetType; |
| 670 | AnalysisDeclContext *DeclCtxt = |
| 671 | C.getLocationContext()->getAnalysisDeclContext(); |
| 672 | const Decl *D = DeclCtxt->getDecl(); |
| 673 | if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
| 674 | // HACK: This is a big hammer to avoid warning when there are defensive |
| 675 | // nil checks in -init and -copy methods. We should add more sophisticated |
| 676 | // logic here to suppress on common defensive idioms but still |
| 677 | // warn when there is a likely problem. |
| 678 | ObjCMethodFamily Family = MD->getMethodFamily(); |
| 679 | if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family) |
| 680 | InSuppressedMethodFamily = true; |
| 681 | |
| 682 | RequiredRetType = MD->getReturnType(); |
| 683 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 684 | RequiredRetType = FD->getReturnType(); |
| 685 | } else { |
| 686 | return; |
| 687 | } |
| 688 | |
| 689 | NullConstraint Nullness = getNullConstraint(Val: *RetSVal, State); |
| 690 | |
| 691 | Nullability RequiredNullability = getNullabilityAnnotation(Type: RequiredRetType); |
| 692 | if (const auto *FunDecl = C.getLocationContext()->getDecl(); |
| 693 | FunDecl && FunDecl->getAttr<ReturnsNonNullAttr>() && |
| 694 | (RequiredNullability == Nullability::Unspecified || |
| 695 | RequiredNullability == Nullability::Nullable)) { |
| 696 | // If a function is marked with the returns_nonnull attribute, |
| 697 | // the return value must be non-null. |
| 698 | RequiredNullability = Nullability::Nonnull; |
| 699 | } |
| 700 | |
| 701 | // If the returned value is null but the type of the expression |
| 702 | // generating it is nonnull then we will suppress the diagnostic. |
| 703 | // This enables explicit suppression when returning a nil literal in a |
| 704 | // function with a _Nonnull return type: |
| 705 | // return (NSString * _Nonnull)0; |
| 706 | Nullability RetExprTypeLevelNullability = |
| 707 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: RetExpr)->getType()); |
| 708 | |
| 709 | if (RequiredNullability == Nullability::Nonnull && |
| 710 | Nullness == NullConstraint::IsNull) { |
| 711 | if (NullReturnedFromNonnull.isEnabled() && |
| 712 | RetExprTypeLevelNullability != Nullability::Nonnull && |
| 713 | !InSuppressedMethodFamily) { |
| 714 | ExplodedNode *N = C.generateErrorNode(State); |
| 715 | if (!N) |
| 716 | return; |
| 717 | |
| 718 | SmallString<256> SBuf; |
| 719 | llvm::raw_svector_ostream OS(SBuf); |
| 720 | OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null" ); |
| 721 | OS << " returned from a " << C.getDeclDescription(D) |
| 722 | << " that is expected to return a non-null value" ; |
| 723 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilReturnedToNonnull, |
| 724 | BT: NullReturnedFromNonnull, N, Region: nullptr, C, |
| 725 | ValueExpr: RetExpr); |
| 726 | return; |
| 727 | } |
| 728 | |
| 729 | // If null was returned from a non-null function, mark the nullability |
| 730 | // invariant as violated even if the diagnostic was suppressed. |
| 731 | State = State->set<InvariantViolated>(true); |
| 732 | C.addTransition(State); |
| 733 | return; |
| 734 | } |
| 735 | |
| 736 | const MemRegion *Region = getTrackRegion(Val: *RetSVal); |
| 737 | if (!Region) |
| 738 | return; |
| 739 | |
| 740 | const NullabilityState *TrackedNullability = |
| 741 | State->get<NullabilityMap>(key: Region); |
| 742 | if (TrackedNullability) { |
| 743 | Nullability TrackedNullabValue = TrackedNullability->getValue(); |
| 744 | if (NullableReturnedFromNonnull.isEnabled() && |
| 745 | Nullness != NullConstraint::IsNotNull && |
| 746 | TrackedNullabValue == Nullability::Nullable && |
| 747 | RequiredNullability == Nullability::Nonnull) { |
| 748 | ExplodedNode *N = C.addTransition(State, Pred: C.getPredecessor()); |
| 749 | |
| 750 | SmallString<256> SBuf; |
| 751 | llvm::raw_svector_ostream OS(SBuf); |
| 752 | OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) << |
| 753 | " that is expected to return a non-null value" ; |
| 754 | |
| 755 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NullableReturnedToNonnull, |
| 756 | BT: NullableReturnedFromNonnull, N, Region, C); |
| 757 | } |
| 758 | return; |
| 759 | } |
| 760 | if (RequiredNullability == Nullability::Nullable) { |
| 761 | State = State->set<NullabilityMap>(K: Region, |
| 762 | E: NullabilityState(RequiredNullability, |
| 763 | S)); |
| 764 | C.addTransition(State); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /// This callback warns when a nullable pointer or a null value is passed to a |
| 769 | /// function that expects its argument to be nonnull. |
| 770 | void NullabilityChecker::checkPreCall(const CallEvent &Call, |
| 771 | CheckerContext &C) const { |
| 772 | if (!Call.getDecl()) |
| 773 | return; |
| 774 | |
| 775 | ProgramStateRef State = C.getState(); |
| 776 | if (State->get<InvariantViolated>()) |
| 777 | return; |
| 778 | |
| 779 | ProgramStateRef OrigState = State; |
| 780 | |
| 781 | unsigned Idx = 0; |
| 782 | for (const ParmVarDecl *Param : Call.parameters()) { |
| 783 | if (Param->isParameterPack()) |
| 784 | break; |
| 785 | |
| 786 | if (Idx >= Call.getNumArgs()) |
| 787 | break; |
| 788 | |
| 789 | const Expr *ArgExpr = Call.getArgExpr(Index: Idx); |
| 790 | auto ArgSVal = Call.getArgSVal(Index: Idx++).getAs<DefinedOrUnknownSVal>(); |
| 791 | if (!ArgSVal) |
| 792 | continue; |
| 793 | |
| 794 | if (!isValidPointerType(T: Param->getType()) && |
| 795 | !Param->getType()->isReferenceType()) |
| 796 | continue; |
| 797 | |
| 798 | NullConstraint Nullness = getNullConstraint(Val: *ArgSVal, State); |
| 799 | |
| 800 | Nullability RequiredNullability = |
| 801 | getNullabilityAnnotation(Type: Param->getType()); |
| 802 | Nullability ArgExprTypeLevelNullability = |
| 803 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: ArgExpr)->getType()); |
| 804 | |
| 805 | unsigned ParamIdx = Param->getFunctionScopeIndex() + 1; |
| 806 | |
| 807 | if (NullPassedToNonnull.isEnabled() && Nullness == NullConstraint::IsNull && |
| 808 | ArgExprTypeLevelNullability != Nullability::Nonnull && |
| 809 | RequiredNullability == Nullability::Nonnull && |
| 810 | isDiagnosableCall(Call)) { |
| 811 | ExplodedNode *N = C.generateErrorNode(State); |
| 812 | if (!N) |
| 813 | return; |
| 814 | |
| 815 | SmallString<256> SBuf; |
| 816 | llvm::raw_svector_ostream OS(SBuf); |
| 817 | OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null" ); |
| 818 | OS << " passed to a callee that requires a non-null " << ParamIdx |
| 819 | << llvm::getOrdinalSuffix(Val: ParamIdx) << " parameter" ; |
| 820 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilPassedToNonnull, |
| 821 | BT: NullPassedToNonnull, N, Region: nullptr, C, ValueExpr: ArgExpr, |
| 822 | /*SuppressPath=*/false); |
| 823 | return; |
| 824 | } |
| 825 | |
| 826 | const MemRegion *Region = getTrackRegion(Val: *ArgSVal); |
| 827 | if (!Region) |
| 828 | continue; |
| 829 | |
| 830 | const NullabilityState *TrackedNullability = |
| 831 | State->get<NullabilityMap>(key: Region); |
| 832 | |
| 833 | if (TrackedNullability) { |
| 834 | if (Nullness == NullConstraint::IsNotNull || |
| 835 | TrackedNullability->getValue() != Nullability::Nullable) |
| 836 | continue; |
| 837 | |
| 838 | if (NullablePassedToNonnull.isEnabled() && |
| 839 | RequiredNullability == Nullability::Nonnull && |
| 840 | isDiagnosableCall(Call)) { |
| 841 | ExplodedNode *N = C.addTransition(State); |
| 842 | SmallString<256> SBuf; |
| 843 | llvm::raw_svector_ostream OS(SBuf); |
| 844 | OS << "Nullable pointer is passed to a callee that requires a non-null " |
| 845 | << ParamIdx << llvm::getOrdinalSuffix(Val: ParamIdx) << " parameter" ; |
| 846 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NullablePassedToNonnull, |
| 847 | BT: NullablePassedToNonnull, N, Region, C, |
| 848 | ValueExpr: ArgExpr, /*SuppressPath=*/true); |
| 849 | return; |
| 850 | } |
| 851 | if (NullableDereferenced.isEnabled() && |
| 852 | Param->getType()->isReferenceType()) { |
| 853 | ExplodedNode *N = C.addTransition(State); |
| 854 | reportBugIfInvariantHolds( |
| 855 | Msg: "Nullable pointer is dereferenced" , Error: ErrorKind::NullableDereferenced, |
| 856 | BT: NullableDereferenced, N, Region, C, ValueExpr: ArgExpr, /*SuppressPath=*/true); |
| 857 | return; |
| 858 | } |
| 859 | continue; |
| 860 | } |
| 861 | } |
| 862 | if (State != OrigState) |
| 863 | C.addTransition(State); |
| 864 | } |
| 865 | |
| 866 | /// Suppress the nullability warnings for some functions. |
| 867 | void NullabilityChecker::checkPostCall(const CallEvent &Call, |
| 868 | CheckerContext &C) const { |
| 869 | auto Decl = Call.getDecl(); |
| 870 | if (!Decl) |
| 871 | return; |
| 872 | // ObjC Messages handles in a different callback. |
| 873 | if (Call.getKind() == CE_ObjCMessage) |
| 874 | return; |
| 875 | const FunctionType *FuncType = Decl->getFunctionType(); |
| 876 | if (!FuncType) |
| 877 | return; |
| 878 | QualType ReturnType = FuncType->getReturnType(); |
| 879 | if (!isValidPointerType(T: ReturnType)) |
| 880 | return; |
| 881 | ProgramStateRef State = C.getState(); |
| 882 | if (State->get<InvariantViolated>()) |
| 883 | return; |
| 884 | |
| 885 | const MemRegion *Region = getTrackRegion(Val: Call.getReturnValue()); |
| 886 | if (!Region) |
| 887 | return; |
| 888 | |
| 889 | // CG headers are misannotated. Do not warn for symbols that are the results |
| 890 | // of CG calls. |
| 891 | const SourceManager &SM = C.getSourceManager(); |
| 892 | StringRef FilePath = SM.getFilename(SpellingLoc: SM.getSpellingLoc(Loc: Decl->getBeginLoc())); |
| 893 | if (llvm::sys::path::filename(path: FilePath).starts_with(Prefix: "CG" )) { |
| 894 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
| 895 | C.addTransition(State); |
| 896 | return; |
| 897 | } |
| 898 | |
| 899 | const NullabilityState *TrackedNullability = |
| 900 | State->get<NullabilityMap>(key: Region); |
| 901 | |
| 902 | // ObjCMessageExpr gets the actual type through |
| 903 | // Sema::getMessageSendResultType, instead of using the return type of |
| 904 | // MethodDecl directly. The final type is generated by considering the |
| 905 | // nullability of receiver and MethodDecl together. Thus, The type of |
| 906 | // ObjCMessageExpr is prefer. |
| 907 | if (const Expr *E = Call.getOriginExpr()) |
| 908 | ReturnType = E->getType(); |
| 909 | |
| 910 | if (!TrackedNullability && |
| 911 | getNullabilityAnnotation(Type: ReturnType) == Nullability::Nullable) { |
| 912 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Nullable); |
| 913 | C.addTransition(State); |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | static Nullability getReceiverNullability(const ObjCMethodCall &M, |
| 918 | ProgramStateRef State) { |
| 919 | if (M.isReceiverSelfOrSuper()) { |
| 920 | // For super and super class receivers we assume that the receiver is |
| 921 | // nonnull. |
| 922 | return Nullability::Nonnull; |
| 923 | } |
| 924 | // Otherwise look up nullability in the state. |
| 925 | SVal Receiver = M.getReceiverSVal(); |
| 926 | if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) { |
| 927 | // If the receiver is constrained to be nonnull, assume that it is nonnull |
| 928 | // regardless of its type. |
| 929 | NullConstraint Nullness = getNullConstraint(Val: *DefOrUnknown, State); |
| 930 | if (Nullness == NullConstraint::IsNotNull) |
| 931 | return Nullability::Nonnull; |
| 932 | } |
| 933 | auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>(); |
| 934 | if (ValueRegionSVal) { |
| 935 | const MemRegion *SelfRegion = ValueRegionSVal->getRegion(); |
| 936 | assert(SelfRegion); |
| 937 | |
| 938 | const NullabilityState *TrackedSelfNullability = |
| 939 | State->get<NullabilityMap>(key: SelfRegion); |
| 940 | if (TrackedSelfNullability) |
| 941 | return TrackedSelfNullability->getValue(); |
| 942 | } |
| 943 | return Nullability::Unspecified; |
| 944 | } |
| 945 | |
| 946 | // The return value of a property access is typically a temporary value which |
| 947 | // will not be tracked in a persistent manner by the analyzer. We use |
| 948 | // evalAssume() in order to immediately record constraints on those temporaries |
| 949 | // at the time they are imposed (e.g. by a nil-check conditional). |
| 950 | ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond, |
| 951 | bool Assumption) const { |
| 952 | PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); |
| 953 | for (auto [PropKey, PropVal] : PropertyAccesses) { |
| 954 | if (!PropVal.isConstrainedNonnull) { |
| 955 | ConditionTruthVal IsNonNull = State->isNonNull(V: PropVal.Value); |
| 956 | if (IsNonNull.isConstrainedTrue()) { |
| 957 | ConstrainedPropertyVal Replacement = PropVal; |
| 958 | Replacement.isConstrainedNonnull = true; |
| 959 | State = State->set<PropertyAccessesMap>(K: PropKey, E: Replacement); |
| 960 | } else if (IsNonNull.isConstrainedFalse()) { |
| 961 | // Space optimization: no point in tracking constrained-null cases |
| 962 | State = State->remove<PropertyAccessesMap>(K: PropKey); |
| 963 | } |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | return State; |
| 968 | } |
| 969 | |
| 970 | /// Calculate the nullability of the result of a message expr based on the |
| 971 | /// nullability of the receiver, the nullability of the return value, and the |
| 972 | /// constraints. |
| 973 | void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M, |
| 974 | CheckerContext &C) const { |
| 975 | auto Decl = M.getDecl(); |
| 976 | if (!Decl) |
| 977 | return; |
| 978 | QualType RetType = Decl->getReturnType(); |
| 979 | if (!isValidPointerType(T: RetType)) |
| 980 | return; |
| 981 | |
| 982 | ProgramStateRef State = C.getState(); |
| 983 | if (State->get<InvariantViolated>()) |
| 984 | return; |
| 985 | |
| 986 | const MemRegion *ReturnRegion = getTrackRegion(Val: M.getReturnValue()); |
| 987 | if (!ReturnRegion) |
| 988 | return; |
| 989 | |
| 990 | auto Interface = Decl->getClassInterface(); |
| 991 | auto Name = Interface ? Interface->getName() : "" ; |
| 992 | // In order to reduce the noise in the diagnostics generated by this checker, |
| 993 | // some framework and programming style based heuristics are used. These |
| 994 | // heuristics are for Cocoa APIs which have NS prefix. |
| 995 | if (Name.starts_with(Prefix: "NS" )) { |
| 996 | // Developers rely on dynamic invariants such as an item should be available |
| 997 | // in a collection, or a collection is not empty often. Those invariants can |
| 998 | // not be inferred by any static analysis tool. To not to bother the users |
| 999 | // with too many false positives, every item retrieval function should be |
| 1000 | // ignored for collections. The instance methods of dictionaries in Cocoa |
| 1001 | // are either item retrieval related or not interesting nullability wise. |
| 1002 | // Using this fact, to keep the code easier to read just ignore the return |
| 1003 | // value of every instance method of dictionaries. |
| 1004 | if (M.isInstanceMessage() && Name.contains(Other: "Dictionary" )) { |
| 1005 | State = |
| 1006 | State->set<NullabilityMap>(K: ReturnRegion, E: Nullability::Contradicted); |
| 1007 | C.addTransition(State); |
| 1008 | return; |
| 1009 | } |
| 1010 | // For similar reasons ignore some methods of Cocoa arrays. |
| 1011 | StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(argIndex: 0); |
| 1012 | if (Name.contains(Other: "Array" ) && |
| 1013 | (FirstSelectorSlot == "firstObject" || |
| 1014 | FirstSelectorSlot == "lastObject" )) { |
| 1015 | State = |
| 1016 | State->set<NullabilityMap>(K: ReturnRegion, E: Nullability::Contradicted); |
| 1017 | C.addTransition(State); |
| 1018 | return; |
| 1019 | } |
| 1020 | |
| 1021 | // Encoding related methods of string should not fail when lossless |
| 1022 | // encodings are used. Using lossless encodings is so frequent that ignoring |
| 1023 | // this class of methods reduced the emitted diagnostics by about 30% on |
| 1024 | // some projects (and all of that was false positives). |
| 1025 | if (Name.contains(Other: "String" )) { |
| 1026 | for (auto *Param : M.parameters()) { |
| 1027 | if (Param->getName() == "encoding" ) { |
| 1028 | State = State->set<NullabilityMap>(K: ReturnRegion, |
| 1029 | E: Nullability::Contradicted); |
| 1030 | C.addTransition(State); |
| 1031 | return; |
| 1032 | } |
| 1033 | } |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | const ObjCMessageExpr *Message = M.getOriginExpr(); |
| 1038 | Nullability SelfNullability = getReceiverNullability(M, State); |
| 1039 | |
| 1040 | const NullabilityState *NullabilityOfReturn = |
| 1041 | State->get<NullabilityMap>(key: ReturnRegion); |
| 1042 | |
| 1043 | if (NullabilityOfReturn) { |
| 1044 | // When we have a nullability tracked for the return value, the nullability |
| 1045 | // of the expression will be the most nullable of the receiver and the |
| 1046 | // return value. |
| 1047 | Nullability RetValTracked = NullabilityOfReturn->getValue(); |
| 1048 | Nullability ComputedNullab = |
| 1049 | getMostNullable(Lhs: RetValTracked, Rhs: SelfNullability); |
| 1050 | if (ComputedNullab != RetValTracked && |
| 1051 | ComputedNullab != Nullability::Unspecified) { |
| 1052 | const Stmt *NullabilitySource = |
| 1053 | ComputedNullab == RetValTracked |
| 1054 | ? NullabilityOfReturn->getNullabilitySource() |
| 1055 | : Message->getInstanceReceiver(); |
| 1056 | State = State->set<NullabilityMap>( |
| 1057 | K: ReturnRegion, E: NullabilityState(ComputedNullab, NullabilitySource)); |
| 1058 | C.addTransition(State); |
| 1059 | } |
| 1060 | return; |
| 1061 | } |
| 1062 | |
| 1063 | // No tracked information. Use static type information for return value. |
| 1064 | Nullability RetNullability = getNullabilityAnnotation(Type: Message->getType()); |
| 1065 | |
| 1066 | // Properties might be computed, which means the property value could |
| 1067 | // theoretically change between calls even in commonly-observed cases like |
| 1068 | // this: |
| 1069 | // |
| 1070 | // if (foo.prop) { // ok, it's nonnull here... |
| 1071 | // [bar doStuffWithNonnullVal:foo.prop]; // ...but what about |
| 1072 | // here? |
| 1073 | // } |
| 1074 | // |
| 1075 | // If the property is nullable-annotated, a naive analysis would lead to many |
| 1076 | // false positives despite the presence of probably-correct nil-checks. To |
| 1077 | // reduce the false positive rate, we maintain a history of the most recently |
| 1078 | // observed property value. For each property access, if the prior value has |
| 1079 | // been constrained to be not nil then we will conservatively assume that the |
| 1080 | // next access can be inferred as nonnull. |
| 1081 | if (RetNullability != Nullability::Nonnull && |
| 1082 | M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) { |
| 1083 | bool LookupResolved = false; |
| 1084 | if (const MemRegion *ReceiverRegion = getTrackRegion(Val: M.getReceiverSVal())) { |
| 1085 | if (const IdentifierInfo *Ident = |
| 1086 | M.getSelector().getIdentifierInfoForSlot(argIndex: 0)) { |
| 1087 | LookupResolved = true; |
| 1088 | ObjectPropPair Key = std::make_pair(x&: ReceiverRegion, y&: Ident); |
| 1089 | const ConstrainedPropertyVal *PrevPropVal = |
| 1090 | State->get<PropertyAccessesMap>(key: Key); |
| 1091 | if (PrevPropVal && PrevPropVal->isConstrainedNonnull) { |
| 1092 | RetNullability = Nullability::Nonnull; |
| 1093 | } else { |
| 1094 | // If a previous property access was constrained as nonnull, we hold |
| 1095 | // on to that constraint (effectively inferring that all subsequent |
| 1096 | // accesses on that code path can be inferred as nonnull). If the |
| 1097 | // previous property access was *not* constrained as nonnull, then |
| 1098 | // let's throw it away in favor of keeping the SVal associated with |
| 1099 | // this more recent access. |
| 1100 | if (auto ReturnSVal = |
| 1101 | M.getReturnValue().getAs<DefinedOrUnknownSVal>()) { |
| 1102 | State = State->set<PropertyAccessesMap>( |
| 1103 | K: Key, E: ConstrainedPropertyVal(*ReturnSVal)); |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | if (!LookupResolved) { |
| 1110 | // Fallback: err on the side of suppressing the false positive. |
| 1111 | RetNullability = Nullability::Nonnull; |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | Nullability ComputedNullab = getMostNullable(Lhs: RetNullability, Rhs: SelfNullability); |
| 1116 | if (ComputedNullab == Nullability::Nullable) { |
| 1117 | const Stmt *NullabilitySource = ComputedNullab == RetNullability |
| 1118 | ? Message |
| 1119 | : Message->getInstanceReceiver(); |
| 1120 | State = State->set<NullabilityMap>( |
| 1121 | K: ReturnRegion, E: NullabilityState(ComputedNullab, NullabilitySource)); |
| 1122 | C.addTransition(State); |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | /// Explicit casts are trusted. If there is a disagreement in the nullability |
| 1127 | /// annotations in the destination and the source or '0' is casted to nonnull |
| 1128 | /// track the value as having contraditory nullability. This will allow users to |
| 1129 | /// suppress warnings. |
| 1130 | void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE, |
| 1131 | CheckerContext &C) const { |
| 1132 | QualType OriginType = CE->getSubExpr()->getType(); |
| 1133 | QualType DestType = CE->getType(); |
| 1134 | if (!isValidPointerType(T: OriginType)) |
| 1135 | return; |
| 1136 | if (!isValidPointerType(T: DestType)) |
| 1137 | return; |
| 1138 | |
| 1139 | ProgramStateRef State = C.getState(); |
| 1140 | if (State->get<InvariantViolated>()) |
| 1141 | return; |
| 1142 | |
| 1143 | Nullability DestNullability = getNullabilityAnnotation(Type: DestType); |
| 1144 | |
| 1145 | // No explicit nullability in the destination type, so this cast does not |
| 1146 | // change the nullability. |
| 1147 | if (DestNullability == Nullability::Unspecified) |
| 1148 | return; |
| 1149 | |
| 1150 | auto RegionSVal = C.getSVal(S: CE).getAs<DefinedOrUnknownSVal>(); |
| 1151 | const MemRegion *Region = getTrackRegion(Val: *RegionSVal); |
| 1152 | if (!Region) |
| 1153 | return; |
| 1154 | |
| 1155 | // When 0 is converted to nonnull mark it as contradicted. |
| 1156 | if (DestNullability == Nullability::Nonnull) { |
| 1157 | NullConstraint Nullness = getNullConstraint(Val: *RegionSVal, State); |
| 1158 | if (Nullness == NullConstraint::IsNull) { |
| 1159 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
| 1160 | C.addTransition(State); |
| 1161 | return; |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | const NullabilityState *TrackedNullability = |
| 1166 | State->get<NullabilityMap>(key: Region); |
| 1167 | |
| 1168 | if (!TrackedNullability) { |
| 1169 | if (DestNullability != Nullability::Nullable) |
| 1170 | return; |
| 1171 | State = State->set<NullabilityMap>(K: Region, |
| 1172 | E: NullabilityState(DestNullability, CE)); |
| 1173 | C.addTransition(State); |
| 1174 | return; |
| 1175 | } |
| 1176 | |
| 1177 | if (TrackedNullability->getValue() != DestNullability && |
| 1178 | TrackedNullability->getValue() != Nullability::Contradicted) { |
| 1179 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
| 1180 | C.addTransition(State); |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | /// For a given statement performing a bind, attempt to syntactically |
| 1185 | /// match the expression resulting in the bound value. |
| 1186 | static const Expr * matchValueExprForBind(const Stmt *S) { |
| 1187 | // For `x = e` the value expression is the right-hand side. |
| 1188 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: S)) { |
| 1189 | if (BinOp->getOpcode() == BO_Assign) |
| 1190 | return BinOp->getRHS(); |
| 1191 | } |
| 1192 | |
| 1193 | // For `int x = e` the value expression is the initializer. |
| 1194 | if (auto *DS = dyn_cast<DeclStmt>(Val: S)) { |
| 1195 | if (DS->isSingleDecl()) { |
| 1196 | auto *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
| 1197 | if (!VD) |
| 1198 | return nullptr; |
| 1199 | |
| 1200 | if (const Expr *Init = VD->getInit()) |
| 1201 | return Init; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | return nullptr; |
| 1206 | } |
| 1207 | |
| 1208 | /// Returns true if \param S is a DeclStmt for a local variable that |
| 1209 | /// ObjC automated reference counting initialized with zero. |
| 1210 | static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) { |
| 1211 | // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This |
| 1212 | // prevents false positives when a _Nonnull local variable cannot be |
| 1213 | // initialized with an initialization expression: |
| 1214 | // NSString * _Nonnull s; // no-warning |
| 1215 | // @autoreleasepool { |
| 1216 | // s = ... |
| 1217 | // } |
| 1218 | // |
| 1219 | // FIXME: We should treat implicitly zero-initialized _Nonnull locals as |
| 1220 | // uninitialized in Sema's UninitializedValues analysis to warn when a use of |
| 1221 | // the zero-initialized definition will unexpectedly yield nil. |
| 1222 | |
| 1223 | // Locals are only zero-initialized when automated reference counting |
| 1224 | // is turned on. |
| 1225 | if (!C.getASTContext().getLangOpts().ObjCAutoRefCount) |
| 1226 | return false; |
| 1227 | |
| 1228 | auto *DS = dyn_cast<DeclStmt>(Val: S); |
| 1229 | if (!DS || !DS->isSingleDecl()) |
| 1230 | return false; |
| 1231 | |
| 1232 | auto *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
| 1233 | if (!VD) |
| 1234 | return false; |
| 1235 | |
| 1236 | // Sema only zero-initializes locals with ObjCLifetimes. |
| 1237 | if(!VD->getType().getQualifiers().hasObjCLifetime()) |
| 1238 | return false; |
| 1239 | |
| 1240 | const Expr *Init = VD->getInit(); |
| 1241 | assert(Init && "ObjC local under ARC without initializer" ); |
| 1242 | |
| 1243 | // Return false if the local is explicitly initialized (e.g., with '= nil'). |
| 1244 | if (!isa<ImplicitValueInitExpr>(Val: Init)) |
| 1245 | return false; |
| 1246 | |
| 1247 | return true; |
| 1248 | } |
| 1249 | |
| 1250 | /// Propagate the nullability information through binds and warn when nullable |
| 1251 | /// pointer or null symbol is assigned to a pointer with a nonnull type. |
| 1252 | void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S, |
| 1253 | CheckerContext &C) const { |
| 1254 | const TypedValueRegion *TVR = |
| 1255 | dyn_cast_or_null<TypedValueRegion>(Val: L.getAsRegion()); |
| 1256 | if (!TVR) |
| 1257 | return; |
| 1258 | |
| 1259 | QualType LocType = TVR->getValueType(); |
| 1260 | if (!isValidPointerType(T: LocType)) |
| 1261 | return; |
| 1262 | |
| 1263 | ProgramStateRef State = C.getState(); |
| 1264 | if (State->get<InvariantViolated>()) |
| 1265 | return; |
| 1266 | |
| 1267 | auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>(); |
| 1268 | if (!ValDefOrUnknown) |
| 1269 | return; |
| 1270 | |
| 1271 | NullConstraint RhsNullness = getNullConstraint(Val: *ValDefOrUnknown, State); |
| 1272 | |
| 1273 | Nullability ValNullability = Nullability::Unspecified; |
| 1274 | if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol()) |
| 1275 | ValNullability = getNullabilityAnnotation(Type: Sym->getType()); |
| 1276 | |
| 1277 | Nullability LocNullability = getNullabilityAnnotation(Type: LocType); |
| 1278 | |
| 1279 | // If the type of the RHS expression is nonnull, don't warn. This |
| 1280 | // enables explicit suppression with a cast to nonnull. |
| 1281 | Nullability ValueExprTypeLevelNullability = Nullability::Unspecified; |
| 1282 | const Expr *ValueExpr = matchValueExprForBind(S); |
| 1283 | if (ValueExpr) { |
| 1284 | ValueExprTypeLevelNullability = |
| 1285 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: ValueExpr)->getType()); |
| 1286 | } |
| 1287 | |
| 1288 | bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull && |
| 1289 | RhsNullness == NullConstraint::IsNull); |
| 1290 | if (NullPassedToNonnull.isEnabled() && NullAssignedToNonNull && |
| 1291 | ValNullability != Nullability::Nonnull && |
| 1292 | ValueExprTypeLevelNullability != Nullability::Nonnull && |
| 1293 | !isARCNilInitializedLocal(C, S)) { |
| 1294 | ExplodedNode *N = C.generateErrorNode(State); |
| 1295 | if (!N) |
| 1296 | return; |
| 1297 | |
| 1298 | |
| 1299 | const Stmt *ValueStmt = S; |
| 1300 | if (ValueExpr) |
| 1301 | ValueStmt = ValueExpr; |
| 1302 | |
| 1303 | SmallString<256> SBuf; |
| 1304 | llvm::raw_svector_ostream OS(SBuf); |
| 1305 | OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null" ); |
| 1306 | OS << " assigned to a pointer which is expected to have non-null value" ; |
| 1307 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilAssignedToNonnull, |
| 1308 | BT: NullPassedToNonnull, N, Region: nullptr, C, ValueExpr: ValueStmt); |
| 1309 | return; |
| 1310 | } |
| 1311 | |
| 1312 | // If null was returned from a non-null function, mark the nullability |
| 1313 | // invariant as violated even if the diagnostic was suppressed. |
| 1314 | if (NullAssignedToNonNull) { |
| 1315 | State = State->set<InvariantViolated>(true); |
| 1316 | C.addTransition(State); |
| 1317 | return; |
| 1318 | } |
| 1319 | |
| 1320 | // Intentionally missing case: '0' is bound to a reference. It is handled by |
| 1321 | // the DereferenceChecker. |
| 1322 | |
| 1323 | const MemRegion *ValueRegion = getTrackRegion(Val: *ValDefOrUnknown); |
| 1324 | if (!ValueRegion) |
| 1325 | return; |
| 1326 | |
| 1327 | const NullabilityState *TrackedNullability = |
| 1328 | State->get<NullabilityMap>(key: ValueRegion); |
| 1329 | |
| 1330 | if (TrackedNullability) { |
| 1331 | if (RhsNullness == NullConstraint::IsNotNull || |
| 1332 | TrackedNullability->getValue() != Nullability::Nullable) |
| 1333 | return; |
| 1334 | if (NullablePassedToNonnull.isEnabled() && |
| 1335 | LocNullability == Nullability::Nonnull) { |
| 1336 | ExplodedNode *N = C.addTransition(State, Pred: C.getPredecessor()); |
| 1337 | reportBugIfInvariantHolds(Msg: "Nullable pointer is assigned to a pointer " |
| 1338 | "which is expected to have non-null value" , |
| 1339 | Error: ErrorKind::NullableAssignedToNonnull, |
| 1340 | BT: NullablePassedToNonnull, N, Region: ValueRegion, C); |
| 1341 | } |
| 1342 | return; |
| 1343 | } |
| 1344 | |
| 1345 | const auto *BinOp = dyn_cast<BinaryOperator>(Val: S); |
| 1346 | |
| 1347 | if (ValNullability == Nullability::Nullable) { |
| 1348 | // Trust the static information of the value more than the static |
| 1349 | // information on the location. |
| 1350 | const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S; |
| 1351 | State = State->set<NullabilityMap>( |
| 1352 | K: ValueRegion, E: NullabilityState(ValNullability, NullabilitySource)); |
| 1353 | C.addTransition(State); |
| 1354 | return; |
| 1355 | } |
| 1356 | |
| 1357 | if (LocNullability == Nullability::Nullable) { |
| 1358 | const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S; |
| 1359 | State = State->set<NullabilityMap>( |
| 1360 | K: ValueRegion, E: NullabilityState(LocNullability, NullabilitySource)); |
| 1361 | C.addTransition(State); |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State, |
| 1366 | const char *NL, const char *Sep) const { |
| 1367 | |
| 1368 | NullabilityMapTy B = State->get<NullabilityMap>(); |
| 1369 | |
| 1370 | if (State->get<InvariantViolated>()) |
| 1371 | Out << Sep << NL |
| 1372 | << "Nullability invariant was violated, warnings suppressed." << NL; |
| 1373 | |
| 1374 | if (B.isEmpty()) |
| 1375 | return; |
| 1376 | |
| 1377 | if (!State->get<InvariantViolated>()) |
| 1378 | Out << Sep << NL; |
| 1379 | |
| 1380 | for (auto [Region, State] : B) { |
| 1381 | Out << Region << " : " ; |
| 1382 | State.print(Out); |
| 1383 | Out << NL; |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | // The checker group "nullability" (which consists of the checkers that are |
| 1388 | // implemented in this file) has a group-level configuration option which |
| 1389 | // affects all the checkers in the group. As this is a completely unique |
| 1390 | // remnant of old design (this is the only group option in the analyzer), there |
| 1391 | // is no machinery to inject the group name from `Checkers.td`, so it is simply |
| 1392 | // hardcoded here: |
| 1393 | constexpr llvm::StringLiteral GroupName = "nullability" ; |
| 1394 | constexpr llvm::StringLiteral GroupOptName = "NoDiagnoseCallsToSystemHeaders" ; |
| 1395 | |
| 1396 | #define REGISTER_CHECKER(NAME, TRACKING_REQUIRED) \ |
| 1397 | void ento::register##NAME##Checker(CheckerManager &Mgr) { \ |
| 1398 | NullabilityChecker *Chk = Mgr.getChecker<NullabilityChecker>(); \ |
| 1399 | Chk->NAME.enable(Mgr); \ |
| 1400 | Chk->NeedTracking = Chk->NeedTracking || TRACKING_REQUIRED; \ |
| 1401 | Chk->NoDiagnoseCallsToSystemHeaders = \ |
| 1402 | Mgr.getAnalyzerOptions().getCheckerBooleanOption(GroupName, \ |
| 1403 | GroupOptName, true); \ |
| 1404 | } \ |
| 1405 | \ |
| 1406 | bool ento::shouldRegister##NAME##Checker(const CheckerManager &) { \ |
| 1407 | return true; \ |
| 1408 | } |
| 1409 | |
| 1410 | // The checks are likely to be turned on by default and it is possible to do |
| 1411 | // them without tracking any nullability related information. As an optimization |
| 1412 | // no nullability information will be tracked when only these two checks are |
| 1413 | // enables. |
| 1414 | REGISTER_CHECKER(NullPassedToNonnull, false) |
| 1415 | REGISTER_CHECKER(NullReturnedFromNonnull, false) |
| 1416 | |
| 1417 | REGISTER_CHECKER(NullableDereferenced, true) |
| 1418 | REGISTER_CHECKER(NullablePassedToNonnull, true) |
| 1419 | REGISTER_CHECKER(NullableReturnedFromNonnull, true) |
| 1420 | |