1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements a class to represent arbitrary precision |
11 | /// integral constant values and operations on them. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_APINT_H |
16 | #define LLVM_ADT_APINT_H |
17 | |
18 | #include "llvm/Support/Compiler.h" |
19 | #include "llvm/Support/MathExtras.h" |
20 | #include "llvm/Support/float128.h" |
21 | #include <cassert> |
22 | #include <climits> |
23 | #include <cstring> |
24 | #include <optional> |
25 | #include <utility> |
26 | |
27 | namespace llvm { |
28 | class FoldingSetNodeID; |
29 | class StringRef; |
30 | class hash_code; |
31 | class raw_ostream; |
32 | struct Align; |
33 | class DynamicAPInt; |
34 | |
35 | template <typename T> class SmallVectorImpl; |
36 | template <typename T> class ArrayRef; |
37 | template <typename T, typename Enable> struct DenseMapInfo; |
38 | |
39 | class APInt; |
40 | |
41 | inline APInt operator-(APInt); |
42 | |
43 | //===----------------------------------------------------------------------===// |
44 | // APInt Class |
45 | //===----------------------------------------------------------------------===// |
46 | |
47 | /// Class for arbitrary precision integers. |
48 | /// |
49 | /// APInt is a functional replacement for common case unsigned integer type like |
50 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
51 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
52 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
53 | /// and methods to manipulate integer values of any bit-width. It supports both |
54 | /// the typical integer arithmetic and comparison operations as well as bitwise |
55 | /// manipulation. |
56 | /// |
57 | /// The class has several invariants worth noting: |
58 | /// * All bit, byte, and word positions are zero-based. |
59 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
60 | /// SignExtend, or ZeroExtend operations. |
61 | /// * All binary operators must be on APInt instances of the same bit width. |
62 | /// Attempting to use these operators on instances with different bit |
63 | /// widths will yield an assertion. |
64 | /// * The value is stored canonically as an unsigned value. For operations |
65 | /// where it makes a difference, there are both signed and unsigned variants |
66 | /// of the operation. For example, sdiv and udiv. However, because the bit |
67 | /// widths must be the same, operations such as Mul and Add produce the same |
68 | /// results regardless of whether the values are interpreted as signed or |
69 | /// not. |
70 | /// * In general, the class tries to follow the style of computation that LLVM |
71 | /// uses in its IR. This simplifies its use for LLVM. |
72 | /// * APInt supports zero-bit-width values, but operations that require bits |
73 | /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit |
74 | /// integer). This means that operations like zero extension and logical |
75 | /// shifts are defined, but sign extension and ashr is not. Zero bit values |
76 | /// compare and hash equal to themselves, and countLeadingZeros returns 0. |
77 | /// |
78 | class [[nodiscard]] APInt { |
79 | public: |
80 | typedef uint64_t WordType; |
81 | |
82 | /// Byte size of a word. |
83 | static constexpr unsigned APINT_WORD_SIZE = sizeof(WordType); |
84 | |
85 | /// Bits in a word. |
86 | static constexpr unsigned APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT; |
87 | |
88 | enum class Rounding { |
89 | DOWN, |
90 | TOWARD_ZERO, |
91 | UP, |
92 | }; |
93 | |
94 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
95 | |
96 | /// \name Constructors |
97 | /// @{ |
98 | |
99 | /// Create a new APInt of numBits width, initialized as val. |
100 | /// |
101 | /// If isSigned is true then val is treated as if it were a signed value |
102 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
103 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
104 | /// the range of val are zero filled). |
105 | /// |
106 | /// \param numBits the bit width of the constructed APInt |
107 | /// \param val the initial value of the APInt |
108 | /// \param isSigned how to treat signedness of val |
109 | /// \param implicitTrunc allow implicit truncation of non-zero/sign bits of |
110 | /// val beyond the range of numBits |
111 | APInt(unsigned numBits, uint64_t val, bool isSigned = false, |
112 | bool implicitTrunc = false) |
113 | : BitWidth(numBits) { |
114 | if (!implicitTrunc) { |
115 | if (isSigned) { |
116 | if (BitWidth == 0) { |
117 | assert((val == 0 || val == uint64_t(-1)) && |
118 | "Value must be 0 or -1 for signed 0-bit APInt" ); |
119 | } else { |
120 | assert(llvm::isIntN(BitWidth, val) && |
121 | "Value is not an N-bit signed value" ); |
122 | } |
123 | } else { |
124 | if (BitWidth == 0) { |
125 | assert(val == 0 && "Value must be zero for unsigned 0-bit APInt" ); |
126 | } else { |
127 | assert(llvm::isUIntN(BitWidth, val) && |
128 | "Value is not an N-bit unsigned value" ); |
129 | } |
130 | } |
131 | } |
132 | if (isSingleWord()) { |
133 | U.VAL = val; |
134 | if (implicitTrunc || isSigned) |
135 | clearUnusedBits(); |
136 | } else { |
137 | initSlowCase(val, isSigned); |
138 | } |
139 | } |
140 | |
141 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
142 | /// |
143 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
144 | /// bit width but any extraneous bits will be dropped. |
145 | /// |
146 | /// \param numBits the bit width of the constructed APInt |
147 | /// \param bigVal a sequence of words to form the initial value of the APInt |
148 | LLVM_ABI APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
149 | |
150 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
151 | /// deprecated because this constructor is prone to ambiguity with the |
152 | /// APInt(unsigned, uint64_t, bool) constructor. |
153 | /// |
154 | /// If this overload is ever deleted, care should be taken to prevent calls |
155 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
156 | /// constructor. |
157 | LLVM_ABI APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
158 | |
159 | /// Construct an APInt from a string representation. |
160 | /// |
161 | /// This constructor interprets the string \p str in the given radix. The |
162 | /// interpretation stops when the first character that is not suitable for the |
163 | /// radix is encountered, or the end of the string. Acceptable radix values |
164 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
165 | /// string to require more bits than numBits. |
166 | /// |
167 | /// \param numBits the bit width of the constructed APInt |
168 | /// \param str the string to be interpreted |
169 | /// \param radix the radix to use for the conversion |
170 | LLVM_ABI APInt(unsigned numBits, StringRef str, uint8_t radix); |
171 | |
172 | /// Default constructor that creates an APInt with a 1-bit zero value. |
173 | explicit APInt() { U.VAL = 0; } |
174 | |
175 | /// Copy Constructor. |
176 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
177 | if (isSingleWord()) |
178 | U.VAL = that.U.VAL; |
179 | else |
180 | initSlowCase(that); |
181 | } |
182 | |
183 | /// Move Constructor. |
184 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
185 | memcpy(dest: &U, src: &that.U, n: sizeof(U)); |
186 | that.BitWidth = 0; |
187 | } |
188 | |
189 | /// Destructor. |
190 | ~APInt() { |
191 | if (needsCleanup()) |
192 | delete[] U.pVal; |
193 | } |
194 | |
195 | /// @} |
196 | /// \name Value Generators |
197 | /// @{ |
198 | |
199 | /// Get the '0' value for the specified bit-width. |
200 | static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } |
201 | |
202 | /// Return an APInt zero bits wide. |
203 | static APInt getZeroWidth() { return getZero(numBits: 0); } |
204 | |
205 | /// Gets maximum unsigned value of APInt for specific bit width. |
206 | static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } |
207 | |
208 | /// Gets maximum signed value of APInt for a specific bit width. |
209 | static APInt getSignedMaxValue(unsigned numBits) { |
210 | APInt API = getAllOnes(numBits); |
211 | API.clearBit(BitPosition: numBits - 1); |
212 | return API; |
213 | } |
214 | |
215 | /// Gets minimum unsigned value of APInt for a specific bit width. |
216 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
217 | |
218 | /// Gets minimum signed value of APInt for a specific bit width. |
219 | static APInt getSignedMinValue(unsigned numBits) { |
220 | APInt API(numBits, 0); |
221 | API.setBit(numBits - 1); |
222 | return API; |
223 | } |
224 | |
225 | /// Get the SignMask for a specific bit width. |
226 | /// |
227 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
228 | /// readability when we want to get a SignMask. |
229 | static APInt getSignMask(unsigned BitWidth) { |
230 | return getSignedMinValue(numBits: BitWidth); |
231 | } |
232 | |
233 | /// Return an APInt of a specified width with all bits set. |
234 | static APInt getAllOnes(unsigned numBits) { |
235 | return APInt(numBits, WORDTYPE_MAX, true); |
236 | } |
237 | |
238 | /// Return an APInt with exactly one bit set in the result. |
239 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
240 | APInt Res(numBits, 0); |
241 | Res.setBit(BitNo); |
242 | return Res; |
243 | } |
244 | |
245 | /// Get a value with a block of bits set. |
246 | /// |
247 | /// Constructs an APInt value that has a contiguous range of bits set. The |
248 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
249 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
250 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
251 | /// \p hiBit. |
252 | /// |
253 | /// \param numBits the intended bit width of the result |
254 | /// \param loBit the index of the lowest bit set. |
255 | /// \param hiBit the index of the highest bit set. |
256 | /// |
257 | /// \returns An APInt value with the requested bits set. |
258 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
259 | APInt Res(numBits, 0); |
260 | Res.setBits(loBit, hiBit); |
261 | return Res; |
262 | } |
263 | |
264 | /// Wrap version of getBitsSet. |
265 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
266 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
267 | /// with parameters (32, 28, 4), you would get 0xF000000F. |
268 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
269 | /// set. |
270 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
271 | unsigned hiBit) { |
272 | APInt Res(numBits, 0); |
273 | Res.setBitsWithWrap(loBit, hiBit); |
274 | return Res; |
275 | } |
276 | |
277 | /// Constructs an APInt value that has a contiguous range of bits set. The |
278 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
279 | /// bits will be zero. For example, with parameters(32, 12) you would get |
280 | /// 0xFFFFF000. |
281 | /// |
282 | /// \param numBits the intended bit width of the result |
283 | /// \param loBit the index of the lowest bit to set. |
284 | /// |
285 | /// \returns An APInt value with the requested bits set. |
286 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
287 | APInt Res(numBits, 0); |
288 | Res.setBitsFrom(loBit); |
289 | return Res; |
290 | } |
291 | |
292 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
293 | /// |
294 | /// \param numBits the bitwidth of the result |
295 | /// \param hiBitsSet the number of high-order bits set in the result. |
296 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
297 | APInt Res(numBits, 0); |
298 | Res.setHighBits(hiBitsSet); |
299 | return Res; |
300 | } |
301 | |
302 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
303 | /// |
304 | /// \param numBits the bitwidth of the result |
305 | /// \param loBitsSet the number of low-order bits set in the result. |
306 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
307 | APInt Res(numBits, 0); |
308 | Res.setLowBits(loBitsSet); |
309 | return Res; |
310 | } |
311 | |
312 | /// Return a value containing V broadcasted over NewLen bits. |
313 | LLVM_ABI static APInt getSplat(unsigned NewLen, const APInt &V); |
314 | |
315 | /// @} |
316 | /// \name Value Tests |
317 | /// @{ |
318 | |
319 | /// Determine if this APInt just has one word to store value. |
320 | /// |
321 | /// \returns true if the number of bits <= 64, false otherwise. |
322 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
323 | |
324 | /// Determine sign of this APInt. |
325 | /// |
326 | /// This tests the high bit of this APInt to determine if it is set. |
327 | /// |
328 | /// \returns true if this APInt is negative, false otherwise |
329 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
330 | |
331 | /// Determine if this APInt Value is non-negative (>= 0) |
332 | /// |
333 | /// This tests the high bit of the APInt to determine if it is unset. |
334 | bool isNonNegative() const { return !isNegative(); } |
335 | |
336 | /// Determine if sign bit of this APInt is set. |
337 | /// |
338 | /// This tests the high bit of this APInt to determine if it is set. |
339 | /// |
340 | /// \returns true if this APInt has its sign bit set, false otherwise. |
341 | bool isSignBitSet() const { return (*this)[BitWidth - 1]; } |
342 | |
343 | /// Determine if sign bit of this APInt is clear. |
344 | /// |
345 | /// This tests the high bit of this APInt to determine if it is clear. |
346 | /// |
347 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
348 | bool isSignBitClear() const { return !isSignBitSet(); } |
349 | |
350 | /// Determine if this APInt Value is positive. |
351 | /// |
352 | /// This tests if the value of this APInt is positive (> 0). Note |
353 | /// that 0 is not a positive value. |
354 | /// |
355 | /// \returns true if this APInt is positive. |
356 | bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } |
357 | |
358 | /// Determine if this APInt Value is non-positive (<= 0). |
359 | /// |
360 | /// \returns true if this APInt is non-positive. |
361 | bool isNonPositive() const { return !isStrictlyPositive(); } |
362 | |
363 | /// Determine if this APInt Value only has the specified bit set. |
364 | /// |
365 | /// \returns true if this APInt only has the specified bit set. |
366 | bool isOneBitSet(unsigned BitNo) const { |
367 | return (*this)[BitNo] && popcount() == 1; |
368 | } |
369 | |
370 | /// Determine if all bits are set. This is true for zero-width values. |
371 | bool isAllOnes() const { |
372 | if (BitWidth == 0) |
373 | return true; |
374 | if (isSingleWord()) |
375 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
376 | return countTrailingOnesSlowCase() == BitWidth; |
377 | } |
378 | |
379 | /// Determine if this value is zero, i.e. all bits are clear. |
380 | bool isZero() const { |
381 | if (isSingleWord()) |
382 | return U.VAL == 0; |
383 | return countLeadingZerosSlowCase() == BitWidth; |
384 | } |
385 | |
386 | /// Determine if this is a value of 1. |
387 | /// |
388 | /// This checks to see if the value of this APInt is one. |
389 | bool isOne() const { |
390 | if (isSingleWord()) |
391 | return U.VAL == 1; |
392 | return countLeadingZerosSlowCase() == BitWidth - 1; |
393 | } |
394 | |
395 | /// Determine if this is the largest unsigned value. |
396 | /// |
397 | /// This checks to see if the value of this APInt is the maximum unsigned |
398 | /// value for the APInt's bit width. |
399 | bool isMaxValue() const { return isAllOnes(); } |
400 | |
401 | /// Determine if this is the largest signed value. |
402 | /// |
403 | /// This checks to see if the value of this APInt is the maximum signed |
404 | /// value for the APInt's bit width. |
405 | bool isMaxSignedValue() const { |
406 | if (isSingleWord()) { |
407 | assert(BitWidth && "zero width values not allowed" ); |
408 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
409 | } |
410 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
411 | } |
412 | |
413 | /// Determine if this is the smallest unsigned value. |
414 | /// |
415 | /// This checks to see if the value of this APInt is the minimum unsigned |
416 | /// value for the APInt's bit width. |
417 | bool isMinValue() const { return isZero(); } |
418 | |
419 | /// Determine if this is the smallest signed value. |
420 | /// |
421 | /// This checks to see if the value of this APInt is the minimum signed |
422 | /// value for the APInt's bit width. |
423 | bool isMinSignedValue() const { |
424 | if (isSingleWord()) { |
425 | assert(BitWidth && "zero width values not allowed" ); |
426 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
427 | } |
428 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
429 | } |
430 | |
431 | /// Check if this APInt has an N-bits unsigned integer value. |
432 | bool isIntN(unsigned N) const { return getActiveBits() <= N; } |
433 | |
434 | /// Check if this APInt has an N-bits signed integer value. |
435 | bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; } |
436 | |
437 | /// Check if this APInt's value is a power of two greater than zero. |
438 | /// |
439 | /// \returns true if the argument APInt value is a power of two > 0. |
440 | bool isPowerOf2() const { |
441 | if (isSingleWord()) { |
442 | assert(BitWidth && "zero width values not allowed" ); |
443 | return isPowerOf2_64(Value: U.VAL); |
444 | } |
445 | return countPopulationSlowCase() == 1; |
446 | } |
447 | |
448 | /// Check if this APInt's negated value is a power of two greater than zero. |
449 | bool isNegatedPowerOf2() const { |
450 | assert(BitWidth && "zero width values not allowed" ); |
451 | if (isNonNegative()) |
452 | return false; |
453 | // NegatedPowerOf2 - shifted mask in the top bits. |
454 | unsigned LO = countl_one(); |
455 | unsigned TZ = countr_zero(); |
456 | return (LO + TZ) == BitWidth; |
457 | } |
458 | |
459 | /// Checks if this APInt -interpreted as an address- is aligned to the |
460 | /// provided value. |
461 | LLVM_ABI bool isAligned(Align A) const; |
462 | |
463 | /// Check if the APInt's value is returned by getSignMask. |
464 | /// |
465 | /// \returns true if this is the value returned by getSignMask. |
466 | bool isSignMask() const { return isMinSignedValue(); } |
467 | |
468 | /// Convert APInt to a boolean value. |
469 | /// |
470 | /// This converts the APInt to a boolean value as a test against zero. |
471 | bool getBoolValue() const { return !isZero(); } |
472 | |
473 | /// If this value is smaller than the specified limit, return it, otherwise |
474 | /// return the limit value. This causes the value to saturate to the limit. |
475 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
476 | return ugt(RHS: Limit) ? Limit : getZExtValue(); |
477 | } |
478 | |
479 | /// Check if the APInt consists of a repeated bit pattern. |
480 | /// |
481 | /// e.g. 0x01010101 satisfies isSplat(8). |
482 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
483 | /// width without remainder. |
484 | LLVM_ABI bool isSplat(unsigned SplatSizeInBits) const; |
485 | |
486 | /// \returns true if this APInt value is a sequence of \param numBits ones |
487 | /// starting at the least significant bit with the remainder zero. |
488 | bool isMask(unsigned numBits) const { |
489 | assert(numBits != 0 && "numBits must be non-zero" ); |
490 | assert(numBits <= BitWidth && "numBits out of range" ); |
491 | if (isSingleWord()) |
492 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
493 | unsigned Ones = countTrailingOnesSlowCase(); |
494 | return (numBits == Ones) && |
495 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
496 | } |
497 | |
498 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
499 | /// the least significant bit with the remainder zero. |
500 | /// Ex. isMask(0x0000FFFFU) == true. |
501 | bool isMask() const { |
502 | if (isSingleWord()) |
503 | return isMask_64(Value: U.VAL); |
504 | unsigned Ones = countTrailingOnesSlowCase(); |
505 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
506 | } |
507 | |
508 | /// Return true if this APInt value contains a non-empty sequence of ones with |
509 | /// the remainder zero. |
510 | bool isShiftedMask() const { |
511 | if (isSingleWord()) |
512 | return isShiftedMask_64(Value: U.VAL); |
513 | unsigned Ones = countPopulationSlowCase(); |
514 | unsigned LeadZ = countLeadingZerosSlowCase(); |
515 | return (Ones + LeadZ + countTrailingZerosSlowCase()) == BitWidth; |
516 | } |
517 | |
518 | /// Return true if this APInt value contains a non-empty sequence of ones with |
519 | /// the remainder zero. If true, \p MaskIdx will specify the index of the |
520 | /// lowest set bit and \p MaskLen is updated to specify the length of the |
521 | /// mask, else neither are updated. |
522 | bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const { |
523 | if (isSingleWord()) |
524 | return isShiftedMask_64(Value: U.VAL, MaskIdx, MaskLen); |
525 | unsigned Ones = countPopulationSlowCase(); |
526 | unsigned LeadZ = countLeadingZerosSlowCase(); |
527 | unsigned TrailZ = countTrailingZerosSlowCase(); |
528 | if ((Ones + LeadZ + TrailZ) != BitWidth) |
529 | return false; |
530 | MaskLen = Ones; |
531 | MaskIdx = TrailZ; |
532 | return true; |
533 | } |
534 | |
535 | /// Compute an APInt containing numBits highbits from this APInt. |
536 | /// |
537 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the low |
538 | /// bits and right shift to the least significant bit. |
539 | /// |
540 | /// \returns the high "numBits" bits of this APInt. |
541 | LLVM_ABI APInt getHiBits(unsigned numBits) const; |
542 | |
543 | /// Compute an APInt containing numBits lowbits from this APInt. |
544 | /// |
545 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the high |
546 | /// bits. |
547 | /// |
548 | /// \returns the low "numBits" bits of this APInt. |
549 | LLVM_ABI APInt getLoBits(unsigned numBits) const; |
550 | |
551 | /// Determine if two APInts have the same value, after zero-extending |
552 | /// one of them (if needed!) to ensure that the bit-widths match. |
553 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
554 | if (I1.getBitWidth() == I2.getBitWidth()) |
555 | return I1 == I2; |
556 | |
557 | if (I1.getBitWidth() > I2.getBitWidth()) |
558 | return I1 == I2.zext(width: I1.getBitWidth()); |
559 | |
560 | return I1.zext(width: I2.getBitWidth()) == I2; |
561 | } |
562 | |
563 | /// Overload to compute a hash_code for an APInt value. |
564 | LLVM_ABI friend hash_code hash_value(const APInt &Arg); |
565 | |
566 | /// This function returns a pointer to the internal storage of the APInt. |
567 | /// This is useful for writing out the APInt in binary form without any |
568 | /// conversions. |
569 | const uint64_t *getRawData() const { |
570 | if (isSingleWord()) |
571 | return &U.VAL; |
572 | return &U.pVal[0]; |
573 | } |
574 | |
575 | /// @} |
576 | /// \name Unary Operators |
577 | /// @{ |
578 | |
579 | /// Postfix increment operator. Increment *this by 1. |
580 | /// |
581 | /// \returns a new APInt value representing the original value of *this. |
582 | APInt operator++(int) { |
583 | APInt API(*this); |
584 | ++(*this); |
585 | return API; |
586 | } |
587 | |
588 | /// Prefix increment operator. |
589 | /// |
590 | /// \returns *this incremented by one |
591 | LLVM_ABI APInt &operator++(); |
592 | |
593 | /// Postfix decrement operator. Decrement *this by 1. |
594 | /// |
595 | /// \returns a new APInt value representing the original value of *this. |
596 | APInt operator--(int) { |
597 | APInt API(*this); |
598 | --(*this); |
599 | return API; |
600 | } |
601 | |
602 | /// Prefix decrement operator. |
603 | /// |
604 | /// \returns *this decremented by one. |
605 | LLVM_ABI APInt &operator--(); |
606 | |
607 | /// Logical negation operation on this APInt returns true if zero, like normal |
608 | /// integers. |
609 | bool operator!() const { return isZero(); } |
610 | |
611 | /// @} |
612 | /// \name Assignment Operators |
613 | /// @{ |
614 | |
615 | /// Copy assignment operator. |
616 | /// |
617 | /// \returns *this after assignment of RHS. |
618 | APInt &operator=(const APInt &RHS) { |
619 | // The common case (both source or dest being inline) doesn't require |
620 | // allocation or deallocation. |
621 | if (isSingleWord() && RHS.isSingleWord()) { |
622 | U.VAL = RHS.U.VAL; |
623 | BitWidth = RHS.BitWidth; |
624 | return *this; |
625 | } |
626 | |
627 | assignSlowCase(RHS); |
628 | return *this; |
629 | } |
630 | |
631 | /// Move assignment operator. |
632 | APInt &operator=(APInt &&that) { |
633 | #ifdef EXPENSIVE_CHECKS |
634 | // Some std::shuffle implementations still do self-assignment. |
635 | if (this == &that) |
636 | return *this; |
637 | #endif |
638 | assert(this != &that && "Self-move not supported" ); |
639 | if (!isSingleWord()) |
640 | delete[] U.pVal; |
641 | |
642 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
643 | // as modified. |
644 | memcpy(dest: &U, src: &that.U, n: sizeof(U)); |
645 | |
646 | BitWidth = that.BitWidth; |
647 | that.BitWidth = 0; |
648 | return *this; |
649 | } |
650 | |
651 | /// Assignment operator. |
652 | /// |
653 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
654 | /// the bit width, the excess bits are truncated. If the bit width is larger |
655 | /// than 64, the value is zero filled in the unspecified high order bits. |
656 | /// |
657 | /// \returns *this after assignment of RHS value. |
658 | APInt &operator=(uint64_t RHS) { |
659 | if (isSingleWord()) { |
660 | U.VAL = RHS; |
661 | return clearUnusedBits(); |
662 | } |
663 | U.pVal[0] = RHS; |
664 | memset(s: U.pVal + 1, c: 0, n: (getNumWords() - 1) * APINT_WORD_SIZE); |
665 | return *this; |
666 | } |
667 | |
668 | /// Bitwise AND assignment operator. |
669 | /// |
670 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
671 | /// assigned to *this. |
672 | /// |
673 | /// \returns *this after ANDing with RHS. |
674 | APInt &operator&=(const APInt &RHS) { |
675 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
676 | if (isSingleWord()) |
677 | U.VAL &= RHS.U.VAL; |
678 | else |
679 | andAssignSlowCase(RHS); |
680 | return *this; |
681 | } |
682 | |
683 | /// Bitwise AND assignment operator. |
684 | /// |
685 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
686 | /// logically zero-extended or truncated to match the bit-width of |
687 | /// the LHS. |
688 | APInt &operator&=(uint64_t RHS) { |
689 | if (isSingleWord()) { |
690 | U.VAL &= RHS; |
691 | return *this; |
692 | } |
693 | U.pVal[0] &= RHS; |
694 | memset(s: U.pVal + 1, c: 0, n: (getNumWords() - 1) * APINT_WORD_SIZE); |
695 | return *this; |
696 | } |
697 | |
698 | /// Bitwise OR assignment operator. |
699 | /// |
700 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
701 | /// assigned *this; |
702 | /// |
703 | /// \returns *this after ORing with RHS. |
704 | APInt &operator|=(const APInt &RHS) { |
705 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
706 | if (isSingleWord()) |
707 | U.VAL |= RHS.U.VAL; |
708 | else |
709 | orAssignSlowCase(RHS); |
710 | return *this; |
711 | } |
712 | |
713 | /// Bitwise OR assignment operator. |
714 | /// |
715 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
716 | /// logically zero-extended or truncated to match the bit-width of |
717 | /// the LHS. |
718 | APInt &operator|=(uint64_t RHS) { |
719 | if (isSingleWord()) { |
720 | U.VAL |= RHS; |
721 | return clearUnusedBits(); |
722 | } |
723 | U.pVal[0] |= RHS; |
724 | return *this; |
725 | } |
726 | |
727 | /// Bitwise XOR assignment operator. |
728 | /// |
729 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
730 | /// assigned to *this. |
731 | /// |
732 | /// \returns *this after XORing with RHS. |
733 | APInt &operator^=(const APInt &RHS) { |
734 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
735 | if (isSingleWord()) |
736 | U.VAL ^= RHS.U.VAL; |
737 | else |
738 | xorAssignSlowCase(RHS); |
739 | return *this; |
740 | } |
741 | |
742 | /// Bitwise XOR assignment operator. |
743 | /// |
744 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
745 | /// logically zero-extended or truncated to match the bit-width of |
746 | /// the LHS. |
747 | APInt &operator^=(uint64_t RHS) { |
748 | if (isSingleWord()) { |
749 | U.VAL ^= RHS; |
750 | return clearUnusedBits(); |
751 | } |
752 | U.pVal[0] ^= RHS; |
753 | return *this; |
754 | } |
755 | |
756 | /// Multiplication assignment operator. |
757 | /// |
758 | /// Multiplies this APInt by RHS and assigns the result to *this. |
759 | /// |
760 | /// \returns *this |
761 | LLVM_ABI APInt &operator*=(const APInt &RHS); |
762 | LLVM_ABI APInt &operator*=(uint64_t RHS); |
763 | |
764 | /// Addition assignment operator. |
765 | /// |
766 | /// Adds RHS to *this and assigns the result to *this. |
767 | /// |
768 | /// \returns *this |
769 | LLVM_ABI APInt &operator+=(const APInt &RHS); |
770 | LLVM_ABI APInt &operator+=(uint64_t RHS); |
771 | |
772 | /// Subtraction assignment operator. |
773 | /// |
774 | /// Subtracts RHS from *this and assigns the result to *this. |
775 | /// |
776 | /// \returns *this |
777 | LLVM_ABI APInt &operator-=(const APInt &RHS); |
778 | LLVM_ABI APInt &operator-=(uint64_t RHS); |
779 | |
780 | /// Left-shift assignment function. |
781 | /// |
782 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
783 | /// |
784 | /// \returns *this after shifting left by ShiftAmt |
785 | APInt &operator<<=(unsigned ShiftAmt) { |
786 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
787 | if (isSingleWord()) { |
788 | if (ShiftAmt == BitWidth) |
789 | U.VAL = 0; |
790 | else |
791 | U.VAL <<= ShiftAmt; |
792 | return clearUnusedBits(); |
793 | } |
794 | shlSlowCase(ShiftAmt); |
795 | return *this; |
796 | } |
797 | |
798 | /// Left-shift assignment function. |
799 | /// |
800 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
801 | /// |
802 | /// \returns *this after shifting left by ShiftAmt |
803 | LLVM_ABI APInt &operator<<=(const APInt &ShiftAmt); |
804 | |
805 | /// @} |
806 | /// \name Binary Operators |
807 | /// @{ |
808 | |
809 | /// Multiplication operator. |
810 | /// |
811 | /// Multiplies this APInt by RHS and returns the result. |
812 | LLVM_ABI APInt operator*(const APInt &RHS) const; |
813 | |
814 | /// Left logical shift operator. |
815 | /// |
816 | /// Shifts this APInt left by \p Bits and returns the result. |
817 | APInt operator<<(unsigned Bits) const { return shl(shiftAmt: Bits); } |
818 | |
819 | /// Left logical shift operator. |
820 | /// |
821 | /// Shifts this APInt left by \p Bits and returns the result. |
822 | APInt operator<<(const APInt &Bits) const { return shl(ShiftAmt: Bits); } |
823 | |
824 | /// Arithmetic right-shift function. |
825 | /// |
826 | /// Arithmetic right-shift this APInt by shiftAmt. |
827 | APInt ashr(unsigned ShiftAmt) const { |
828 | APInt R(*this); |
829 | R.ashrInPlace(ShiftAmt); |
830 | return R; |
831 | } |
832 | |
833 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
834 | void ashrInPlace(unsigned ShiftAmt) { |
835 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
836 | if (isSingleWord()) { |
837 | int64_t SExtVAL = SignExtend64(X: U.VAL, B: BitWidth); |
838 | if (ShiftAmt == BitWidth) |
839 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
840 | else |
841 | U.VAL = SExtVAL >> ShiftAmt; |
842 | clearUnusedBits(); |
843 | return; |
844 | } |
845 | ashrSlowCase(ShiftAmt); |
846 | } |
847 | |
848 | /// Logical right-shift function. |
849 | /// |
850 | /// Logical right-shift this APInt by shiftAmt. |
851 | APInt lshr(unsigned shiftAmt) const { |
852 | APInt R(*this); |
853 | R.lshrInPlace(ShiftAmt: shiftAmt); |
854 | return R; |
855 | } |
856 | |
857 | /// Logical right-shift this APInt by ShiftAmt in place. |
858 | void lshrInPlace(unsigned ShiftAmt) { |
859 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
860 | if (isSingleWord()) { |
861 | if (ShiftAmt == BitWidth) |
862 | U.VAL = 0; |
863 | else |
864 | U.VAL >>= ShiftAmt; |
865 | return; |
866 | } |
867 | lshrSlowCase(ShiftAmt); |
868 | } |
869 | |
870 | /// Left-shift function. |
871 | /// |
872 | /// Left-shift this APInt by shiftAmt. |
873 | APInt shl(unsigned shiftAmt) const { |
874 | APInt R(*this); |
875 | R <<= shiftAmt; |
876 | return R; |
877 | } |
878 | |
879 | /// relative logical shift right |
880 | APInt relativeLShr(int RelativeShift) const { |
881 | return RelativeShift > 0 ? lshr(shiftAmt: RelativeShift) : shl(shiftAmt: -RelativeShift); |
882 | } |
883 | |
884 | /// relative logical shift left |
885 | APInt relativeLShl(int RelativeShift) const { |
886 | return relativeLShr(RelativeShift: -RelativeShift); |
887 | } |
888 | |
889 | /// relative arithmetic shift right |
890 | APInt relativeAShr(int RelativeShift) const { |
891 | return RelativeShift > 0 ? ashr(ShiftAmt: RelativeShift) : shl(shiftAmt: -RelativeShift); |
892 | } |
893 | |
894 | /// relative arithmetic shift left |
895 | APInt relativeAShl(int RelativeShift) const { |
896 | return relativeAShr(RelativeShift: -RelativeShift); |
897 | } |
898 | |
899 | /// Rotate left by rotateAmt. |
900 | LLVM_ABI APInt rotl(unsigned rotateAmt) const; |
901 | |
902 | /// Rotate right by rotateAmt. |
903 | LLVM_ABI APInt rotr(unsigned rotateAmt) const; |
904 | |
905 | /// Arithmetic right-shift function. |
906 | /// |
907 | /// Arithmetic right-shift this APInt by shiftAmt. |
908 | APInt ashr(const APInt &ShiftAmt) const { |
909 | APInt R(*this); |
910 | R.ashrInPlace(shiftAmt: ShiftAmt); |
911 | return R; |
912 | } |
913 | |
914 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
915 | LLVM_ABI void ashrInPlace(const APInt &shiftAmt); |
916 | |
917 | /// Logical right-shift function. |
918 | /// |
919 | /// Logical right-shift this APInt by shiftAmt. |
920 | APInt lshr(const APInt &ShiftAmt) const { |
921 | APInt R(*this); |
922 | R.lshrInPlace(ShiftAmt); |
923 | return R; |
924 | } |
925 | |
926 | /// Logical right-shift this APInt by ShiftAmt in place. |
927 | LLVM_ABI void lshrInPlace(const APInt &ShiftAmt); |
928 | |
929 | /// Left-shift function. |
930 | /// |
931 | /// Left-shift this APInt by shiftAmt. |
932 | APInt shl(const APInt &ShiftAmt) const { |
933 | APInt R(*this); |
934 | R <<= ShiftAmt; |
935 | return R; |
936 | } |
937 | |
938 | /// Rotate left by rotateAmt. |
939 | LLVM_ABI APInt rotl(const APInt &rotateAmt) const; |
940 | |
941 | /// Rotate right by rotateAmt. |
942 | LLVM_ABI APInt rotr(const APInt &rotateAmt) const; |
943 | |
944 | /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is |
945 | /// equivalent to: |
946 | /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) |
947 | APInt concat(const APInt &NewLSB) const { |
948 | /// If the result will be small, then both the merged values are small. |
949 | unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); |
950 | if (NewWidth <= APINT_BITS_PER_WORD) |
951 | return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); |
952 | return concatSlowCase(NewLSB); |
953 | } |
954 | |
955 | /// Unsigned division operation. |
956 | /// |
957 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
958 | /// RHS are treated as unsigned quantities for purposes of this division. |
959 | /// |
960 | /// \returns a new APInt value containing the division result, rounded towards |
961 | /// zero. |
962 | LLVM_ABI APInt udiv(const APInt &RHS) const; |
963 | LLVM_ABI APInt udiv(uint64_t RHS) const; |
964 | |
965 | /// Signed division function for APInt. |
966 | /// |
967 | /// Signed divide this APInt by APInt RHS. |
968 | /// |
969 | /// The result is rounded towards zero. |
970 | LLVM_ABI APInt sdiv(const APInt &RHS) const; |
971 | LLVM_ABI APInt sdiv(int64_t RHS) const; |
972 | |
973 | /// Unsigned remainder operation. |
974 | /// |
975 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
976 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
977 | /// of this operation. |
978 | /// |
979 | /// \returns a new APInt value containing the remainder result |
980 | LLVM_ABI APInt urem(const APInt &RHS) const; |
981 | LLVM_ABI uint64_t urem(uint64_t RHS) const; |
982 | |
983 | /// Function for signed remainder operation. |
984 | /// |
985 | /// Signed remainder operation on APInt. |
986 | /// |
987 | /// Note that this is a true remainder operation and not a modulo operation |
988 | /// because the sign follows the sign of the dividend which is *this. |
989 | LLVM_ABI APInt srem(const APInt &RHS) const; |
990 | LLVM_ABI int64_t srem(int64_t RHS) const; |
991 | |
992 | /// Dual division/remainder interface. |
993 | /// |
994 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
995 | /// quotient and remainder. This function does both operations in the same |
996 | /// computation making it a little more efficient. The pair of input arguments |
997 | /// may overlap with the pair of output arguments. It is safe to call |
998 | /// udivrem(X, Y, X, Y), for example. |
999 | LLVM_ABI static void udivrem(const APInt &LHS, const APInt &RHS, |
1000 | APInt &Quotient, APInt &Remainder); |
1001 | LLVM_ABI static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
1002 | uint64_t &Remainder); |
1003 | |
1004 | LLVM_ABI static void sdivrem(const APInt &LHS, const APInt &RHS, |
1005 | APInt &Quotient, APInt &Remainder); |
1006 | LLVM_ABI static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
1007 | int64_t &Remainder); |
1008 | |
1009 | // Operations that return overflow indicators. |
1010 | LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
1011 | LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
1012 | LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
1013 | LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
1014 | LLVM_ABI APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
1015 | LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
1016 | LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
1017 | LLVM_ABI APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
1018 | LLVM_ABI APInt sshl_ov(unsigned Amt, bool &Overflow) const; |
1019 | LLVM_ABI APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
1020 | LLVM_ABI APInt ushl_ov(unsigned Amt, bool &Overflow) const; |
1021 | |
1022 | /// Signed integer floor division operation. |
1023 | /// |
1024 | /// Rounds towards negative infinity, i.e. 5 / -2 = -3. Iff minimum value |
1025 | /// divided by -1 set Overflow to true. |
1026 | LLVM_ABI APInt sfloordiv_ov(const APInt &RHS, bool &Overflow) const; |
1027 | |
1028 | // Operations that saturate |
1029 | LLVM_ABI APInt sadd_sat(const APInt &RHS) const; |
1030 | LLVM_ABI APInt uadd_sat(const APInt &RHS) const; |
1031 | LLVM_ABI APInt ssub_sat(const APInt &RHS) const; |
1032 | LLVM_ABI APInt usub_sat(const APInt &RHS) const; |
1033 | LLVM_ABI APInt smul_sat(const APInt &RHS) const; |
1034 | LLVM_ABI APInt umul_sat(const APInt &RHS) const; |
1035 | LLVM_ABI APInt sshl_sat(const APInt &RHS) const; |
1036 | LLVM_ABI APInt sshl_sat(unsigned RHS) const; |
1037 | LLVM_ABI APInt ushl_sat(const APInt &RHS) const; |
1038 | LLVM_ABI APInt ushl_sat(unsigned RHS) const; |
1039 | |
1040 | /// Array-indexing support. |
1041 | /// |
1042 | /// \returns the bit value at bitPosition |
1043 | bool operator[](unsigned bitPosition) const { |
1044 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!" ); |
1045 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
1046 | } |
1047 | |
1048 | /// @} |
1049 | /// \name Comparison Operators |
1050 | /// @{ |
1051 | |
1052 | /// Equality operator. |
1053 | /// |
1054 | /// Compares this APInt with RHS for the validity of the equality |
1055 | /// relationship. |
1056 | bool operator==(const APInt &RHS) const { |
1057 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths" ); |
1058 | if (isSingleWord()) |
1059 | return U.VAL == RHS.U.VAL; |
1060 | return equalSlowCase(RHS); |
1061 | } |
1062 | |
1063 | /// Equality operator. |
1064 | /// |
1065 | /// Compares this APInt with a uint64_t for the validity of the equality |
1066 | /// relationship. |
1067 | /// |
1068 | /// \returns true if *this == Val |
1069 | bool operator==(uint64_t Val) const { |
1070 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
1071 | } |
1072 | |
1073 | /// Equality comparison. |
1074 | /// |
1075 | /// Compares this APInt with RHS for the validity of the equality |
1076 | /// relationship. |
1077 | /// |
1078 | /// \returns true if *this == Val |
1079 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
1080 | |
1081 | /// Inequality operator. |
1082 | /// |
1083 | /// Compares this APInt with RHS for the validity of the inequality |
1084 | /// relationship. |
1085 | /// |
1086 | /// \returns true if *this != Val |
1087 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
1088 | |
1089 | /// Inequality operator. |
1090 | /// |
1091 | /// Compares this APInt with a uint64_t for the validity of the inequality |
1092 | /// relationship. |
1093 | /// |
1094 | /// \returns true if *this != Val |
1095 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
1096 | |
1097 | /// Inequality comparison |
1098 | /// |
1099 | /// Compares this APInt with RHS for the validity of the inequality |
1100 | /// relationship. |
1101 | /// |
1102 | /// \returns true if *this != Val |
1103 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
1104 | |
1105 | /// Unsigned less than comparison |
1106 | /// |
1107 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1108 | /// the validity of the less-than relationship. |
1109 | /// |
1110 | /// \returns true if *this < RHS when both are considered unsigned. |
1111 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
1112 | |
1113 | /// Unsigned less than comparison |
1114 | /// |
1115 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1116 | /// the validity of the less-than relationship. |
1117 | /// |
1118 | /// \returns true if *this < RHS when considered unsigned. |
1119 | bool ult(uint64_t RHS) const { |
1120 | // Only need to check active bits if not a single word. |
1121 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
1122 | } |
1123 | |
1124 | /// Signed less than comparison |
1125 | /// |
1126 | /// Regards both *this and RHS as signed quantities and compares them for |
1127 | /// validity of the less-than relationship. |
1128 | /// |
1129 | /// \returns true if *this < RHS when both are considered signed. |
1130 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
1131 | |
1132 | /// Signed less than comparison |
1133 | /// |
1134 | /// Regards both *this as a signed quantity and compares it with RHS for |
1135 | /// the validity of the less-than relationship. |
1136 | /// |
1137 | /// \returns true if *this < RHS when considered signed. |
1138 | bool slt(int64_t RHS) const { |
1139 | return (!isSingleWord() && getSignificantBits() > 64) |
1140 | ? isNegative() |
1141 | : getSExtValue() < RHS; |
1142 | } |
1143 | |
1144 | /// Unsigned less or equal comparison |
1145 | /// |
1146 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1147 | /// validity of the less-or-equal relationship. |
1148 | /// |
1149 | /// \returns true if *this <= RHS when both are considered unsigned. |
1150 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
1151 | |
1152 | /// Unsigned less or equal comparison |
1153 | /// |
1154 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1155 | /// the validity of the less-or-equal relationship. |
1156 | /// |
1157 | /// \returns true if *this <= RHS when considered unsigned. |
1158 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
1159 | |
1160 | /// Signed less or equal comparison |
1161 | /// |
1162 | /// Regards both *this and RHS as signed quantities and compares them for |
1163 | /// validity of the less-or-equal relationship. |
1164 | /// |
1165 | /// \returns true if *this <= RHS when both are considered signed. |
1166 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
1167 | |
1168 | /// Signed less or equal comparison |
1169 | /// |
1170 | /// Regards both *this as a signed quantity and compares it with RHS for the |
1171 | /// validity of the less-or-equal relationship. |
1172 | /// |
1173 | /// \returns true if *this <= RHS when considered signed. |
1174 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
1175 | |
1176 | /// Unsigned greater than comparison |
1177 | /// |
1178 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1179 | /// the validity of the greater-than relationship. |
1180 | /// |
1181 | /// \returns true if *this > RHS when both are considered unsigned. |
1182 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
1183 | |
1184 | /// Unsigned greater than comparison |
1185 | /// |
1186 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1187 | /// the validity of the greater-than relationship. |
1188 | /// |
1189 | /// \returns true if *this > RHS when considered unsigned. |
1190 | bool ugt(uint64_t RHS) const { |
1191 | // Only need to check active bits if not a single word. |
1192 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
1193 | } |
1194 | |
1195 | /// Signed greater than comparison |
1196 | /// |
1197 | /// Regards both *this and RHS as signed quantities and compares them for the |
1198 | /// validity of the greater-than relationship. |
1199 | /// |
1200 | /// \returns true if *this > RHS when both are considered signed. |
1201 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
1202 | |
1203 | /// Signed greater than comparison |
1204 | /// |
1205 | /// Regards both *this as a signed quantity and compares it with RHS for |
1206 | /// the validity of the greater-than relationship. |
1207 | /// |
1208 | /// \returns true if *this > RHS when considered signed. |
1209 | bool sgt(int64_t RHS) const { |
1210 | return (!isSingleWord() && getSignificantBits() > 64) |
1211 | ? !isNegative() |
1212 | : getSExtValue() > RHS; |
1213 | } |
1214 | |
1215 | /// Unsigned greater or equal comparison |
1216 | /// |
1217 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1218 | /// validity of the greater-or-equal relationship. |
1219 | /// |
1220 | /// \returns true if *this >= RHS when both are considered unsigned. |
1221 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
1222 | |
1223 | /// Unsigned greater or equal comparison |
1224 | /// |
1225 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1226 | /// the validity of the greater-or-equal relationship. |
1227 | /// |
1228 | /// \returns true if *this >= RHS when considered unsigned. |
1229 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
1230 | |
1231 | /// Signed greater or equal comparison |
1232 | /// |
1233 | /// Regards both *this and RHS as signed quantities and compares them for |
1234 | /// validity of the greater-or-equal relationship. |
1235 | /// |
1236 | /// \returns true if *this >= RHS when both are considered signed. |
1237 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
1238 | |
1239 | /// Signed greater or equal comparison |
1240 | /// |
1241 | /// Regards both *this as a signed quantity and compares it with RHS for |
1242 | /// the validity of the greater-or-equal relationship. |
1243 | /// |
1244 | /// \returns true if *this >= RHS when considered signed. |
1245 | bool sge(int64_t RHS) const { return !slt(RHS); } |
1246 | |
1247 | /// This operation tests if there are any pairs of corresponding bits |
1248 | /// between this APInt and RHS that are both set. |
1249 | bool intersects(const APInt &RHS) const { |
1250 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1251 | if (isSingleWord()) |
1252 | return (U.VAL & RHS.U.VAL) != 0; |
1253 | return intersectsSlowCase(RHS); |
1254 | } |
1255 | |
1256 | /// This operation checks that all bits set in this APInt are also set in RHS. |
1257 | bool isSubsetOf(const APInt &RHS) const { |
1258 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1259 | if (isSingleWord()) |
1260 | return (U.VAL & ~RHS.U.VAL) == 0; |
1261 | return isSubsetOfSlowCase(RHS); |
1262 | } |
1263 | |
1264 | /// @} |
1265 | /// \name Resizing Operators |
1266 | /// @{ |
1267 | |
1268 | /// Truncate to new width. |
1269 | /// |
1270 | /// Truncate the APInt to a specified width. It is an error to specify a width |
1271 | /// that is greater than the current width. |
1272 | LLVM_ABI APInt trunc(unsigned width) const; |
1273 | |
1274 | /// Truncate to new width with unsigned saturation. |
1275 | /// |
1276 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
1277 | /// the new bitwidth, then return truncated APInt. Else, return max value. |
1278 | LLVM_ABI APInt truncUSat(unsigned width) const; |
1279 | |
1280 | /// Truncate to new width with signed saturation. |
1281 | /// |
1282 | /// If this APInt, treated as signed integer, can be losslessly truncated to |
1283 | /// the new bitwidth, then return truncated APInt. Else, return either |
1284 | /// signed min value if the APInt was negative, or signed max value. |
1285 | LLVM_ABI APInt truncSSat(unsigned width) const; |
1286 | |
1287 | /// Sign extend to a new width. |
1288 | /// |
1289 | /// This operation sign extends the APInt to a new width. If the high order |
1290 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
1291 | /// It is an error to specify a width that is less than the |
1292 | /// current width. |
1293 | LLVM_ABI APInt sext(unsigned width) const; |
1294 | |
1295 | /// Zero extend to a new width. |
1296 | /// |
1297 | /// This operation zero extends the APInt to a new width. The high order bits |
1298 | /// are filled with 0 bits. It is an error to specify a width that is less |
1299 | /// than the current width. |
1300 | LLVM_ABI APInt zext(unsigned width) const; |
1301 | |
1302 | /// Sign extend or truncate to width |
1303 | /// |
1304 | /// Make this APInt have the bit width given by \p width. The value is sign |
1305 | /// extended, truncated, or left alone to make it that width. |
1306 | LLVM_ABI APInt sextOrTrunc(unsigned width) const; |
1307 | |
1308 | /// Zero extend or truncate to width |
1309 | /// |
1310 | /// Make this APInt have the bit width given by \p width. The value is zero |
1311 | /// extended, truncated, or left alone to make it that width. |
1312 | LLVM_ABI APInt zextOrTrunc(unsigned width) const; |
1313 | |
1314 | /// @} |
1315 | /// \name Bit Manipulation Operators |
1316 | /// @{ |
1317 | |
1318 | /// Set every bit to 1. |
1319 | void setAllBits() { |
1320 | if (isSingleWord()) |
1321 | U.VAL = WORDTYPE_MAX; |
1322 | else |
1323 | // Set all the bits in all the words. |
1324 | memset(s: U.pVal, c: -1, n: getNumWords() * APINT_WORD_SIZE); |
1325 | // Clear the unused ones |
1326 | clearUnusedBits(); |
1327 | } |
1328 | |
1329 | /// Set the given bit to 1 whose position is given as "bitPosition". |
1330 | void setBit(unsigned BitPosition) { |
1331 | assert(BitPosition < BitWidth && "BitPosition out of range" ); |
1332 | WordType Mask = maskBit(bitPosition: BitPosition); |
1333 | if (isSingleWord()) |
1334 | U.VAL |= Mask; |
1335 | else |
1336 | U.pVal[whichWord(bitPosition: BitPosition)] |= Mask; |
1337 | } |
1338 | |
1339 | /// Set the sign bit to 1. |
1340 | void setSignBit() { setBit(BitWidth - 1); } |
1341 | |
1342 | /// Set a given bit to a given value. |
1343 | void setBitVal(unsigned BitPosition, bool BitValue) { |
1344 | if (BitValue) |
1345 | setBit(BitPosition); |
1346 | else |
1347 | clearBit(BitPosition); |
1348 | } |
1349 | |
1350 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1351 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
1352 | /// setBits when \p loBit < \p hiBit. |
1353 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
1354 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
1355 | assert(hiBit <= BitWidth && "hiBit out of range" ); |
1356 | assert(loBit <= BitWidth && "loBit out of range" ); |
1357 | if (loBit < hiBit) { |
1358 | setBits(loBit, hiBit); |
1359 | return; |
1360 | } |
1361 | setLowBits(hiBit); |
1362 | setHighBits(BitWidth - loBit); |
1363 | } |
1364 | |
1365 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1366 | /// This function handles case when \p loBit <= \p hiBit. |
1367 | void setBits(unsigned loBit, unsigned hiBit) { |
1368 | assert(hiBit <= BitWidth && "hiBit out of range" ); |
1369 | assert(loBit <= hiBit && "loBit greater than hiBit" ); |
1370 | if (loBit == hiBit) |
1371 | return; |
1372 | if (hiBit <= APINT_BITS_PER_WORD) { |
1373 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
1374 | mask <<= loBit; |
1375 | if (isSingleWord()) |
1376 | U.VAL |= mask; |
1377 | else |
1378 | U.pVal[0] |= mask; |
1379 | } else { |
1380 | setBitsSlowCase(loBit, hiBit); |
1381 | } |
1382 | } |
1383 | |
1384 | /// Set the top bits starting from loBit. |
1385 | void setBitsFrom(unsigned loBit) { return setBits(loBit, hiBit: BitWidth); } |
1386 | |
1387 | /// Set the bottom loBits bits. |
1388 | void setLowBits(unsigned loBits) { return setBits(loBit: 0, hiBit: loBits); } |
1389 | |
1390 | /// Set the top hiBits bits. |
1391 | void setHighBits(unsigned hiBits) { |
1392 | return setBits(loBit: BitWidth - hiBits, hiBit: BitWidth); |
1393 | } |
1394 | |
1395 | /// Set every bit to 0. |
1396 | void clearAllBits() { |
1397 | if (isSingleWord()) |
1398 | U.VAL = 0; |
1399 | else |
1400 | memset(s: U.pVal, c: 0, n: getNumWords() * APINT_WORD_SIZE); |
1401 | } |
1402 | |
1403 | /// Set a given bit to 0. |
1404 | /// |
1405 | /// Set the given bit to 0 whose position is given as "bitPosition". |
1406 | void clearBit(unsigned BitPosition) { |
1407 | assert(BitPosition < BitWidth && "BitPosition out of range" ); |
1408 | WordType Mask = ~maskBit(bitPosition: BitPosition); |
1409 | if (isSingleWord()) |
1410 | U.VAL &= Mask; |
1411 | else |
1412 | U.pVal[whichWord(bitPosition: BitPosition)] &= Mask; |
1413 | } |
1414 | |
1415 | /// Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0. |
1416 | /// This function handles case when \p LoBit <= \p HiBit. |
1417 | void clearBits(unsigned LoBit, unsigned HiBit) { |
1418 | assert(HiBit <= BitWidth && "HiBit out of range" ); |
1419 | assert(LoBit <= HiBit && "LoBit greater than HiBit" ); |
1420 | if (LoBit == HiBit) |
1421 | return; |
1422 | if (HiBit <= APINT_BITS_PER_WORD) { |
1423 | uint64_t Mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (HiBit - LoBit)); |
1424 | Mask = ~(Mask << LoBit); |
1425 | if (isSingleWord()) |
1426 | U.VAL &= Mask; |
1427 | else |
1428 | U.pVal[0] &= Mask; |
1429 | } else { |
1430 | clearBitsSlowCase(LoBit, HiBit); |
1431 | } |
1432 | } |
1433 | |
1434 | /// Set bottom loBits bits to 0. |
1435 | void clearLowBits(unsigned loBits) { |
1436 | assert(loBits <= BitWidth && "More bits than bitwidth" ); |
1437 | APInt Keep = getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - loBits); |
1438 | *this &= Keep; |
1439 | } |
1440 | |
1441 | /// Set top hiBits bits to 0. |
1442 | void clearHighBits(unsigned hiBits) { |
1443 | assert(hiBits <= BitWidth && "More bits than bitwidth" ); |
1444 | APInt Keep = getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - hiBits); |
1445 | *this &= Keep; |
1446 | } |
1447 | |
1448 | /// Set the sign bit to 0. |
1449 | void clearSignBit() { clearBit(BitPosition: BitWidth - 1); } |
1450 | |
1451 | /// Toggle every bit to its opposite value. |
1452 | void flipAllBits() { |
1453 | if (isSingleWord()) { |
1454 | U.VAL ^= WORDTYPE_MAX; |
1455 | clearUnusedBits(); |
1456 | } else { |
1457 | flipAllBitsSlowCase(); |
1458 | } |
1459 | } |
1460 | |
1461 | /// Toggles a given bit to its opposite value. |
1462 | /// |
1463 | /// Toggle a given bit to its opposite value whose position is given |
1464 | /// as "bitPosition". |
1465 | LLVM_ABI void flipBit(unsigned bitPosition); |
1466 | |
1467 | /// Negate this APInt in place. |
1468 | void negate() { |
1469 | flipAllBits(); |
1470 | ++(*this); |
1471 | } |
1472 | |
1473 | /// Insert the bits from a smaller APInt starting at bitPosition. |
1474 | LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition); |
1475 | LLVM_ABI void insertBits(uint64_t SubBits, unsigned bitPosition, |
1476 | unsigned numBits); |
1477 | |
1478 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
1479 | LLVM_ABI APInt (unsigned numBits, unsigned bitPosition) const; |
1480 | LLVM_ABI uint64_t (unsigned numBits, |
1481 | unsigned bitPosition) const; |
1482 | |
1483 | /// @} |
1484 | /// \name Value Characterization Functions |
1485 | /// @{ |
1486 | |
1487 | /// Return the number of bits in the APInt. |
1488 | unsigned getBitWidth() const { return BitWidth; } |
1489 | |
1490 | /// Get the number of words. |
1491 | /// |
1492 | /// Here one word's bitwidth equals to that of uint64_t. |
1493 | /// |
1494 | /// \returns the number of words to hold the integer value of this APInt. |
1495 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
1496 | |
1497 | /// Get the number of words. |
1498 | /// |
1499 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
1500 | /// |
1501 | /// \returns the number of words to hold the integer value with a given bit |
1502 | /// width. |
1503 | static unsigned getNumWords(unsigned BitWidth) { |
1504 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
1505 | } |
1506 | |
1507 | /// Compute the number of active bits in the value |
1508 | /// |
1509 | /// This function returns the number of active bits which is defined as the |
1510 | /// bit width minus the number of leading zeros. This is used in several |
1511 | /// computations to see how "wide" the value is. |
1512 | unsigned getActiveBits() const { return BitWidth - countl_zero(); } |
1513 | |
1514 | /// Compute the number of active words in the value of this APInt. |
1515 | /// |
1516 | /// This is used in conjunction with getActiveData to extract the raw value of |
1517 | /// the APInt. |
1518 | unsigned getActiveWords() const { |
1519 | unsigned numActiveBits = getActiveBits(); |
1520 | return numActiveBits ? whichWord(bitPosition: numActiveBits - 1) + 1 : 1; |
1521 | } |
1522 | |
1523 | /// Get the minimum bit size for this signed APInt |
1524 | /// |
1525 | /// Computes the minimum bit width for this APInt while considering it to be a |
1526 | /// signed (and probably negative) value. If the value is not negative, this |
1527 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
1528 | /// returns the smallest bit width that will retain the negative value. For |
1529 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
1530 | /// for -1, this function will always return 1. |
1531 | unsigned getSignificantBits() const { |
1532 | return BitWidth - getNumSignBits() + 1; |
1533 | } |
1534 | |
1535 | /// Get zero extended value |
1536 | /// |
1537 | /// This method attempts to return the value of this APInt as a zero extended |
1538 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1539 | /// uint64_t. Otherwise an assertion will result. |
1540 | uint64_t getZExtValue() const { |
1541 | if (isSingleWord()) |
1542 | return U.VAL; |
1543 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t" ); |
1544 | return U.pVal[0]; |
1545 | } |
1546 | |
1547 | /// Get zero extended value if possible |
1548 | /// |
1549 | /// This method attempts to return the value of this APInt as a zero extended |
1550 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1551 | /// uint64_t. Otherwise no value is returned. |
1552 | std::optional<uint64_t> tryZExtValue() const { |
1553 | return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue()) |
1554 | : std::nullopt; |
1555 | }; |
1556 | |
1557 | /// Get sign extended value |
1558 | /// |
1559 | /// This method attempts to return the value of this APInt as a sign extended |
1560 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
1561 | /// int64_t. Otherwise an assertion will result. |
1562 | int64_t getSExtValue() const { |
1563 | if (isSingleWord()) |
1564 | return SignExtend64(X: U.VAL, B: BitWidth); |
1565 | assert(getSignificantBits() <= 64 && "Too many bits for int64_t" ); |
1566 | return int64_t(U.pVal[0]); |
1567 | } |
1568 | |
1569 | /// Get sign extended value if possible |
1570 | /// |
1571 | /// This method attempts to return the value of this APInt as a sign extended |
1572 | /// int64_t. The bitwidth must be <= 64 or the value must fit within an |
1573 | /// int64_t. Otherwise no value is returned. |
1574 | std::optional<int64_t> trySExtValue() const { |
1575 | return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue()) |
1576 | : std::nullopt; |
1577 | }; |
1578 | |
1579 | /// Get bits required for string value. |
1580 | /// |
1581 | /// This method determines how many bits are required to hold the APInt |
1582 | /// equivalent of the string given by \p str. |
1583 | LLVM_ABI static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
1584 | |
1585 | /// Get the bits that are sufficient to represent the string value. This may |
1586 | /// over estimate the amount of bits required, but it does not require |
1587 | /// parsing the value in the string. |
1588 | LLVM_ABI static unsigned getSufficientBitsNeeded(StringRef Str, |
1589 | uint8_t Radix); |
1590 | |
1591 | /// The APInt version of std::countl_zero. |
1592 | /// |
1593 | /// It counts the number of zeros from the most significant bit to the first |
1594 | /// one bit. |
1595 | /// |
1596 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1597 | /// zeros from the most significant bit to the first one bits. |
1598 | unsigned countl_zero() const { |
1599 | if (isSingleWord()) { |
1600 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
1601 | return llvm::countl_zero(Val: U.VAL) - unusedBits; |
1602 | } |
1603 | return countLeadingZerosSlowCase(); |
1604 | } |
1605 | |
1606 | unsigned countLeadingZeros() const { return countl_zero(); } |
1607 | |
1608 | /// Count the number of leading one bits. |
1609 | /// |
1610 | /// This function is an APInt version of std::countl_one. It counts the number |
1611 | /// of ones from the most significant bit to the first zero bit. |
1612 | /// |
1613 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
1614 | /// of 1 bits from the most significant to the least |
1615 | unsigned countl_one() const { |
1616 | if (isSingleWord()) { |
1617 | if (LLVM_UNLIKELY(BitWidth == 0)) |
1618 | return 0; |
1619 | return llvm::countl_one(Value: U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
1620 | } |
1621 | return countLeadingOnesSlowCase(); |
1622 | } |
1623 | |
1624 | unsigned countLeadingOnes() const { return countl_one(); } |
1625 | |
1626 | /// Computes the number of leading bits of this APInt that are equal to its |
1627 | /// sign bit. |
1628 | unsigned getNumSignBits() const { |
1629 | return isNegative() ? countl_one() : countl_zero(); |
1630 | } |
1631 | |
1632 | /// Count the number of trailing zero bits. |
1633 | /// |
1634 | /// This function is an APInt version of std::countr_zero. It counts the |
1635 | /// number of zeros from the least significant bit to the first set bit. |
1636 | /// |
1637 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1638 | /// zeros from the least significant bit to the first one bit. |
1639 | unsigned countr_zero() const { |
1640 | if (isSingleWord()) { |
1641 | unsigned TrailingZeros = llvm::countr_zero(Val: U.VAL); |
1642 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
1643 | } |
1644 | return countTrailingZerosSlowCase(); |
1645 | } |
1646 | |
1647 | unsigned countTrailingZeros() const { return countr_zero(); } |
1648 | |
1649 | /// Count the number of trailing one bits. |
1650 | /// |
1651 | /// This function is an APInt version of std::countr_one. It counts the number |
1652 | /// of ones from the least significant bit to the first zero bit. |
1653 | /// |
1654 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
1655 | /// of ones from the least significant bit to the first zero bit. |
1656 | unsigned countr_one() const { |
1657 | if (isSingleWord()) |
1658 | return llvm::countr_one(Value: U.VAL); |
1659 | return countTrailingOnesSlowCase(); |
1660 | } |
1661 | |
1662 | unsigned countTrailingOnes() const { return countr_one(); } |
1663 | |
1664 | /// Count the number of bits set. |
1665 | /// |
1666 | /// This function is an APInt version of std::popcount. It counts the number |
1667 | /// of 1 bits in the APInt value. |
1668 | /// |
1669 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
1670 | unsigned popcount() const { |
1671 | if (isSingleWord()) |
1672 | return llvm::popcount(Value: U.VAL); |
1673 | return countPopulationSlowCase(); |
1674 | } |
1675 | |
1676 | /// @} |
1677 | /// \name Conversion Functions |
1678 | /// @{ |
1679 | LLVM_ABI void print(raw_ostream &OS, bool isSigned) const; |
1680 | |
1681 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
1682 | /// SmallString. If Radix > 10, UpperCase determine the case of letter |
1683 | /// digits. |
1684 | LLVM_ABI void toString(SmallVectorImpl<char> &Str, unsigned Radix, |
1685 | bool Signed, bool formatAsCLiteral = false, |
1686 | bool UpperCase = true, |
1687 | bool InsertSeparators = false) const; |
1688 | |
1689 | /// Considers the APInt to be unsigned and converts it into a string in the |
1690 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
1691 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1692 | toString(Str, Radix, Signed: false, formatAsCLiteral: false); |
1693 | } |
1694 | |
1695 | /// Considers the APInt to be signed and converts it into a string in the |
1696 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
1697 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1698 | toString(Str, Radix, Signed: true, formatAsCLiteral: false); |
1699 | } |
1700 | |
1701 | /// \returns a byte-swapped representation of this APInt Value. |
1702 | LLVM_ABI APInt byteSwap() const; |
1703 | |
1704 | /// \returns the value with the bit representation reversed of this APInt |
1705 | /// Value. |
1706 | LLVM_ABI APInt reverseBits() const; |
1707 | |
1708 | /// Converts this APInt to a double value. |
1709 | LLVM_ABI double roundToDouble(bool isSigned) const; |
1710 | |
1711 | /// Converts this unsigned APInt to a double value. |
1712 | double roundToDouble() const { return roundToDouble(isSigned: false); } |
1713 | |
1714 | /// Converts this signed APInt to a double value. |
1715 | double signedRoundToDouble() const { return roundToDouble(isSigned: true); } |
1716 | |
1717 | /// Converts APInt bits to a double |
1718 | /// |
1719 | /// The conversion does not do a translation from integer to double, it just |
1720 | /// re-interprets the bits as a double. Note that it is valid to do this on |
1721 | /// any bit width. Exactly 64 bits will be translated. |
1722 | double bitsToDouble() const { return llvm::bit_cast<double>(from: getWord(bitPosition: 0)); } |
1723 | |
1724 | #ifdef HAS_IEE754_FLOAT128 |
1725 | float128 bitsToQuad() const { |
1726 | __uint128_t ul = ((__uint128_t)U.pVal[1] << 64) + U.pVal[0]; |
1727 | return llvm::bit_cast<float128>(from: ul); |
1728 | } |
1729 | #endif |
1730 | |
1731 | /// Converts APInt bits to a float |
1732 | /// |
1733 | /// The conversion does not do a translation from integer to float, it just |
1734 | /// re-interprets the bits as a float. Note that it is valid to do this on |
1735 | /// any bit width. Exactly 32 bits will be translated. |
1736 | float bitsToFloat() const { |
1737 | return llvm::bit_cast<float>(from: static_cast<uint32_t>(getWord(bitPosition: 0))); |
1738 | } |
1739 | |
1740 | /// Converts a double to APInt bits. |
1741 | /// |
1742 | /// The conversion does not do a translation from double to integer, it just |
1743 | /// re-interprets the bits of the double. |
1744 | static APInt doubleToBits(double V) { |
1745 | return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(from: V)); |
1746 | } |
1747 | |
1748 | /// Converts a float to APInt bits. |
1749 | /// |
1750 | /// The conversion does not do a translation from float to integer, it just |
1751 | /// re-interprets the bits of the float. |
1752 | static APInt floatToBits(float V) { |
1753 | return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(from: V)); |
1754 | } |
1755 | |
1756 | /// @} |
1757 | /// \name Mathematics Operations |
1758 | /// @{ |
1759 | |
1760 | /// \returns the floor log base 2 of this APInt. |
1761 | unsigned logBase2() const { return getActiveBits() - 1; } |
1762 | |
1763 | /// \returns the ceil log base 2 of this APInt. |
1764 | unsigned ceilLogBase2() const { |
1765 | APInt temp(*this); |
1766 | --temp; |
1767 | return temp.getActiveBits(); |
1768 | } |
1769 | |
1770 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1771 | /// |
1772 | /// NOTE: When we have a BitWidth of 1, we define: |
1773 | /// |
1774 | /// log2(0) = UINT32_MAX |
1775 | /// log2(1) = 0 |
1776 | /// |
1777 | /// to get around any mathematical concerns resulting from |
1778 | /// referencing 2 in a space where 2 does no exist. |
1779 | LLVM_ABI unsigned nearestLogBase2() const; |
1780 | |
1781 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
1782 | /// otherwise |
1783 | int32_t exactLogBase2() const { |
1784 | if (!isPowerOf2()) |
1785 | return -1; |
1786 | return logBase2(); |
1787 | } |
1788 | |
1789 | /// Compute the square root. |
1790 | LLVM_ABI APInt sqrt() const; |
1791 | |
1792 | /// Get the absolute value. If *this is < 0 then return -(*this), otherwise |
1793 | /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit |
1794 | /// wide APInt) is unchanged due to how negation works. |
1795 | APInt abs() const { |
1796 | if (isNegative()) |
1797 | return -(*this); |
1798 | return *this; |
1799 | } |
1800 | |
1801 | /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth. |
1802 | LLVM_ABI APInt multiplicativeInverse() const; |
1803 | |
1804 | /// @} |
1805 | /// \name Building-block Operations for APInt and APFloat |
1806 | /// @{ |
1807 | |
1808 | // These building block operations operate on a representation of arbitrary |
1809 | // precision, two's-complement, bignum integer values. They should be |
1810 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
1811 | // generally a pointer to the base of an array of integer parts, representing |
1812 | // an unsigned bignum, and a count of how many parts there are. |
1813 | |
1814 | /// Sets the least significant part of a bignum to the input value, and zeroes |
1815 | /// out higher parts. |
1816 | LLVM_ABI static void tcSet(WordType *, WordType, unsigned); |
1817 | |
1818 | /// Assign one bignum to another. |
1819 | LLVM_ABI static void tcAssign(WordType *, const WordType *, unsigned); |
1820 | |
1821 | /// Returns true if a bignum is zero, false otherwise. |
1822 | LLVM_ABI static bool tcIsZero(const WordType *, unsigned); |
1823 | |
1824 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
1825 | LLVM_ABI static int (const WordType *, unsigned bit); |
1826 | |
1827 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
1828 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
1829 | /// significant bit of DST. All high bits above srcBITS in DST are |
1830 | /// zero-filled. |
1831 | LLVM_ABI static void (WordType *, unsigned dstCount, |
1832 | const WordType *, unsigned srcBits, |
1833 | unsigned srcLSB); |
1834 | |
1835 | /// Set the given bit of a bignum. Zero-based. |
1836 | LLVM_ABI static void tcSetBit(WordType *, unsigned bit); |
1837 | |
1838 | /// Clear the given bit of a bignum. Zero-based. |
1839 | LLVM_ABI static void tcClearBit(WordType *, unsigned bit); |
1840 | |
1841 | /// Returns the bit number of the least or most significant set bit of a |
1842 | /// number. If the input number has no bits set -1U is returned. |
1843 | LLVM_ABI static unsigned tcLSB(const WordType *, unsigned n); |
1844 | LLVM_ABI static unsigned tcMSB(const WordType *parts, unsigned n); |
1845 | |
1846 | /// Negate a bignum in-place. |
1847 | LLVM_ABI static void tcNegate(WordType *, unsigned); |
1848 | |
1849 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1850 | LLVM_ABI static WordType tcAdd(WordType *, const WordType *, WordType carry, |
1851 | unsigned); |
1852 | /// DST += RHS. Returns the carry flag. |
1853 | LLVM_ABI static WordType tcAddPart(WordType *, WordType, unsigned); |
1854 | |
1855 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1856 | LLVM_ABI static WordType tcSubtract(WordType *, const WordType *, |
1857 | WordType carry, unsigned); |
1858 | /// DST -= RHS. Returns the carry flag. |
1859 | LLVM_ABI static WordType tcSubtractPart(WordType *, WordType, unsigned); |
1860 | |
1861 | /// DST += SRC * MULTIPLIER + PART if add is true |
1862 | /// DST = SRC * MULTIPLIER + PART if add is false |
1863 | /// |
1864 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
1865 | /// start at the same point, i.e. DST == SRC. |
1866 | /// |
1867 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
1868 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
1869 | /// result, and if all of the omitted higher parts were zero return zero, |
1870 | /// otherwise overflow occurred and return one. |
1871 | LLVM_ABI static int tcMultiplyPart(WordType *dst, const WordType *src, |
1872 | WordType multiplier, WordType carry, |
1873 | unsigned srcParts, unsigned dstParts, |
1874 | bool add); |
1875 | |
1876 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
1877 | /// filled with the least significant parts of the result. Returns one if |
1878 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
1879 | /// operands. |
1880 | LLVM_ABI static int tcMultiply(WordType *, const WordType *, const WordType *, |
1881 | unsigned); |
1882 | |
1883 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
1884 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
1885 | LLVM_ABI static void tcFullMultiply(WordType *, const WordType *, |
1886 | const WordType *, unsigned, unsigned); |
1887 | |
1888 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
1889 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
1890 | /// REMAINDER to the remainder, return zero. i.e. |
1891 | /// |
1892 | /// OLD_LHS = RHS * LHS + REMAINDER |
1893 | /// |
1894 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
1895 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
1896 | /// REMAINDER and SCRATCH must be distinct. |
1897 | LLVM_ABI static int tcDivide(WordType *lhs, const WordType *rhs, |
1898 | WordType *remainder, WordType *scratch, |
1899 | unsigned parts); |
1900 | |
1901 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
1902 | /// restrictions on Count. |
1903 | LLVM_ABI static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
1904 | |
1905 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
1906 | /// restrictions on Count. |
1907 | LLVM_ABI static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
1908 | |
1909 | /// Comparison (unsigned) of two bignums. |
1910 | LLVM_ABI static int tcCompare(const WordType *, const WordType *, unsigned); |
1911 | |
1912 | /// Increment a bignum in-place. Return the carry flag. |
1913 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
1914 | return tcAddPart(dst, 1, parts); |
1915 | } |
1916 | |
1917 | /// Decrement a bignum in-place. Return the borrow flag. |
1918 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
1919 | return tcSubtractPart(dst, 1, parts); |
1920 | } |
1921 | |
1922 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
1923 | /// FoldingSets. |
1924 | LLVM_ABI void Profile(FoldingSetNodeID &id) const; |
1925 | |
1926 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1927 | /// debug method |
1928 | LLVM_DUMP_METHOD void dump() const; |
1929 | #endif |
1930 | |
1931 | /// Returns whether this instance allocated memory. |
1932 | bool needsCleanup() const { return !isSingleWord(); } |
1933 | |
1934 | private: |
1935 | /// This union is used to store the integer value. When the |
1936 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
1937 | union { |
1938 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
1939 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
1940 | } U; |
1941 | |
1942 | unsigned BitWidth = 1; ///< The number of bits in this APInt. |
1943 | |
1944 | friend struct DenseMapInfo<APInt, void>; |
1945 | friend class APSInt; |
1946 | |
1947 | // Make DynamicAPInt a friend so it can access BitWidth directly. |
1948 | friend DynamicAPInt; |
1949 | |
1950 | /// This constructor is used only internally for speed of construction of |
1951 | /// temporaries. It is unsafe since it takes ownership of the pointer, so it |
1952 | /// is not public. |
1953 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } |
1954 | |
1955 | /// Determine which word a bit is in. |
1956 | /// |
1957 | /// \returns the word position for the specified bit position. |
1958 | static unsigned whichWord(unsigned bitPosition) { |
1959 | return bitPosition / APINT_BITS_PER_WORD; |
1960 | } |
1961 | |
1962 | /// Determine which bit in a word the specified bit position is in. |
1963 | static unsigned whichBit(unsigned bitPosition) { |
1964 | return bitPosition % APINT_BITS_PER_WORD; |
1965 | } |
1966 | |
1967 | /// Get a single bit mask. |
1968 | /// |
1969 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
1970 | /// This method generates and returns a uint64_t (word) mask for a single |
1971 | /// bit at a specific bit position. This is used to mask the bit in the |
1972 | /// corresponding word. |
1973 | static uint64_t maskBit(unsigned bitPosition) { |
1974 | return 1ULL << whichBit(bitPosition); |
1975 | } |
1976 | |
1977 | /// Clear unused high order bits |
1978 | /// |
1979 | /// This method is used internally to clear the top "N" bits in the high order |
1980 | /// word that are not used by the APInt. This is needed after the most |
1981 | /// significant word is assigned a value to ensure that those bits are |
1982 | /// zero'd out. |
1983 | APInt &clearUnusedBits() { |
1984 | // Compute how many bits are used in the final word. |
1985 | unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; |
1986 | |
1987 | // Mask out the high bits. |
1988 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
1989 | if (LLVM_UNLIKELY(BitWidth == 0)) |
1990 | mask = 0; |
1991 | |
1992 | if (isSingleWord()) |
1993 | U.VAL &= mask; |
1994 | else |
1995 | U.pVal[getNumWords() - 1] &= mask; |
1996 | return *this; |
1997 | } |
1998 | |
1999 | /// Get the word corresponding to a bit position |
2000 | /// \returns the corresponding word for the specified bit position. |
2001 | uint64_t getWord(unsigned bitPosition) const { |
2002 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
2003 | } |
2004 | |
2005 | /// Utility method to change the bit width of this APInt to new bit width, |
2006 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
2007 | /// value of any bits upon return. Caller should populate the bits after. |
2008 | void reallocate(unsigned NewBitWidth); |
2009 | |
2010 | /// Convert a char array into an APInt |
2011 | /// |
2012 | /// \param radix 2, 8, 10, 16, or 36 |
2013 | /// Converts a string into a number. The string must be non-empty |
2014 | /// and well-formed as a number of the given base. The bit-width |
2015 | /// must be sufficient to hold the result. |
2016 | /// |
2017 | /// This is used by the constructors that take string arguments. |
2018 | /// |
2019 | /// StringRef::getAsInteger is superficially similar but (1) does |
2020 | /// not assume that the string is well-formed and (2) grows the |
2021 | /// result to hold the input. |
2022 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
2023 | |
2024 | /// An internal division function for dividing APInts. |
2025 | /// |
2026 | /// This is used by the toString method to divide by the radix. It simply |
2027 | /// provides a more convenient form of divide for internal use since KnuthDiv |
2028 | /// has specific constraints on its inputs. If those constraints are not met |
2029 | /// then it provides a simpler form of divide. |
2030 | static void divide(const WordType *LHS, unsigned lhsWords, |
2031 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
2032 | WordType *Remainder); |
2033 | |
2034 | /// out-of-line slow case for inline constructor |
2035 | LLVM_ABI void initSlowCase(uint64_t val, bool isSigned); |
2036 | |
2037 | /// shared code between two array constructors |
2038 | void initFromArray(ArrayRef<uint64_t> array); |
2039 | |
2040 | /// out-of-line slow case for inline copy constructor |
2041 | LLVM_ABI void initSlowCase(const APInt &that); |
2042 | |
2043 | /// out-of-line slow case for shl |
2044 | LLVM_ABI void shlSlowCase(unsigned ShiftAmt); |
2045 | |
2046 | /// out-of-line slow case for lshr. |
2047 | LLVM_ABI void lshrSlowCase(unsigned ShiftAmt); |
2048 | |
2049 | /// out-of-line slow case for ashr. |
2050 | LLVM_ABI void ashrSlowCase(unsigned ShiftAmt); |
2051 | |
2052 | /// out-of-line slow case for operator= |
2053 | LLVM_ABI void assignSlowCase(const APInt &RHS); |
2054 | |
2055 | /// out-of-line slow case for operator== |
2056 | LLVM_ABI bool equalSlowCase(const APInt &RHS) const LLVM_READONLY; |
2057 | |
2058 | /// out-of-line slow case for countLeadingZeros |
2059 | LLVM_ABI unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
2060 | |
2061 | /// out-of-line slow case for countLeadingOnes. |
2062 | LLVM_ABI unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
2063 | |
2064 | /// out-of-line slow case for countTrailingZeros. |
2065 | LLVM_ABI unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
2066 | |
2067 | /// out-of-line slow case for countTrailingOnes |
2068 | LLVM_ABI unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
2069 | |
2070 | /// out-of-line slow case for countPopulation |
2071 | LLVM_ABI unsigned countPopulationSlowCase() const LLVM_READONLY; |
2072 | |
2073 | /// out-of-line slow case for intersects. |
2074 | LLVM_ABI bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
2075 | |
2076 | /// out-of-line slow case for isSubsetOf. |
2077 | LLVM_ABI bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
2078 | |
2079 | /// out-of-line slow case for setBits. |
2080 | LLVM_ABI void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
2081 | |
2082 | /// out-of-line slow case for clearBits. |
2083 | LLVM_ABI void clearBitsSlowCase(unsigned LoBit, unsigned HiBit); |
2084 | |
2085 | /// out-of-line slow case for flipAllBits. |
2086 | LLVM_ABI void flipAllBitsSlowCase(); |
2087 | |
2088 | /// out-of-line slow case for concat. |
2089 | LLVM_ABI APInt concatSlowCase(const APInt &NewLSB) const; |
2090 | |
2091 | /// out-of-line slow case for operator&=. |
2092 | LLVM_ABI void andAssignSlowCase(const APInt &RHS); |
2093 | |
2094 | /// out-of-line slow case for operator|=. |
2095 | LLVM_ABI void orAssignSlowCase(const APInt &RHS); |
2096 | |
2097 | /// out-of-line slow case for operator^=. |
2098 | LLVM_ABI void xorAssignSlowCase(const APInt &RHS); |
2099 | |
2100 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
2101 | /// to, or greater than RHS. |
2102 | LLVM_ABI int compare(const APInt &RHS) const LLVM_READONLY; |
2103 | |
2104 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
2105 | /// to, or greater than RHS. |
2106 | LLVM_ABI int compareSigned(const APInt &RHS) const LLVM_READONLY; |
2107 | |
2108 | /// @} |
2109 | }; |
2110 | |
2111 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
2112 | |
2113 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
2114 | |
2115 | /// Unary bitwise complement operator. |
2116 | /// |
2117 | /// \returns an APInt that is the bitwise complement of \p v. |
2118 | inline APInt operator~(APInt v) { |
2119 | v.flipAllBits(); |
2120 | return v; |
2121 | } |
2122 | |
2123 | inline APInt operator&(APInt a, const APInt &b) { |
2124 | a &= b; |
2125 | return a; |
2126 | } |
2127 | |
2128 | inline APInt operator&(const APInt &a, APInt &&b) { |
2129 | b &= a; |
2130 | return std::move(b); |
2131 | } |
2132 | |
2133 | inline APInt operator&(APInt a, uint64_t RHS) { |
2134 | a &= RHS; |
2135 | return a; |
2136 | } |
2137 | |
2138 | inline APInt operator&(uint64_t LHS, APInt b) { |
2139 | b &= LHS; |
2140 | return b; |
2141 | } |
2142 | |
2143 | inline APInt operator|(APInt a, const APInt &b) { |
2144 | a |= b; |
2145 | return a; |
2146 | } |
2147 | |
2148 | inline APInt operator|(const APInt &a, APInt &&b) { |
2149 | b |= a; |
2150 | return std::move(b); |
2151 | } |
2152 | |
2153 | inline APInt operator|(APInt a, uint64_t RHS) { |
2154 | a |= RHS; |
2155 | return a; |
2156 | } |
2157 | |
2158 | inline APInt operator|(uint64_t LHS, APInt b) { |
2159 | b |= LHS; |
2160 | return b; |
2161 | } |
2162 | |
2163 | inline APInt operator^(APInt a, const APInt &b) { |
2164 | a ^= b; |
2165 | return a; |
2166 | } |
2167 | |
2168 | inline APInt operator^(const APInt &a, APInt &&b) { |
2169 | b ^= a; |
2170 | return std::move(b); |
2171 | } |
2172 | |
2173 | inline APInt operator^(APInt a, uint64_t RHS) { |
2174 | a ^= RHS; |
2175 | return a; |
2176 | } |
2177 | |
2178 | inline APInt operator^(uint64_t LHS, APInt b) { |
2179 | b ^= LHS; |
2180 | return b; |
2181 | } |
2182 | |
2183 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
2184 | I.print(OS, isSigned: true); |
2185 | return OS; |
2186 | } |
2187 | |
2188 | inline APInt operator-(APInt v) { |
2189 | v.negate(); |
2190 | return v; |
2191 | } |
2192 | |
2193 | inline APInt operator+(APInt a, const APInt &b) { |
2194 | a += b; |
2195 | return a; |
2196 | } |
2197 | |
2198 | inline APInt operator+(const APInt &a, APInt &&b) { |
2199 | b += a; |
2200 | return std::move(b); |
2201 | } |
2202 | |
2203 | inline APInt operator+(APInt a, uint64_t RHS) { |
2204 | a += RHS; |
2205 | return a; |
2206 | } |
2207 | |
2208 | inline APInt operator+(uint64_t LHS, APInt b) { |
2209 | b += LHS; |
2210 | return b; |
2211 | } |
2212 | |
2213 | inline APInt operator-(APInt a, const APInt &b) { |
2214 | a -= b; |
2215 | return a; |
2216 | } |
2217 | |
2218 | inline APInt operator-(const APInt &a, APInt &&b) { |
2219 | b.negate(); |
2220 | b += a; |
2221 | return std::move(b); |
2222 | } |
2223 | |
2224 | inline APInt operator-(APInt a, uint64_t RHS) { |
2225 | a -= RHS; |
2226 | return a; |
2227 | } |
2228 | |
2229 | inline APInt operator-(uint64_t LHS, APInt b) { |
2230 | b.negate(); |
2231 | b += LHS; |
2232 | return b; |
2233 | } |
2234 | |
2235 | inline APInt operator*(APInt a, uint64_t RHS) { |
2236 | a *= RHS; |
2237 | return a; |
2238 | } |
2239 | |
2240 | inline APInt operator*(uint64_t LHS, APInt b) { |
2241 | b *= LHS; |
2242 | return b; |
2243 | } |
2244 | |
2245 | namespace APIntOps { |
2246 | |
2247 | /// Determine the smaller of two APInts considered to be signed. |
2248 | inline const APInt &smin(const APInt &A, const APInt &B) { |
2249 | return A.slt(RHS: B) ? A : B; |
2250 | } |
2251 | |
2252 | /// Determine the larger of two APInts considered to be signed. |
2253 | inline const APInt &smax(const APInt &A, const APInt &B) { |
2254 | return A.sgt(RHS: B) ? A : B; |
2255 | } |
2256 | |
2257 | /// Determine the smaller of two APInts considered to be unsigned. |
2258 | inline const APInt &umin(const APInt &A, const APInt &B) { |
2259 | return A.ult(RHS: B) ? A : B; |
2260 | } |
2261 | |
2262 | /// Determine the larger of two APInts considered to be unsigned. |
2263 | inline const APInt &umax(const APInt &A, const APInt &B) { |
2264 | return A.ugt(RHS: B) ? A : B; |
2265 | } |
2266 | |
2267 | /// Determine the absolute difference of two APInts considered to be signed. |
2268 | inline APInt abds(const APInt &A, const APInt &B) { |
2269 | return A.sge(RHS: B) ? (A - B) : (B - A); |
2270 | } |
2271 | |
2272 | /// Determine the absolute difference of two APInts considered to be unsigned. |
2273 | inline APInt abdu(const APInt &A, const APInt &B) { |
2274 | return A.uge(RHS: B) ? (A - B) : (B - A); |
2275 | } |
2276 | |
2277 | /// Compute the floor of the signed average of C1 and C2 |
2278 | LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2); |
2279 | |
2280 | /// Compute the floor of the unsigned average of C1 and C2 |
2281 | LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2); |
2282 | |
2283 | /// Compute the ceil of the signed average of C1 and C2 |
2284 | LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2); |
2285 | |
2286 | /// Compute the ceil of the unsigned average of C1 and C2 |
2287 | LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2); |
2288 | |
2289 | /// Performs (2*N)-bit multiplication on sign-extended operands. |
2290 | /// Returns the high N bits of the multiplication result. |
2291 | LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2); |
2292 | |
2293 | /// Performs (2*N)-bit multiplication on zero-extended operands. |
2294 | /// Returns the high N bits of the multiplication result. |
2295 | LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2); |
2296 | |
2297 | /// Compute X^N for N>=0. |
2298 | /// 0^0 is supported and returns 1. |
2299 | LLVM_ABI APInt pow(const APInt &X, int64_t N); |
2300 | |
2301 | /// Compute GCD of two unsigned APInt values. |
2302 | /// |
2303 | /// This function returns the greatest common divisor of the two APInt values |
2304 | /// using Stein's algorithm. |
2305 | /// |
2306 | /// \returns the greatest common divisor of A and B. |
2307 | LLVM_ABI APInt GreatestCommonDivisor(APInt A, APInt B); |
2308 | |
2309 | /// Converts the given APInt to a double value. |
2310 | /// |
2311 | /// Treats the APInt as an unsigned value for conversion purposes. |
2312 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
2313 | return APIVal.roundToDouble(); |
2314 | } |
2315 | |
2316 | /// Converts the given APInt to a double value. |
2317 | /// |
2318 | /// Treats the APInt as a signed value for conversion purposes. |
2319 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
2320 | return APIVal.signedRoundToDouble(); |
2321 | } |
2322 | |
2323 | /// Converts the given APInt to a float value. |
2324 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
2325 | return float(RoundAPIntToDouble(APIVal)); |
2326 | } |
2327 | |
2328 | /// Converts the given APInt to a float value. |
2329 | /// |
2330 | /// Treats the APInt as a signed value for conversion purposes. |
2331 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
2332 | return float(APIVal.signedRoundToDouble()); |
2333 | } |
2334 | |
2335 | /// Converts the given double value into a APInt. |
2336 | /// |
2337 | /// This function convert a double value to an APInt value. |
2338 | LLVM_ABI APInt RoundDoubleToAPInt(double Double, unsigned width); |
2339 | |
2340 | /// Converts a float value into a APInt. |
2341 | /// |
2342 | /// Converts a float value into an APInt value. |
2343 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
2344 | return RoundDoubleToAPInt(Double: double(Float), width); |
2345 | } |
2346 | |
2347 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
2348 | LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2349 | |
2350 | /// Return A sign-divided by B, rounded by the given rounding mode. |
2351 | LLVM_ABI APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2352 | |
2353 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
2354 | /// (e.g. 32 for i32). |
2355 | /// This function finds the smallest number n, such that |
2356 | /// (a) n >= 0 and q(n) = 0, or |
2357 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
2358 | /// integers, belong to two different intervals [Rk, Rk+R), |
2359 | /// where R = 2^BW, and k is an integer. |
2360 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
2361 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
2362 | /// subtraction (treated as addition of negated numbers) would always |
2363 | /// count as an overflow, but here we want to allow values to decrease |
2364 | /// and increase as long as they are within the same interval. |
2365 | /// Specifically, adding of two negative numbers should not cause an |
2366 | /// overflow (as long as the magnitude does not exceed the bit width). |
2367 | /// On the other hand, given a positive number, adding a negative |
2368 | /// number to it can give a negative result, which would cause the |
2369 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
2370 | /// treated as a special case of an overflow. |
2371 | /// |
2372 | /// This function returns std::nullopt if after finding k that minimizes the |
2373 | /// positive solution to q(n) = kR, both solutions are contained between |
2374 | /// two consecutive integers. |
2375 | /// |
2376 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
2377 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
2378 | /// virtue of *signed* overflow. This function will *not* find such an n, |
2379 | /// however it may find a value of n satisfying the inequalities due to |
2380 | /// an *unsigned* overflow (if the values are treated as unsigned). |
2381 | /// To find a solution for a signed overflow, treat it as a problem of |
2382 | /// finding an unsigned overflow with a range with of BW-1. |
2383 | /// |
2384 | /// The returned value may have a different bit width from the input |
2385 | /// coefficients. |
2386 | LLVM_ABI std::optional<APInt> |
2387 | SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, unsigned RangeWidth); |
2388 | |
2389 | /// Compare two values, and if they are different, return the position of the |
2390 | /// most significant bit that is different in the values. |
2391 | LLVM_ABI std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
2392 | const APInt &B); |
2393 | |
2394 | /// Splat/Merge neighboring bits to widen/narrow the bitmask represented |
2395 | /// by \param A to \param NewBitWidth bits. |
2396 | /// |
2397 | /// MatchAnyBits: (Default) |
2398 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
2399 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 |
2400 | /// |
2401 | /// MatchAllBits: |
2402 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
2403 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001 |
2404 | /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. |
2405 | LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, |
2406 | bool MatchAllBits = false); |
2407 | } // namespace APIntOps |
2408 | |
2409 | // See friend declaration above. This additional declaration is required in |
2410 | // order to compile LLVM with IBM xlC compiler. |
2411 | LLVM_ABI hash_code hash_value(const APInt &Arg); |
2412 | |
2413 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
2414 | /// with the integer held in IntVal. |
2415 | LLVM_ABI void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, |
2416 | unsigned StoreBytes); |
2417 | |
2418 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
2419 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
2420 | LLVM_ABI void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, |
2421 | unsigned LoadBytes); |
2422 | |
2423 | /// Provide DenseMapInfo for APInt. |
2424 | template <> struct DenseMapInfo<APInt, void> { |
2425 | static inline APInt getEmptyKey() { |
2426 | APInt V(nullptr, 0); |
2427 | V.U.VAL = ~0ULL; |
2428 | return V; |
2429 | } |
2430 | |
2431 | static inline APInt getTombstoneKey() { |
2432 | APInt V(nullptr, 0); |
2433 | V.U.VAL = ~1ULL; |
2434 | return V; |
2435 | } |
2436 | |
2437 | LLVM_ABI static unsigned getHashValue(const APInt &Key); |
2438 | |
2439 | static bool isEqual(const APInt &LHS, const APInt &RHS) { |
2440 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
2441 | } |
2442 | }; |
2443 | |
2444 | } // namespace llvm |
2445 | |
2446 | #endif |
2447 | |