1 | //===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements the APSInt class, which is a simple class that |
11 | /// represents an arbitrary sized integer that knows its signedness. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_APSINT_H |
16 | #define LLVM_ADT_APSINT_H |
17 | |
18 | #include "llvm/ADT/APInt.h" |
19 | #include "llvm/Support/Compiler.h" |
20 | |
21 | namespace llvm { |
22 | |
23 | /// An arbitrary precision integer that knows its signedness. |
24 | class [[nodiscard]] APSInt : public APInt { |
25 | bool IsUnsigned = false; |
26 | |
27 | public: |
28 | /// Default constructor that creates an uninitialized APInt. |
29 | explicit APSInt() = default; |
30 | |
31 | /// Create an APSInt with the specified width, default to unsigned. |
32 | explicit APSInt(uint32_t BitWidth, bool isUnsigned = true) |
33 | : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {} |
34 | |
35 | explicit APSInt(APInt I, bool isUnsigned = true) |
36 | : APInt(std::move(I)), IsUnsigned(isUnsigned) {} |
37 | |
38 | /// Construct an APSInt from a string representation. |
39 | /// |
40 | /// This constructor interprets the string \p Str using the radix of 10. |
41 | /// The interpretation stops at the end of the string. The bit width of the |
42 | /// constructed APSInt is determined automatically. |
43 | /// |
44 | /// \param Str the string to be interpreted. |
45 | LLVM_ABI explicit APSInt(StringRef Str); |
46 | |
47 | /// Determine sign of this APSInt. |
48 | /// |
49 | /// \returns true if this APSInt is negative, false otherwise |
50 | bool isNegative() const { return isSigned() && APInt::isNegative(); } |
51 | |
52 | /// Determine if this APSInt Value is non-negative (>= 0) |
53 | /// |
54 | /// \returns true if this APSInt is non-negative, false otherwise |
55 | bool isNonNegative() const { return !isNegative(); } |
56 | |
57 | /// Determine if this APSInt Value is positive. |
58 | /// |
59 | /// This tests if the value of this APSInt is positive (> 0). Note |
60 | /// that 0 is not a positive value. |
61 | /// |
62 | /// \returns true if this APSInt is positive. |
63 | bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } |
64 | |
65 | APSInt &operator=(APInt RHS) { |
66 | // Retain our current sign. |
67 | APInt::operator=(that: std::move(RHS)); |
68 | return *this; |
69 | } |
70 | |
71 | APSInt &operator=(uint64_t RHS) { |
72 | // Retain our current sign. |
73 | APInt::operator=(RHS); |
74 | return *this; |
75 | } |
76 | |
77 | // Query sign information. |
78 | bool isSigned() const { return !IsUnsigned; } |
79 | bool isUnsigned() const { return IsUnsigned; } |
80 | void setIsUnsigned(bool Val) { IsUnsigned = Val; } |
81 | void setIsSigned(bool Val) { IsUnsigned = !Val; } |
82 | |
83 | /// Append this APSInt to the specified SmallString. |
84 | void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
85 | APInt::toString(Str, Radix, Signed: isSigned()); |
86 | } |
87 | using APInt::toString; |
88 | |
89 | /// If this int is representable using an int64_t. |
90 | bool isRepresentableByInt64() const { |
91 | // For unsigned values with 64 active bits, they technically fit into a |
92 | // int64_t, but the user may get negative numbers and has to manually cast |
93 | // them to unsigned. Let's not bet the user has the sanity to do that and |
94 | // not give them a vague value at the first place. |
95 | return isSigned() ? isSignedIntN(N: 64) : isIntN(N: 63); |
96 | } |
97 | |
98 | /// Get the correctly-extended \c int64_t value. |
99 | int64_t getExtValue() const { |
100 | assert(isRepresentableByInt64() && "Too many bits for int64_t" ); |
101 | return isSigned() ? getSExtValue() : getZExtValue(); |
102 | } |
103 | |
104 | std::optional<int64_t> tryExtValue() const { |
105 | return isRepresentableByInt64() ? std::optional<int64_t>(getExtValue()) |
106 | : std::nullopt; |
107 | } |
108 | |
109 | APSInt trunc(uint32_t width) const { |
110 | return APSInt(APInt::trunc(width), IsUnsigned); |
111 | } |
112 | |
113 | APSInt extend(uint32_t width) const { |
114 | if (IsUnsigned) |
115 | return APSInt(zext(width), IsUnsigned); |
116 | else |
117 | return APSInt(sext(width), IsUnsigned); |
118 | } |
119 | |
120 | APSInt extOrTrunc(uint32_t width) const { |
121 | if (IsUnsigned) |
122 | return APSInt(zextOrTrunc(width), IsUnsigned); |
123 | else |
124 | return APSInt(sextOrTrunc(width), IsUnsigned); |
125 | } |
126 | |
127 | const APSInt &operator%=(const APSInt &RHS) { |
128 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
129 | if (IsUnsigned) |
130 | *this = urem(RHS); |
131 | else |
132 | *this = srem(RHS); |
133 | return *this; |
134 | } |
135 | const APSInt &operator/=(const APSInt &RHS) { |
136 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
137 | if (IsUnsigned) |
138 | *this = udiv(RHS); |
139 | else |
140 | *this = sdiv(RHS); |
141 | return *this; |
142 | } |
143 | APSInt operator%(const APSInt &RHS) const { |
144 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
145 | return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false); |
146 | } |
147 | APSInt operator/(const APSInt &RHS) const { |
148 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
149 | return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false); |
150 | } |
151 | |
152 | APSInt operator>>(unsigned Amt) const { |
153 | return IsUnsigned ? APSInt(lshr(shiftAmt: Amt), true) : APSInt(ashr(ShiftAmt: Amt), false); |
154 | } |
155 | APSInt &operator>>=(unsigned Amt) { |
156 | if (IsUnsigned) |
157 | lshrInPlace(ShiftAmt: Amt); |
158 | else |
159 | ashrInPlace(ShiftAmt: Amt); |
160 | return *this; |
161 | } |
162 | APSInt relativeShr(unsigned Amt) const { |
163 | return IsUnsigned ? APSInt(relativeLShr(RelativeShift: Amt), true) |
164 | : APSInt(relativeAShr(RelativeShift: Amt), false); |
165 | } |
166 | |
167 | inline bool operator<(const APSInt &RHS) const { |
168 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
169 | return IsUnsigned ? ult(RHS) : slt(RHS); |
170 | } |
171 | inline bool operator>(const APSInt &RHS) const { |
172 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
173 | return IsUnsigned ? ugt(RHS) : sgt(RHS); |
174 | } |
175 | inline bool operator<=(const APSInt &RHS) const { |
176 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
177 | return IsUnsigned ? ule(RHS) : sle(RHS); |
178 | } |
179 | inline bool operator>=(const APSInt &RHS) const { |
180 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
181 | return IsUnsigned ? uge(RHS) : sge(RHS); |
182 | } |
183 | inline bool operator==(const APSInt &RHS) const { |
184 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
185 | return eq(RHS); |
186 | } |
187 | inline bool operator!=(const APSInt &RHS) const { return !((*this) == RHS); } |
188 | |
189 | bool operator==(int64_t RHS) const { |
190 | return compareValues(I1: *this, I2: get(X: RHS)) == 0; |
191 | } |
192 | bool operator!=(int64_t RHS) const { |
193 | return compareValues(I1: *this, I2: get(X: RHS)) != 0; |
194 | } |
195 | bool operator<=(int64_t RHS) const { |
196 | return compareValues(I1: *this, I2: get(X: RHS)) <= 0; |
197 | } |
198 | bool operator>=(int64_t RHS) const { |
199 | return compareValues(I1: *this, I2: get(X: RHS)) >= 0; |
200 | } |
201 | bool operator<(int64_t RHS) const { |
202 | return compareValues(I1: *this, I2: get(X: RHS)) < 0; |
203 | } |
204 | bool operator>(int64_t RHS) const { |
205 | return compareValues(I1: *this, I2: get(X: RHS)) > 0; |
206 | } |
207 | |
208 | // The remaining operators just wrap the logic of APInt, but retain the |
209 | // signedness information. |
210 | |
211 | APSInt operator<<(unsigned Bits) const { |
212 | return APSInt(static_cast<const APInt &>(*this) << Bits, IsUnsigned); |
213 | } |
214 | APSInt &operator<<=(unsigned Amt) { |
215 | static_cast<APInt &>(*this) <<= Amt; |
216 | return *this; |
217 | } |
218 | APSInt relativeShl(unsigned Amt) const { |
219 | return IsUnsigned ? APSInt(relativeLShl(RelativeShift: Amt), true) |
220 | : APSInt(relativeAShl(RelativeShift: Amt), false); |
221 | } |
222 | |
223 | APSInt &operator++() { |
224 | ++(static_cast<APInt &>(*this)); |
225 | return *this; |
226 | } |
227 | APSInt &operator--() { |
228 | --(static_cast<APInt &>(*this)); |
229 | return *this; |
230 | } |
231 | APSInt operator++(int) { |
232 | return APSInt(++static_cast<APInt &>(*this), IsUnsigned); |
233 | } |
234 | APSInt operator--(int) { |
235 | return APSInt(--static_cast<APInt &>(*this), IsUnsigned); |
236 | } |
237 | APSInt operator-() const { |
238 | return APSInt(-static_cast<const APInt &>(*this), IsUnsigned); |
239 | } |
240 | APSInt &operator+=(const APSInt &RHS) { |
241 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
242 | static_cast<APInt &>(*this) += RHS; |
243 | return *this; |
244 | } |
245 | APSInt &operator-=(const APSInt &RHS) { |
246 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
247 | static_cast<APInt &>(*this) -= RHS; |
248 | return *this; |
249 | } |
250 | APSInt &operator*=(const APSInt &RHS) { |
251 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
252 | static_cast<APInt &>(*this) *= RHS; |
253 | return *this; |
254 | } |
255 | APSInt &operator&=(const APSInt &RHS) { |
256 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
257 | static_cast<APInt &>(*this) &= RHS; |
258 | return *this; |
259 | } |
260 | APSInt &operator|=(const APSInt &RHS) { |
261 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
262 | static_cast<APInt &>(*this) |= RHS; |
263 | return *this; |
264 | } |
265 | APSInt &operator^=(const APSInt &RHS) { |
266 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
267 | static_cast<APInt &>(*this) ^= RHS; |
268 | return *this; |
269 | } |
270 | |
271 | APSInt operator&(const APSInt &RHS) const { |
272 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
273 | return APSInt(static_cast<const APInt &>(*this) & RHS, IsUnsigned); |
274 | } |
275 | |
276 | APSInt operator|(const APSInt &RHS) const { |
277 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
278 | return APSInt(static_cast<const APInt &>(*this) | RHS, IsUnsigned); |
279 | } |
280 | |
281 | APSInt operator^(const APSInt &RHS) const { |
282 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
283 | return APSInt(static_cast<const APInt &>(*this) ^ RHS, IsUnsigned); |
284 | } |
285 | |
286 | APSInt operator*(const APSInt &RHS) const { |
287 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
288 | return APSInt(static_cast<const APInt &>(*this) * RHS, IsUnsigned); |
289 | } |
290 | APSInt operator+(const APSInt &RHS) const { |
291 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
292 | return APSInt(static_cast<const APInt &>(*this) + RHS, IsUnsigned); |
293 | } |
294 | APSInt operator-(const APSInt &RHS) const { |
295 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
296 | return APSInt(static_cast<const APInt &>(*this) - RHS, IsUnsigned); |
297 | } |
298 | APSInt operator~() const { |
299 | return APSInt(~static_cast<const APInt &>(*this), IsUnsigned); |
300 | } |
301 | |
302 | /// Return the APSInt representing the maximum integer value with the given |
303 | /// bit width and signedness. |
304 | static APSInt getMaxValue(uint32_t numBits, bool Unsigned) { |
305 | return APSInt(Unsigned ? APInt::getMaxValue(numBits) |
306 | : APInt::getSignedMaxValue(numBits), |
307 | Unsigned); |
308 | } |
309 | |
310 | /// Return the APSInt representing the minimum integer value with the given |
311 | /// bit width and signedness. |
312 | static APSInt getMinValue(uint32_t numBits, bool Unsigned) { |
313 | return APSInt(Unsigned ? APInt::getMinValue(numBits) |
314 | : APInt::getSignedMinValue(numBits), |
315 | Unsigned); |
316 | } |
317 | |
318 | /// Determine if two APSInts have the same value, zero- or |
319 | /// sign-extending as needed. |
320 | static bool isSameValue(const APSInt &I1, const APSInt &I2) { |
321 | return !compareValues(I1, I2); |
322 | } |
323 | |
324 | /// Compare underlying values of two numbers. |
325 | static int compareValues(const APSInt &I1, const APSInt &I2) { |
326 | if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned()) |
327 | return I1.IsUnsigned ? I1.compare(RHS: I2) : I1.compareSigned(RHS: I2); |
328 | |
329 | // Check for a bit-width mismatch. |
330 | if (I1.getBitWidth() > I2.getBitWidth()) |
331 | return compareValues(I1, I2: I2.extend(width: I1.getBitWidth())); |
332 | if (I2.getBitWidth() > I1.getBitWidth()) |
333 | return compareValues(I1: I1.extend(width: I2.getBitWidth()), I2); |
334 | |
335 | // We have a signedness mismatch. Check for negative values and do an |
336 | // unsigned compare if both are positive. |
337 | if (I1.isSigned()) { |
338 | assert(!I2.isSigned() && "Expected signed mismatch" ); |
339 | if (I1.isNegative()) |
340 | return -1; |
341 | } else { |
342 | assert(I2.isSigned() && "Expected signed mismatch" ); |
343 | if (I2.isNegative()) |
344 | return 1; |
345 | } |
346 | |
347 | return I1.compare(RHS: I2); |
348 | } |
349 | |
350 | static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); } |
351 | static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); } |
352 | |
353 | /// Used to insert APSInt objects, or objects that contain APSInt objects, |
354 | /// into FoldingSets. |
355 | LLVM_ABI void Profile(FoldingSetNodeID &ID) const; |
356 | }; |
357 | |
358 | inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; } |
359 | inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; } |
360 | inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; } |
361 | inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; } |
362 | inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; } |
363 | inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; } |
364 | |
365 | inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) { |
366 | I.print(OS, isSigned: I.isSigned()); |
367 | return OS; |
368 | } |
369 | |
370 | /// Provide DenseMapInfo for APSInt, using the DenseMapInfo for APInt. |
371 | template <> struct DenseMapInfo<APSInt, void> { |
372 | static inline APSInt getEmptyKey() { |
373 | return APSInt(DenseMapInfo<APInt, void>::getEmptyKey()); |
374 | } |
375 | |
376 | static inline APSInt getTombstoneKey() { |
377 | return APSInt(DenseMapInfo<APInt, void>::getTombstoneKey()); |
378 | } |
379 | |
380 | static unsigned getHashValue(const APSInt &Key) { |
381 | return DenseMapInfo<APInt, void>::getHashValue(Key); |
382 | } |
383 | |
384 | static bool isEqual(const APSInt &LHS, const APSInt &RHS) { |
385 | return LHS.getBitWidth() == RHS.getBitWidth() && |
386 | LHS.isUnsigned() == RHS.isUnsigned() && LHS == RHS; |
387 | } |
388 | }; |
389 | |
390 | } // end namespace llvm |
391 | |
392 | #endif |
393 | |