| 1 | //===- ConstraintManager.cpp - Constraints on symbolic values. ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defined the interface to manage constraints on symbolic values. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h" |
| 14 | #include "clang/AST/Type.h" |
| 15 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| 16 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 17 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| 18 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| 19 | #include "llvm/ADT/ScopeExit.h" |
| 20 | |
| 21 | using namespace clang; |
| 22 | using namespace ento; |
| 23 | |
| 24 | ConstraintManager::~ConstraintManager() = default; |
| 25 | |
| 26 | static DefinedSVal getLocFromSymbol(const ProgramStateRef &State, |
| 27 | SymbolRef Sym) { |
| 28 | const MemRegion *R = |
| 29 | State->getStateManager().getRegionManager().getSymbolicRegion(Sym); |
| 30 | return loc::MemRegionVal(R); |
| 31 | } |
| 32 | |
| 33 | ConditionTruthVal ConstraintManager::checkNull(ProgramStateRef State, |
| 34 | SymbolRef Sym) { |
| 35 | QualType Ty = Sym->getType(); |
| 36 | DefinedSVal V = Loc::isLocType(T: Ty) ? getLocFromSymbol(State, Sym) |
| 37 | : nonloc::SymbolVal(Sym); |
| 38 | const ProgramStatePair &P = assumeDual(State, Cond: V); |
| 39 | if (P.first && !P.second) |
| 40 | return ConditionTruthVal(false); |
| 41 | if (!P.first && P.second) |
| 42 | return ConditionTruthVal(true); |
| 43 | return {}; |
| 44 | } |
| 45 | |
| 46 | template <typename AssumeFunction> |
| 47 | ConstraintManager::ProgramStatePair |
| 48 | ConstraintManager::assumeDualImpl(ProgramStateRef &State, |
| 49 | AssumeFunction &Assume) { |
| 50 | if (LLVM_UNLIKELY(State->isPosteriorlyOverconstrained())) |
| 51 | return {State, State}; |
| 52 | |
| 53 | // Assume functions might recurse (see `reAssume` or `tryRearrange`). During |
| 54 | // the recursion the State might not change anymore, that means we reached a |
| 55 | // fixpoint. |
| 56 | // We avoid infinite recursion of assume calls by checking already visited |
| 57 | // States on the stack of assume function calls. |
| 58 | const ProgramState *RawSt = State.get(); |
| 59 | if (LLVM_UNLIKELY(AssumeStack.contains(RawSt))) |
| 60 | return {State, State}; |
| 61 | AssumeStack.push(S: RawSt); |
| 62 | auto AssumeStackBuilder = |
| 63 | llvm::make_scope_exit([this]() { AssumeStack.pop(); }); |
| 64 | |
| 65 | ProgramStateRef StTrue = Assume(true); |
| 66 | |
| 67 | if (!StTrue) { |
| 68 | ProgramStateRef StFalse = Assume(false); |
| 69 | if (LLVM_UNLIKELY(!StFalse)) { // both infeasible |
| 70 | ProgramStateRef StInfeasible = State->cloneAsPosteriorlyOverconstrained(); |
| 71 | assert(StInfeasible->isPosteriorlyOverconstrained()); |
| 72 | // Checkers might rely on the API contract that both returned states |
| 73 | // cannot be null. Thus, we return StInfeasible for both branches because |
| 74 | // it might happen that a Checker uncoditionally uses one of them if the |
| 75 | // other is a nullptr. This may also happen with the non-dual and |
| 76 | // adjacent `assume(true)` and `assume(false)` calls. By implementing |
| 77 | // assume in therms of assumeDual, we can keep our API contract there as |
| 78 | // well. |
| 79 | return ProgramStatePair(StInfeasible, StInfeasible); |
| 80 | } |
| 81 | return ProgramStatePair(nullptr, StFalse); |
| 82 | } |
| 83 | |
| 84 | ProgramStateRef StFalse = Assume(false); |
| 85 | if (!StFalse) { |
| 86 | return ProgramStatePair(StTrue, nullptr); |
| 87 | } |
| 88 | |
| 89 | return ProgramStatePair(StTrue, StFalse); |
| 90 | } |
| 91 | |
| 92 | ConstraintManager::ProgramStatePair |
| 93 | ConstraintManager::assumeDual(ProgramStateRef State, DefinedSVal Cond) { |
| 94 | auto AssumeFun = [&, Cond](bool Assumption) { |
| 95 | return assumeInternal(state: State, Cond, Assumption); |
| 96 | }; |
| 97 | return assumeDualImpl(State, Assume&: AssumeFun); |
| 98 | } |
| 99 | |
| 100 | ConstraintManager::ProgramStatePair |
| 101 | ConstraintManager::assumeInclusiveRangeDual(ProgramStateRef State, NonLoc Value, |
| 102 | const llvm::APSInt &From, |
| 103 | const llvm::APSInt &To) { |
| 104 | auto AssumeFun = [&](bool Assumption) { |
| 105 | return assumeInclusiveRangeInternal(State, Value, From, To, InBound: Assumption); |
| 106 | }; |
| 107 | return assumeDualImpl(State, Assume&: AssumeFun); |
| 108 | } |
| 109 | |
| 110 | ProgramStateRef ConstraintManager::assume(ProgramStateRef State, |
| 111 | DefinedSVal Cond, bool Assumption) { |
| 112 | ConstraintManager::ProgramStatePair R = assumeDual(State, Cond); |
| 113 | return Assumption ? R.first : R.second; |
| 114 | } |
| 115 | |
| 116 | ProgramStateRef |
| 117 | ConstraintManager::assumeInclusiveRange(ProgramStateRef State, NonLoc Value, |
| 118 | const llvm::APSInt &From, |
| 119 | const llvm::APSInt &To, bool InBound) { |
| 120 | ConstraintManager::ProgramStatePair R = |
| 121 | assumeInclusiveRangeDual(State, Value, From, To); |
| 122 | return InBound ? R.first : R.second; |
| 123 | } |
| 124 | |