| 1 | //== RangedConstraintManager.cpp --------------------------------*- C++ -*--==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines RangedConstraintManager, a class that provides a |
| 10 | // range-based constraint manager interface. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 15 | #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" |
| 16 | |
| 17 | namespace clang { |
| 18 | |
| 19 | namespace ento { |
| 20 | |
| 21 | RangedConstraintManager::~RangedConstraintManager() {} |
| 22 | |
| 23 | ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State, |
| 24 | SymbolRef Sym, |
| 25 | bool Assumption) { |
| 26 | Sym = simplify(State, Sym); |
| 27 | |
| 28 | // Handle SymbolData. |
| 29 | if (isa<SymbolData>(Val: Sym)) |
| 30 | return assumeSymUnsupported(State, Sym, Assumption); |
| 31 | |
| 32 | // Handle symbolic expression. |
| 33 | if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Val: Sym)) { |
| 34 | // We can only simplify expressions whose RHS is an integer. |
| 35 | |
| 36 | BinaryOperator::Opcode op = SIE->getOpcode(); |
| 37 | if (BinaryOperator::isComparisonOp(Opc: op) && op != BO_Cmp) { |
| 38 | if (!Assumption) |
| 39 | op = BinaryOperator::negateComparisonOp(Opc: op); |
| 40 | |
| 41 | return assumeSymRel(State, Sym: SIE->getLHS(), op, Int: SIE->getRHS()); |
| 42 | } |
| 43 | |
| 44 | // Handle adjustment with non-comparison ops. |
| 45 | const llvm::APSInt &Zero = getBasicVals().getValue(X: 0, T: SIE->getType()); |
| 46 | return assumeSymRel(State, Sym: SIE, op: (Assumption ? BO_NE : BO_EQ), Int: Zero); |
| 47 | } |
| 48 | |
| 49 | if (const auto *SSE = dyn_cast<SymSymExpr>(Val: Sym)) { |
| 50 | BinaryOperator::Opcode Op = SSE->getOpcode(); |
| 51 | if (BinaryOperator::isComparisonOp(Opc: Op)) { |
| 52 | |
| 53 | // We convert equality operations for pointers only. |
| 54 | if (Loc::isLocType(T: SSE->getLHS()->getType()) && |
| 55 | Loc::isLocType(T: SSE->getRHS()->getType())) { |
| 56 | // Translate "a != b" to "(b - a) != 0". |
| 57 | // We invert the order of the operands as a heuristic for how loop |
| 58 | // conditions are usually written ("begin != end") as compared to length |
| 59 | // calculations ("end - begin"). The more correct thing to do would be |
| 60 | // to canonicalize "a - b" and "b - a", which would allow us to treat |
| 61 | // "a != b" and "b != a" the same. |
| 62 | |
| 63 | SymbolManager &SymMgr = getSymbolManager(); |
| 64 | QualType DiffTy = SymMgr.getContext().getPointerDiffType(); |
| 65 | SymbolRef Subtraction = SymMgr.acquire<SymSymExpr>( |
| 66 | args: SSE->getRHS(), args: BO_Sub, args: SSE->getLHS(), args&: DiffTy); |
| 67 | |
| 68 | const llvm::APSInt &Zero = getBasicVals().getValue(X: 0, T: DiffTy); |
| 69 | Op = BinaryOperator::reverseComparisonOp(Opc: Op); |
| 70 | if (!Assumption) |
| 71 | Op = BinaryOperator::negateComparisonOp(Opc: Op); |
| 72 | return assumeSymRel(State, Sym: Subtraction, op: Op, Int: Zero); |
| 73 | } |
| 74 | |
| 75 | if (BinaryOperator::isEqualityOp(Opc: Op)) { |
| 76 | SymbolManager &SymMgr = getSymbolManager(); |
| 77 | |
| 78 | QualType ExprType = SSE->getType(); |
| 79 | SymbolRef CanonicalEquality = SymMgr.acquire<SymSymExpr>( |
| 80 | args: SSE->getLHS(), args: BO_EQ, args: SSE->getRHS(), args&: ExprType); |
| 81 | |
| 82 | bool WasEqual = SSE->getOpcode() == BO_EQ; |
| 83 | bool IsExpectedEqual = WasEqual == Assumption; |
| 84 | |
| 85 | const llvm::APSInt &Zero = getBasicVals().getValue(X: 0, T: ExprType); |
| 86 | |
| 87 | if (IsExpectedEqual) { |
| 88 | return assumeSymNE(State, Sym: CanonicalEquality, V: Zero, Adjustment: Zero); |
| 89 | } |
| 90 | |
| 91 | return assumeSymEQ(State, Sym: CanonicalEquality, V: Zero, Adjustment: Zero); |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // If we get here, there's nothing else we can do but treat the symbol as |
| 97 | // opaque. |
| 98 | return assumeSymUnsupported(State, Sym, Assumption); |
| 99 | } |
| 100 | |
| 101 | ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange( |
| 102 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
| 103 | const llvm::APSInt &To, bool InRange) { |
| 104 | |
| 105 | Sym = simplify(State, Sym); |
| 106 | |
| 107 | // Get the type used for calculating wraparound. |
| 108 | BasicValueFactory &BVF = getBasicVals(); |
| 109 | APSIntType WraparoundType = BVF.getAPSIntType(T: Sym->getType()); |
| 110 | |
| 111 | llvm::APSInt Adjustment = WraparoundType.getZeroValue(); |
| 112 | SymbolRef AdjustedSym = Sym; |
| 113 | computeAdjustment(Sym&: AdjustedSym, Adjustment); |
| 114 | |
| 115 | // Convert the right-hand side integer as necessary. |
| 116 | APSIntType ComparisonType = std::max(a: WraparoundType, b: APSIntType(From)); |
| 117 | llvm::APSInt ConvertedFrom = ComparisonType.convert(Value: From); |
| 118 | llvm::APSInt ConvertedTo = ComparisonType.convert(Value: To); |
| 119 | |
| 120 | // Prefer unsigned comparisons. |
| 121 | if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && |
| 122 | ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) |
| 123 | Adjustment.setIsSigned(false); |
| 124 | |
| 125 | if (InRange) |
| 126 | return assumeSymWithinInclusiveRange(State, Sym: AdjustedSym, From: ConvertedFrom, |
| 127 | To: ConvertedTo, Adjustment); |
| 128 | return assumeSymOutsideInclusiveRange(State, Sym: AdjustedSym, From: ConvertedFrom, |
| 129 | To: ConvertedTo, Adjustment); |
| 130 | } |
| 131 | |
| 132 | ProgramStateRef |
| 133 | RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State, |
| 134 | SymbolRef Sym, bool Assumption) { |
| 135 | Sym = simplify(State, Sym); |
| 136 | |
| 137 | BasicValueFactory &BVF = getBasicVals(); |
| 138 | QualType T = Sym->getType(); |
| 139 | |
| 140 | // Non-integer types are not supported. |
| 141 | if (!T->isIntegralOrEnumerationType()) |
| 142 | return State; |
| 143 | |
| 144 | // Reverse the operation and add directly to state. |
| 145 | const llvm::APSInt &Zero = BVF.getValue(X: 0, T); |
| 146 | if (Assumption) |
| 147 | return assumeSymNE(State, Sym, V: Zero, Adjustment: Zero); |
| 148 | else |
| 149 | return assumeSymEQ(State, Sym, V: Zero, Adjustment: Zero); |
| 150 | } |
| 151 | |
| 152 | ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State, |
| 153 | SymbolRef Sym, |
| 154 | BinaryOperator::Opcode Op, |
| 155 | const llvm::APSInt &Int) { |
| 156 | assert(BinaryOperator::isComparisonOp(Op) && |
| 157 | "Non-comparison ops should be rewritten as comparisons to zero." ); |
| 158 | |
| 159 | // Simplification: translate an assume of a constraint of the form |
| 160 | // "(exp comparison_op expr) != 0" to true into an assume of |
| 161 | // "exp comparison_op expr" to true. (And similarly, an assume of the form |
| 162 | // "(exp comparison_op expr) == 0" to true into an assume of |
| 163 | // "exp comparison_op expr" to false.) |
| 164 | if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) { |
| 165 | if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Val: Sym)) |
| 166 | if (BinaryOperator::isComparisonOp(Opc: SE->getOpcode())) |
| 167 | return assumeSym(State, Sym, Assumption: (Op == BO_NE ? true : false)); |
| 168 | } |
| 169 | |
| 170 | // Get the type used for calculating wraparound. |
| 171 | BasicValueFactory &BVF = getBasicVals(); |
| 172 | APSIntType WraparoundType = BVF.getAPSIntType(T: Sym->getType()); |
| 173 | |
| 174 | // We only handle simple comparisons of the form "$sym == constant" |
| 175 | // or "($sym+constant1) == constant2". |
| 176 | // The adjustment is "constant1" in the above expression. It's used to |
| 177 | // "slide" the solution range around for modular arithmetic. For example, |
| 178 | // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which |
| 179 | // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to |
| 180 | // the subclasses of SimpleConstraintManager to handle the adjustment. |
| 181 | llvm::APSInt Adjustment = WraparoundType.getZeroValue(); |
| 182 | computeAdjustment(Sym, Adjustment); |
| 183 | |
| 184 | // Convert the right-hand side integer as necessary. |
| 185 | APSIntType ComparisonType = std::max(a: WraparoundType, b: APSIntType(Int)); |
| 186 | llvm::APSInt ConvertedInt = ComparisonType.convert(Value: Int); |
| 187 | |
| 188 | // Prefer unsigned comparisons. |
| 189 | if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && |
| 190 | ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) |
| 191 | Adjustment.setIsSigned(false); |
| 192 | |
| 193 | switch (Op) { |
| 194 | default: |
| 195 | llvm_unreachable("invalid operation not caught by assertion above" ); |
| 196 | |
| 197 | case BO_EQ: |
| 198 | return assumeSymEQ(State, Sym, V: ConvertedInt, Adjustment); |
| 199 | |
| 200 | case BO_NE: |
| 201 | return assumeSymNE(State, Sym, V: ConvertedInt, Adjustment); |
| 202 | |
| 203 | case BO_GT: |
| 204 | return assumeSymGT(State, Sym, V: ConvertedInt, Adjustment); |
| 205 | |
| 206 | case BO_GE: |
| 207 | return assumeSymGE(State, Sym, V: ConvertedInt, Adjustment); |
| 208 | |
| 209 | case BO_LT: |
| 210 | return assumeSymLT(State, Sym, V: ConvertedInt, Adjustment); |
| 211 | |
| 212 | case BO_LE: |
| 213 | return assumeSymLE(State, Sym, V: ConvertedInt, Adjustment); |
| 214 | } // end switch |
| 215 | } |
| 216 | |
| 217 | void RangedConstraintManager::computeAdjustment(SymbolRef &Sym, |
| 218 | llvm::APSInt &Adjustment) { |
| 219 | // Is it a "($sym+constant1)" expression? |
| 220 | if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Val: Sym)) { |
| 221 | BinaryOperator::Opcode Op = SE->getOpcode(); |
| 222 | if (Op == BO_Add || Op == BO_Sub) { |
| 223 | Sym = SE->getLHS(); |
| 224 | Adjustment = APSIntType(Adjustment).convert(Value: SE->getRHS()); |
| 225 | |
| 226 | // Don't forget to negate the adjustment if it's being subtracted. |
| 227 | // This should happen /after/ promotion, in case the value being |
| 228 | // subtracted is, say, CHAR_MIN, and the promoted type is 'int'. |
| 229 | if (Op == BO_Sub) |
| 230 | Adjustment = -Adjustment; |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym) { |
| 236 | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
| 237 | return SVB.simplifySVal(State, Val: SVB.makeSymbolVal(Sym)); |
| 238 | } |
| 239 | |
| 240 | SymbolRef simplify(ProgramStateRef State, SymbolRef Sym) { |
| 241 | SVal SimplifiedVal = simplifyToSVal(State, Sym); |
| 242 | if (SymbolRef SimplifiedSym = SimplifiedVal.getAsSymbol()) |
| 243 | return SimplifiedSym; |
| 244 | return Sym; |
| 245 | } |
| 246 | |
| 247 | } // end of namespace ento |
| 248 | } // end of namespace clang |
| 249 | |