| 1 | //===-- asan_allocator.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of AddressSanitizer, an address sanity checker. |
| 10 | // |
| 11 | // Implementation of ASan's memory allocator, 2-nd version. |
| 12 | // This variant uses the allocator from sanitizer_common, i.e. the one shared |
| 13 | // with ThreadSanitizer and MemorySanitizer. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "asan_allocator.h" |
| 18 | |
| 19 | #include "asan_internal.h" |
| 20 | #include "asan_mapping.h" |
| 21 | #include "asan_poisoning.h" |
| 22 | #include "asan_report.h" |
| 23 | #include "asan_stack.h" |
| 24 | #include "asan_suppressions.h" |
| 25 | #include "asan_thread.h" |
| 26 | #include "lsan/lsan_common.h" |
| 27 | #include "sanitizer_common/sanitizer_allocator_checks.h" |
| 28 | #include "sanitizer_common/sanitizer_allocator_interface.h" |
| 29 | #include "sanitizer_common/sanitizer_common.h" |
| 30 | #include "sanitizer_common/sanitizer_errno.h" |
| 31 | #include "sanitizer_common/sanitizer_flags.h" |
| 32 | #include "sanitizer_common/sanitizer_internal_defs.h" |
| 33 | #include "sanitizer_common/sanitizer_list.h" |
| 34 | #include "sanitizer_common/sanitizer_quarantine.h" |
| 35 | #include "sanitizer_common/sanitizer_stackdepot.h" |
| 36 | |
| 37 | namespace __asan { |
| 38 | |
| 39 | // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. |
| 40 | // We use adaptive redzones: for larger allocation larger redzones are used. |
| 41 | static u32 RZLog2Size(u32 rz_log) { |
| 42 | CHECK_LT(rz_log, 8); |
| 43 | return 16 << rz_log; |
| 44 | } |
| 45 | |
| 46 | static u32 RZSize2Log(u32 rz_size) { |
| 47 | CHECK_GE(rz_size, 16); |
| 48 | CHECK_LE(rz_size, 2048); |
| 49 | CHECK(IsPowerOfTwo(rz_size)); |
| 50 | u32 res = Log2(x: rz_size) - 4; |
| 51 | CHECK_EQ(rz_size, RZLog2Size(res)); |
| 52 | return res; |
| 53 | } |
| 54 | |
| 55 | static AsanAllocator &get_allocator(); |
| 56 | |
| 57 | static void AtomicContextStore(volatile atomic_uint64_t *atomic_context, |
| 58 | u32 tid, u32 stack) { |
| 59 | u64 context = tid; |
| 60 | context <<= 32; |
| 61 | context += stack; |
| 62 | atomic_store(a: atomic_context, v: context, mo: memory_order_relaxed); |
| 63 | } |
| 64 | |
| 65 | static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context, |
| 66 | u32 &tid, u32 &stack) { |
| 67 | u64 context = atomic_load(a: atomic_context, mo: memory_order_relaxed); |
| 68 | stack = context; |
| 69 | context >>= 32; |
| 70 | tid = context; |
| 71 | } |
| 72 | |
| 73 | // The memory chunk allocated from the underlying allocator looks like this: |
| 74 | // L L L L L L H H U U U U U U R R |
| 75 | // L -- left redzone words (0 or more bytes) |
| 76 | // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. |
| 77 | // U -- user memory. |
| 78 | // R -- right redzone (0 or more bytes) |
| 79 | // ChunkBase consists of ChunkHeader and other bytes that overlap with user |
| 80 | // memory. |
| 81 | |
| 82 | // If the left redzone is greater than the ChunkHeader size we store a magic |
| 83 | // value in the first uptr word of the memory block and store the address of |
| 84 | // ChunkBase in the next uptr. |
| 85 | // M B L L L L L L L L L H H U U U U U U |
| 86 | // | ^ |
| 87 | // ---------------------| |
| 88 | // M -- magic value kAllocBegMagic |
| 89 | // B -- address of ChunkHeader pointing to the first 'H' |
| 90 | |
| 91 | class { |
| 92 | public: |
| 93 | atomic_uint8_t ; |
| 94 | u8 : 2; |
| 95 | u8 : 2; |
| 96 | |
| 97 | // align < 8 -> 0 |
| 98 | // else -> log2(min(align, 512)) - 2 |
| 99 | u8 : 3; |
| 100 | |
| 101 | private: |
| 102 | u16 ; |
| 103 | u32 ; |
| 104 | atomic_uint64_t ; |
| 105 | |
| 106 | public: |
| 107 | uptr () const { |
| 108 | static_assert(sizeof(user_requested_size_lo) == 4, |
| 109 | "Expression below requires this" ); |
| 110 | return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) + |
| 111 | user_requested_size_lo; |
| 112 | } |
| 113 | |
| 114 | void (uptr size) { |
| 115 | user_requested_size_lo = size; |
| 116 | static_assert(sizeof(user_requested_size_lo) == 4, |
| 117 | "Expression below requires this" ); |
| 118 | user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32); |
| 119 | CHECK_EQ(UsedSize(), size); |
| 120 | } |
| 121 | |
| 122 | void (u32 tid, u32 stack) { |
| 123 | AtomicContextStore(atomic_context: &alloc_context_id, tid, stack); |
| 124 | } |
| 125 | |
| 126 | void (u32 &tid, u32 &stack) const { |
| 127 | AtomicContextLoad(atomic_context: &alloc_context_id, tid, stack); |
| 128 | } |
| 129 | }; |
| 130 | |
| 131 | class ChunkBase : public ChunkHeader { |
| 132 | atomic_uint64_t free_context_id; |
| 133 | |
| 134 | public: |
| 135 | void SetFreeContext(u32 tid, u32 stack) { |
| 136 | AtomicContextStore(atomic_context: &free_context_id, tid, stack); |
| 137 | } |
| 138 | |
| 139 | void GetFreeContext(u32 &tid, u32 &stack) const { |
| 140 | AtomicContextLoad(atomic_context: &free_context_id, tid, stack); |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | static const uptr = sizeof(ChunkHeader); |
| 145 | static const uptr = sizeof(ChunkBase) - kChunkHeaderSize; |
| 146 | COMPILER_CHECK(kChunkHeaderSize == 16); |
| 147 | COMPILER_CHECK(kChunkHeader2Size <= 16); |
| 148 | |
| 149 | enum { |
| 150 | // Either just allocated by underlying allocator, but AsanChunk is not yet |
| 151 | // ready, or almost returned to undelying allocator and AsanChunk is already |
| 152 | // meaningless. |
| 153 | CHUNK_INVALID = 0, |
| 154 | // The chunk is allocated and not yet freed. |
| 155 | CHUNK_ALLOCATED = 2, |
| 156 | // The chunk was freed and put into quarantine zone. |
| 157 | CHUNK_QUARANTINE = 3, |
| 158 | }; |
| 159 | |
| 160 | class AsanChunk : public ChunkBase { |
| 161 | public: |
| 162 | uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } |
| 163 | bool AddrIsInside(uptr addr) { |
| 164 | return (addr >= Beg()) && (addr < Beg() + UsedSize()); |
| 165 | } |
| 166 | }; |
| 167 | |
| 168 | class { |
| 169 | static constexpr uptr = |
| 170 | FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); |
| 171 | atomic_uintptr_t ; |
| 172 | AsanChunk *; |
| 173 | |
| 174 | public: |
| 175 | AsanChunk *() const { |
| 176 | return atomic_load(a: &magic, mo: memory_order_acquire) == kAllocBegMagic |
| 177 | ? chunk_header |
| 178 | : nullptr; |
| 179 | } |
| 180 | |
| 181 | void (AsanChunk *p) { |
| 182 | if (p) { |
| 183 | chunk_header = p; |
| 184 | atomic_store(a: &magic, v: kAllocBegMagic, mo: memory_order_release); |
| 185 | return; |
| 186 | } |
| 187 | |
| 188 | uptr old = kAllocBegMagic; |
| 189 | if (!atomic_compare_exchange_strong(a: &magic, cmp: &old, xchg: 0, |
| 190 | mo: memory_order_release)) { |
| 191 | CHECK_EQ(old, kAllocBegMagic); |
| 192 | } |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | static void FillChunk(AsanChunk *m) { |
| 197 | // FIXME: Use ReleaseMemoryPagesToOS. |
| 198 | Flags &fl = *flags(); |
| 199 | |
| 200 | if (fl.max_free_fill_size > 0) { |
| 201 | // We have to skip the chunk header, it contains free_context_id. |
| 202 | uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; |
| 203 | if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. |
| 204 | uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; |
| 205 | size_to_fill = Min(a: size_to_fill, b: (uptr)fl.max_free_fill_size); |
| 206 | REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | struct QuarantineCallback { |
| 212 | QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) |
| 213 | : cache_(cache), |
| 214 | stack_(stack) { |
| 215 | } |
| 216 | |
| 217 | void PreQuarantine(AsanChunk *m) const { |
| 218 | FillChunk(m); |
| 219 | // Poison the region. |
| 220 | PoisonShadow(addr: m->Beg(), size: RoundUpTo(size: m->UsedSize(), ASAN_SHADOW_GRANULARITY), |
| 221 | value: kAsanHeapFreeMagic); |
| 222 | } |
| 223 | |
| 224 | void Recycle(AsanChunk *m) const { |
| 225 | void *p = get_allocator().GetBlockBegin(p: m); |
| 226 | |
| 227 | // The secondary will immediately unpoison and unmap the memory, so this |
| 228 | // branch is unnecessary. |
| 229 | if (get_allocator().FromPrimary(p)) { |
| 230 | if (p != m) { |
| 231 | // Clear the magic value, as allocator internals may overwrite the |
| 232 | // contents of deallocated chunk, confusing GetAsanChunk lookup. |
| 233 | reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr); |
| 234 | } |
| 235 | |
| 236 | u8 old_chunk_state = CHUNK_QUARANTINE; |
| 237 | if (!atomic_compare_exchange_strong(a: &m->chunk_state, cmp: &old_chunk_state, |
| 238 | xchg: CHUNK_INVALID, |
| 239 | mo: memory_order_acquire)) { |
| 240 | CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE); |
| 241 | } |
| 242 | |
| 243 | PoisonShadow(addr: m->Beg(), size: RoundUpTo(size: m->UsedSize(), ASAN_SHADOW_GRANULARITY), |
| 244 | value: kAsanHeapLeftRedzoneMagic); |
| 245 | } |
| 246 | |
| 247 | // Statistics. |
| 248 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 249 | thread_stats.real_frees++; |
| 250 | thread_stats.really_freed += m->UsedSize(); |
| 251 | |
| 252 | get_allocator().Deallocate(cache: cache_, p); |
| 253 | } |
| 254 | |
| 255 | void RecyclePassThrough(AsanChunk *m) const { |
| 256 | // Recycle for the secondary will immediately unpoison and unmap the |
| 257 | // memory, so quarantine preparation is unnecessary. |
| 258 | if (get_allocator().FromPrimary(p: m)) { |
| 259 | // The primary allocation may need pattern fill if enabled. |
| 260 | FillChunk(m); |
| 261 | } |
| 262 | Recycle(m); |
| 263 | } |
| 264 | |
| 265 | void *Allocate(uptr size) const { |
| 266 | void *res = get_allocator().Allocate(cache: cache_, size, alignment: 1); |
| 267 | // TODO(alekseys): Consider making quarantine OOM-friendly. |
| 268 | if (UNLIKELY(!res)) |
| 269 | ReportOutOfMemory(requested_size: size, stack: stack_); |
| 270 | return res; |
| 271 | } |
| 272 | |
| 273 | void Deallocate(void *p) const { get_allocator().Deallocate(cache: cache_, p); } |
| 274 | |
| 275 | private: |
| 276 | AllocatorCache* const cache_; |
| 277 | BufferedStackTrace* const stack_; |
| 278 | }; |
| 279 | |
| 280 | typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; |
| 281 | typedef AsanQuarantine::Cache QuarantineCache; |
| 282 | |
| 283 | void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { |
| 284 | PoisonShadow(addr: p, size, value: kAsanHeapLeftRedzoneMagic); |
| 285 | // Statistics. |
| 286 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 287 | thread_stats.mmaps++; |
| 288 | thread_stats.mmaped += size; |
| 289 | } |
| 290 | |
| 291 | void AsanMapUnmapCallback::OnMapSecondary(uptr p, uptr size, uptr user_begin, |
| 292 | uptr user_size) const { |
| 293 | uptr user_end = RoundDownTo(x: user_begin + user_size, ASAN_SHADOW_GRANULARITY); |
| 294 | user_begin = RoundUpTo(size: user_begin, ASAN_SHADOW_GRANULARITY); |
| 295 | // The secondary mapping will be immediately returned to user, no value |
| 296 | // poisoning that with non-zero just before unpoisoning by Allocate(). So just |
| 297 | // poison head/tail invisible to Allocate(). |
| 298 | PoisonShadow(addr: p, size: user_begin - p, value: kAsanHeapLeftRedzoneMagic); |
| 299 | PoisonShadow(addr: user_end, size: size - (user_end - p), value: kAsanHeapLeftRedzoneMagic); |
| 300 | // Statistics. |
| 301 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 302 | thread_stats.mmaps++; |
| 303 | thread_stats.mmaped += size; |
| 304 | } |
| 305 | |
| 306 | void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { |
| 307 | PoisonShadow(addr: p, size, value: 0); |
| 308 | // We are about to unmap a chunk of user memory. |
| 309 | // Mark the corresponding shadow memory as not needed. |
| 310 | FlushUnneededASanShadowMemory(p, size); |
| 311 | // Statistics. |
| 312 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 313 | thread_stats.munmaps++; |
| 314 | thread_stats.munmaped += size; |
| 315 | } |
| 316 | |
| 317 | // We can not use THREADLOCAL because it is not supported on some of the |
| 318 | // platforms we care about (OSX 10.6, Android). |
| 319 | // static THREADLOCAL AllocatorCache cache; |
| 320 | AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { |
| 321 | CHECK(ms); |
| 322 | return &ms->allocator_cache; |
| 323 | } |
| 324 | |
| 325 | QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { |
| 326 | CHECK(ms); |
| 327 | CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); |
| 328 | return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); |
| 329 | } |
| 330 | |
| 331 | void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { |
| 332 | quarantine_size_mb = f->quarantine_size_mb; |
| 333 | thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; |
| 334 | min_redzone = f->redzone; |
| 335 | max_redzone = f->max_redzone; |
| 336 | may_return_null = cf->allocator_may_return_null; |
| 337 | alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; |
| 338 | release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; |
| 339 | } |
| 340 | |
| 341 | void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { |
| 342 | f->quarantine_size_mb = quarantine_size_mb; |
| 343 | f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; |
| 344 | f->redzone = min_redzone; |
| 345 | f->max_redzone = max_redzone; |
| 346 | cf->allocator_may_return_null = may_return_null; |
| 347 | f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; |
| 348 | cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; |
| 349 | } |
| 350 | |
| 351 | struct Allocator { |
| 352 | static const uptr kMaxAllowedMallocSize = |
| 353 | FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); |
| 354 | |
| 355 | AsanAllocator allocator; |
| 356 | AsanQuarantine quarantine; |
| 357 | StaticSpinMutex fallback_mutex; |
| 358 | AllocatorCache fallback_allocator_cache; |
| 359 | QuarantineCache fallback_quarantine_cache; |
| 360 | |
| 361 | uptr max_user_defined_malloc_size; |
| 362 | |
| 363 | // ------------------- Options -------------------------- |
| 364 | atomic_uint16_t min_redzone; |
| 365 | atomic_uint16_t max_redzone; |
| 366 | atomic_uint8_t alloc_dealloc_mismatch; |
| 367 | |
| 368 | // ------------------- Initialization ------------------------ |
| 369 | explicit Allocator(LinkerInitialized) |
| 370 | : quarantine(LINKER_INITIALIZED), |
| 371 | fallback_quarantine_cache(LINKER_INITIALIZED) {} |
| 372 | |
| 373 | void CheckOptions(const AllocatorOptions &options) const { |
| 374 | CHECK_GE(options.min_redzone, 16); |
| 375 | CHECK_GE(options.max_redzone, options.min_redzone); |
| 376 | CHECK_LE(options.max_redzone, 2048); |
| 377 | CHECK(IsPowerOfTwo(options.min_redzone)); |
| 378 | CHECK(IsPowerOfTwo(options.max_redzone)); |
| 379 | } |
| 380 | |
| 381 | void SharedInitCode(const AllocatorOptions &options) { |
| 382 | CheckOptions(options); |
| 383 | quarantine.Init(size: (uptr)options.quarantine_size_mb << 20, |
| 384 | cache_size: (uptr)options.thread_local_quarantine_size_kb << 10); |
| 385 | atomic_store(a: &alloc_dealloc_mismatch, v: options.alloc_dealloc_mismatch, |
| 386 | mo: memory_order_release); |
| 387 | atomic_store(a: &min_redzone, v: options.min_redzone, mo: memory_order_release); |
| 388 | atomic_store(a: &max_redzone, v: options.max_redzone, mo: memory_order_release); |
| 389 | } |
| 390 | |
| 391 | void InitLinkerInitialized(const AllocatorOptions &options) { |
| 392 | SetAllocatorMayReturnNull(options.may_return_null); |
| 393 | allocator.InitLinkerInitialized(release_to_os_interval_ms: options.release_to_os_interval_ms); |
| 394 | SharedInitCode(options); |
| 395 | max_user_defined_malloc_size = common_flags()->max_allocation_size_mb |
| 396 | ? common_flags()->max_allocation_size_mb |
| 397 | << 20 |
| 398 | : kMaxAllowedMallocSize; |
| 399 | } |
| 400 | |
| 401 | void RePoisonChunk(uptr chunk) { |
| 402 | // This could be a user-facing chunk (with redzones), or some internal |
| 403 | // housekeeping chunk, like TransferBatch. Start by assuming the former. |
| 404 | AsanChunk *ac = GetAsanChunk(alloc_beg: (void *)chunk); |
| 405 | uptr allocated_size = allocator.GetActuallyAllocatedSize(p: (void *)chunk); |
| 406 | if (ac && atomic_load(a: &ac->chunk_state, mo: memory_order_acquire) == |
| 407 | CHUNK_ALLOCATED) { |
| 408 | uptr beg = ac->Beg(); |
| 409 | uptr end = ac->Beg() + ac->UsedSize(); |
| 410 | uptr chunk_end = chunk + allocated_size; |
| 411 | if (chunk < beg && beg < end && end <= chunk_end) { |
| 412 | // Looks like a valid AsanChunk in use, poison redzones only. |
| 413 | PoisonShadow(addr: chunk, size: beg - chunk, value: kAsanHeapLeftRedzoneMagic); |
| 414 | uptr end_aligned_down = RoundDownTo(x: end, ASAN_SHADOW_GRANULARITY); |
| 415 | FastPoisonShadowPartialRightRedzone( |
| 416 | aligned_addr: end_aligned_down, size: end - end_aligned_down, |
| 417 | redzone_size: chunk_end - end_aligned_down, value: kAsanHeapLeftRedzoneMagic); |
| 418 | return; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // This is either not an AsanChunk or freed or quarantined AsanChunk. |
| 423 | // In either case, poison everything. |
| 424 | PoisonShadow(addr: chunk, size: allocated_size, value: kAsanHeapLeftRedzoneMagic); |
| 425 | } |
| 426 | |
| 427 | // Apply provided AllocatorOptions to an Allocator |
| 428 | void ApplyOptions(const AllocatorOptions &options) { |
| 429 | SetAllocatorMayReturnNull(options.may_return_null); |
| 430 | allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); |
| 431 | SharedInitCode(options); |
| 432 | } |
| 433 | |
| 434 | void ReInitialize(const AllocatorOptions &options) { |
| 435 | ApplyOptions(options); |
| 436 | |
| 437 | // Poison all existing allocation's redzones. |
| 438 | if (CanPoisonMemory()) { |
| 439 | allocator.ForceLock(); |
| 440 | allocator.ForEachChunk( |
| 441 | callback: [](uptr chunk, void *alloc) { |
| 442 | ((Allocator *)alloc)->RePoisonChunk(chunk); |
| 443 | }, |
| 444 | arg: this); |
| 445 | allocator.ForceUnlock(); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | void GetOptions(AllocatorOptions *options) const { |
| 450 | options->quarantine_size_mb = quarantine.GetMaxSize() >> 20; |
| 451 | options->thread_local_quarantine_size_kb = |
| 452 | quarantine.GetMaxCacheSize() >> 10; |
| 453 | options->min_redzone = atomic_load(a: &min_redzone, mo: memory_order_acquire); |
| 454 | options->max_redzone = atomic_load(a: &max_redzone, mo: memory_order_acquire); |
| 455 | options->may_return_null = AllocatorMayReturnNull(); |
| 456 | options->alloc_dealloc_mismatch = |
| 457 | atomic_load(a: &alloc_dealloc_mismatch, mo: memory_order_acquire); |
| 458 | options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); |
| 459 | } |
| 460 | |
| 461 | // -------------------- Helper methods. ------------------------- |
| 462 | uptr ComputeRZLog(uptr user_requested_size) { |
| 463 | u32 rz_log = user_requested_size <= 64 - 16 ? 0 |
| 464 | : user_requested_size <= 128 - 32 ? 1 |
| 465 | : user_requested_size <= 512 - 64 ? 2 |
| 466 | : user_requested_size <= 4096 - 128 ? 3 |
| 467 | : user_requested_size <= (1 << 14) - 256 ? 4 |
| 468 | : user_requested_size <= (1 << 15) - 512 ? 5 |
| 469 | : user_requested_size <= (1 << 16) - 1024 ? 6 |
| 470 | : 7; |
| 471 | u32 hdr_log = RZSize2Log(rz_size: RoundUpToPowerOfTwo(size: sizeof(ChunkHeader))); |
| 472 | u32 min_log = RZSize2Log(rz_size: atomic_load(a: &min_redzone, mo: memory_order_acquire)); |
| 473 | u32 max_log = RZSize2Log(rz_size: atomic_load(a: &max_redzone, mo: memory_order_acquire)); |
| 474 | return Min(a: Max(a: rz_log, b: Max(a: min_log, b: hdr_log)), b: Max(a: max_log, b: hdr_log)); |
| 475 | } |
| 476 | |
| 477 | static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { |
| 478 | if (user_requested_alignment < 8) |
| 479 | return 0; |
| 480 | if (user_requested_alignment > 512) |
| 481 | user_requested_alignment = 512; |
| 482 | return Log2(x: user_requested_alignment) - 2; |
| 483 | } |
| 484 | |
| 485 | static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { |
| 486 | if (user_requested_alignment_log == 0) |
| 487 | return 0; |
| 488 | return 1LL << (user_requested_alignment_log + 2); |
| 489 | } |
| 490 | |
| 491 | // We have an address between two chunks, and we want to report just one. |
| 492 | AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, |
| 493 | AsanChunk *right_chunk) { |
| 494 | if (!left_chunk) |
| 495 | return right_chunk; |
| 496 | if (!right_chunk) |
| 497 | return left_chunk; |
| 498 | // Prefer an allocated chunk over freed chunk and freed chunk |
| 499 | // over available chunk. |
| 500 | u8 left_state = atomic_load(a: &left_chunk->chunk_state, mo: memory_order_relaxed); |
| 501 | u8 right_state = |
| 502 | atomic_load(a: &right_chunk->chunk_state, mo: memory_order_relaxed); |
| 503 | if (left_state != right_state) { |
| 504 | if (left_state == CHUNK_ALLOCATED) |
| 505 | return left_chunk; |
| 506 | if (right_state == CHUNK_ALLOCATED) |
| 507 | return right_chunk; |
| 508 | if (left_state == CHUNK_QUARANTINE) |
| 509 | return left_chunk; |
| 510 | if (right_state == CHUNK_QUARANTINE) |
| 511 | return right_chunk; |
| 512 | } |
| 513 | // Same chunk_state: choose based on offset. |
| 514 | sptr l_offset = 0, r_offset = 0; |
| 515 | CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); |
| 516 | CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); |
| 517 | if (l_offset < r_offset) |
| 518 | return left_chunk; |
| 519 | return right_chunk; |
| 520 | } |
| 521 | |
| 522 | bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) { |
| 523 | AsanChunk *m = GetAsanChunkByAddr(p: addr); |
| 524 | if (!m) return false; |
| 525 | if (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != CHUNK_ALLOCATED) |
| 526 | return false; |
| 527 | if (m->Beg() != addr) return false; |
| 528 | AsanThread *t = GetCurrentThread(); |
| 529 | m->SetAllocContext(tid: t ? t->tid() : kMainTid, stack: StackDepotPut(stack: *stack)); |
| 530 | return true; |
| 531 | } |
| 532 | |
| 533 | // -------------------- Allocation/Deallocation routines --------------- |
| 534 | void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, |
| 535 | AllocType alloc_type, bool can_fill) { |
| 536 | if (UNLIKELY(!AsanInited())) |
| 537 | AsanInitFromRtl(); |
| 538 | if (UNLIKELY(IsRssLimitExceeded())) { |
| 539 | if (AllocatorMayReturnNull()) |
| 540 | return nullptr; |
| 541 | ReportRssLimitExceeded(stack); |
| 542 | } |
| 543 | Flags &fl = *flags(); |
| 544 | CHECK(stack); |
| 545 | const uptr min_alignment = ASAN_SHADOW_GRANULARITY; |
| 546 | const uptr user_requested_alignment_log = |
| 547 | ComputeUserRequestedAlignmentLog(user_requested_alignment: alignment); |
| 548 | if (alignment < min_alignment) |
| 549 | alignment = min_alignment; |
| 550 | if (size == 0) { |
| 551 | // We'd be happy to avoid allocating memory for zero-size requests, but |
| 552 | // some programs/tests depend on this behavior and assume that malloc |
| 553 | // would not return NULL even for zero-size allocations. Moreover, it |
| 554 | // looks like operator new should never return NULL, and results of |
| 555 | // consecutive "new" calls must be different even if the allocated size |
| 556 | // is zero. |
| 557 | size = 1; |
| 558 | } |
| 559 | CHECK(IsPowerOfTwo(alignment)); |
| 560 | uptr rz_log = ComputeRZLog(user_requested_size: size); |
| 561 | uptr rz_size = RZLog2Size(rz_log); |
| 562 | uptr rounded_size = RoundUpTo(size: Max(a: size, b: kChunkHeader2Size), boundary: alignment); |
| 563 | uptr needed_size = rounded_size + rz_size; |
| 564 | if (alignment > min_alignment) |
| 565 | needed_size += alignment; |
| 566 | bool from_primary = PrimaryAllocator::CanAllocate(size: needed_size, alignment); |
| 567 | // If we are allocating from the secondary allocator, there will be no |
| 568 | // automatic right redzone, so add the right redzone manually. |
| 569 | if (!from_primary) |
| 570 | needed_size += rz_size; |
| 571 | CHECK(IsAligned(needed_size, min_alignment)); |
| 572 | if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || |
| 573 | size > max_user_defined_malloc_size) { |
| 574 | if (AllocatorMayReturnNull()) { |
| 575 | Report(format: "WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n" , |
| 576 | size); |
| 577 | return nullptr; |
| 578 | } |
| 579 | uptr malloc_limit = |
| 580 | Min(a: kMaxAllowedMallocSize, b: max_user_defined_malloc_size); |
| 581 | ReportAllocationSizeTooBig(user_size: size, total_size: needed_size, max_size: malloc_limit, stack); |
| 582 | } |
| 583 | |
| 584 | AsanThread *t = GetCurrentThread(); |
| 585 | void *allocated; |
| 586 | if (t) { |
| 587 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
| 588 | allocated = allocator.Allocate(cache, size: needed_size, alignment: 8); |
| 589 | } else { |
| 590 | SpinMutexLock l(&fallback_mutex); |
| 591 | AllocatorCache *cache = &fallback_allocator_cache; |
| 592 | allocated = allocator.Allocate(cache, size: needed_size, alignment: 8); |
| 593 | } |
| 594 | if (UNLIKELY(!allocated)) { |
| 595 | SetAllocatorOutOfMemory(); |
| 596 | if (AllocatorMayReturnNull()) |
| 597 | return nullptr; |
| 598 | ReportOutOfMemory(requested_size: size, stack); |
| 599 | } |
| 600 | |
| 601 | uptr alloc_beg = reinterpret_cast<uptr>(allocated); |
| 602 | uptr alloc_end = alloc_beg + needed_size; |
| 603 | uptr user_beg = alloc_beg + rz_size; |
| 604 | if (!IsAligned(a: user_beg, alignment)) |
| 605 | user_beg = RoundUpTo(size: user_beg, boundary: alignment); |
| 606 | uptr user_end = user_beg + size; |
| 607 | CHECK_LE(user_end, alloc_end); |
| 608 | uptr chunk_beg = user_beg - kChunkHeaderSize; |
| 609 | AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
| 610 | m->alloc_type = alloc_type; |
| 611 | CHECK(size); |
| 612 | m->SetUsedSize(size); |
| 613 | m->user_requested_alignment_log = user_requested_alignment_log; |
| 614 | |
| 615 | m->SetAllocContext(tid: t ? t->tid() : kMainTid, stack: StackDepotPut(stack: *stack)); |
| 616 | |
| 617 | if (!from_primary || *(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0) { |
| 618 | // The allocator provides an unpoisoned chunk. This is possible for the |
| 619 | // secondary allocator, or if CanPoisonMemory() was false for some time, |
| 620 | // for example, due to flags()->start_disabled. Anyway, poison left and |
| 621 | // right of the block before using it for anything else. |
| 622 | uptr tail_beg = RoundUpTo(size: user_end, ASAN_SHADOW_GRANULARITY); |
| 623 | uptr tail_end = alloc_beg + allocator.GetActuallyAllocatedSize(p: allocated); |
| 624 | PoisonShadow(addr: alloc_beg, size: user_beg - alloc_beg, value: kAsanHeapLeftRedzoneMagic); |
| 625 | PoisonShadow(addr: tail_beg, size: tail_end - tail_beg, value: kAsanHeapLeftRedzoneMagic); |
| 626 | } |
| 627 | |
| 628 | uptr size_rounded_down_to_granularity = |
| 629 | RoundDownTo(x: size, ASAN_SHADOW_GRANULARITY); |
| 630 | // Unpoison the bulk of the memory region. |
| 631 | if (size_rounded_down_to_granularity) |
| 632 | PoisonShadow(addr: user_beg, size: size_rounded_down_to_granularity, value: 0); |
| 633 | // Deal with the end of the region if size is not aligned to granularity. |
| 634 | if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { |
| 635 | u8 *shadow = |
| 636 | (u8 *)MemToShadow(p: user_beg + size_rounded_down_to_granularity); |
| 637 | *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0; |
| 638 | } |
| 639 | |
| 640 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 641 | thread_stats.mallocs++; |
| 642 | thread_stats.malloced += size; |
| 643 | thread_stats.malloced_redzones += needed_size - size; |
| 644 | if (needed_size > SizeClassMap::kMaxSize) |
| 645 | thread_stats.malloc_large++; |
| 646 | else |
| 647 | thread_stats.malloced_by_size[SizeClassMap::ClassID(size: needed_size)]++; |
| 648 | |
| 649 | void *res = reinterpret_cast<void *>(user_beg); |
| 650 | if (can_fill && fl.max_malloc_fill_size) { |
| 651 | uptr fill_size = Min(a: size, b: (uptr)fl.max_malloc_fill_size); |
| 652 | REAL(memset)(res, fl.malloc_fill_byte, fill_size); |
| 653 | } |
| 654 | #if CAN_SANITIZE_LEAKS |
| 655 | m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored |
| 656 | : __lsan::kDirectlyLeaked; |
| 657 | #endif |
| 658 | // Must be the last mutation of metadata in this function. |
| 659 | atomic_store(a: &m->chunk_state, v: CHUNK_ALLOCATED, mo: memory_order_release); |
| 660 | if (alloc_beg != chunk_beg) { |
| 661 | CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); |
| 662 | reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); |
| 663 | } |
| 664 | RunMallocHooks(ptr: res, size); |
| 665 | return res; |
| 666 | } |
| 667 | |
| 668 | // Set quarantine flag if chunk is allocated, issue ASan error report on |
| 669 | // available and quarantined chunks. Return true on success, false otherwise. |
| 670 | bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, |
| 671 | BufferedStackTrace *stack) { |
| 672 | u8 old_chunk_state = CHUNK_ALLOCATED; |
| 673 | // Flip the chunk_state atomically to avoid race on double-free. |
| 674 | if (!atomic_compare_exchange_strong(a: &m->chunk_state, cmp: &old_chunk_state, |
| 675 | xchg: CHUNK_QUARANTINE, |
| 676 | mo: memory_order_acquire)) { |
| 677 | ReportInvalidFree(ptr, chunk_state: old_chunk_state, stack); |
| 678 | // It's not safe to push a chunk in quarantine on invalid free. |
| 679 | return false; |
| 680 | } |
| 681 | CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); |
| 682 | // It was a user data. |
| 683 | m->SetFreeContext(tid: kInvalidTid, stack: 0); |
| 684 | return true; |
| 685 | } |
| 686 | |
| 687 | // Expects the chunk to already be marked as quarantined by using |
| 688 | // AtomicallySetQuarantineFlagIfAllocated. |
| 689 | void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { |
| 690 | CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed), |
| 691 | CHUNK_QUARANTINE); |
| 692 | AsanThread *t = GetCurrentThread(); |
| 693 | m->SetFreeContext(tid: t ? t->tid() : 0, stack: StackDepotPut(stack: *stack)); |
| 694 | |
| 695 | // Push into quarantine. |
| 696 | if (t) { |
| 697 | AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); |
| 698 | AllocatorCache *ac = GetAllocatorCache(ms); |
| 699 | quarantine.Put(c: GetQuarantineCache(ms), cb: QuarantineCallback(ac, stack), ptr: m, |
| 700 | size: m->UsedSize()); |
| 701 | } else { |
| 702 | SpinMutexLock l(&fallback_mutex); |
| 703 | AllocatorCache *ac = &fallback_allocator_cache; |
| 704 | quarantine.Put(c: &fallback_quarantine_cache, cb: QuarantineCallback(ac, stack), |
| 705 | ptr: m, size: m->UsedSize()); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, |
| 710 | BufferedStackTrace *stack, AllocType alloc_type) { |
| 711 | uptr p = reinterpret_cast<uptr>(ptr); |
| 712 | if (p == 0) return; |
| 713 | |
| 714 | uptr chunk_beg = p - kChunkHeaderSize; |
| 715 | AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
| 716 | |
| 717 | // On Windows, uninstrumented DLLs may allocate memory before ASan hooks |
| 718 | // malloc. Don't report an invalid free in this case. |
| 719 | if (SANITIZER_WINDOWS && |
| 720 | !get_allocator().PointerIsMine(p: ptr)) { |
| 721 | if (!IsSystemHeapAddress(addr: p)) |
| 722 | ReportFreeNotMalloced(addr: p, free_stack: stack); |
| 723 | return; |
| 724 | } |
| 725 | |
| 726 | if (RunFreeHooks(ptr)) { |
| 727 | // Someone used __sanitizer_ignore_free_hook() and decided that they |
| 728 | // didn't want the memory to __sanitizer_ignore_free_hook freed right now. |
| 729 | // When they call free() on this pointer again at a later time, we should |
| 730 | // ignore the alloc-type mismatch and allow them to deallocate the pointer |
| 731 | // through free(), rather than the initial alloc type. |
| 732 | m->alloc_type = FROM_MALLOC; |
| 733 | return; |
| 734 | } |
| 735 | |
| 736 | // Must mark the chunk as quarantined before any changes to its metadata. |
| 737 | // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. |
| 738 | if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; |
| 739 | |
| 740 | if (m->alloc_type != alloc_type) { |
| 741 | if (atomic_load(a: &alloc_dealloc_mismatch, mo: memory_order_acquire) && |
| 742 | !IsAllocDeallocMismatchSuppressed(stack)) { |
| 743 | ReportAllocTypeMismatch(addr: (uptr)ptr, free_stack: stack, alloc_type: (AllocType)m->alloc_type, |
| 744 | dealloc_type: (AllocType)alloc_type); |
| 745 | } |
| 746 | } else { |
| 747 | if (flags()->new_delete_type_mismatch && |
| 748 | (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && |
| 749 | ((delete_size && delete_size != m->UsedSize()) || |
| 750 | ComputeUserRequestedAlignmentLog(user_requested_alignment: delete_alignment) != |
| 751 | m->user_requested_alignment_log)) { |
| 752 | ReportNewDeleteTypeMismatch(addr: p, delete_size, delete_alignment, free_stack: stack); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 757 | thread_stats.frees++; |
| 758 | thread_stats.freed += m->UsedSize(); |
| 759 | |
| 760 | QuarantineChunk(m, ptr, stack); |
| 761 | } |
| 762 | |
| 763 | void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { |
| 764 | CHECK(old_ptr && new_size); |
| 765 | uptr p = reinterpret_cast<uptr>(old_ptr); |
| 766 | uptr chunk_beg = p - kChunkHeaderSize; |
| 767 | AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
| 768 | |
| 769 | AsanStats &thread_stats = GetCurrentThreadStats(); |
| 770 | thread_stats.reallocs++; |
| 771 | thread_stats.realloced += new_size; |
| 772 | |
| 773 | void *new_ptr = Allocate(size: new_size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: true); |
| 774 | if (new_ptr) { |
| 775 | u8 chunk_state = atomic_load(a: &m->chunk_state, mo: memory_order_acquire); |
| 776 | if (chunk_state != CHUNK_ALLOCATED) |
| 777 | ReportInvalidFree(ptr: old_ptr, chunk_state, stack); |
| 778 | CHECK_NE(REAL(memcpy), nullptr); |
| 779 | uptr memcpy_size = Min(a: new_size, b: m->UsedSize()); |
| 780 | // If realloc() races with free(), we may start copying freed memory. |
| 781 | // However, we will report racy double-free later anyway. |
| 782 | REAL(memcpy)(new_ptr, old_ptr, memcpy_size); |
| 783 | Deallocate(ptr: old_ptr, delete_size: 0, delete_alignment: 0, stack, alloc_type: FROM_MALLOC); |
| 784 | } |
| 785 | return new_ptr; |
| 786 | } |
| 787 | |
| 788 | void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
| 789 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| 790 | if (AllocatorMayReturnNull()) |
| 791 | return nullptr; |
| 792 | ReportCallocOverflow(count: nmemb, size, stack); |
| 793 | } |
| 794 | void *ptr = Allocate(size: nmemb * size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: false); |
| 795 | // If the memory comes from the secondary allocator no need to clear it |
| 796 | // as it comes directly from mmap. |
| 797 | if (ptr && allocator.FromPrimary(p: ptr)) |
| 798 | REAL(memset)(ptr, 0, nmemb * size); |
| 799 | return ptr; |
| 800 | } |
| 801 | |
| 802 | void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { |
| 803 | if (chunk_state == CHUNK_QUARANTINE) |
| 804 | ReportDoubleFree(addr: (uptr)ptr, free_stack: stack); |
| 805 | else |
| 806 | ReportFreeNotMalloced(addr: (uptr)ptr, free_stack: stack); |
| 807 | } |
| 808 | |
| 809 | void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { |
| 810 | AllocatorCache *ac = GetAllocatorCache(ms); |
| 811 | quarantine.Drain(c: GetQuarantineCache(ms), cb: QuarantineCallback(ac, stack)); |
| 812 | allocator.SwallowCache(cache: ac); |
| 813 | } |
| 814 | |
| 815 | // -------------------------- Chunk lookup ---------------------- |
| 816 | |
| 817 | // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). |
| 818 | // Returns nullptr if AsanChunk is not yet initialized just after |
| 819 | // get_allocator().Allocate(), or is being destroyed just before |
| 820 | // get_allocator().Deallocate(). |
| 821 | AsanChunk *GetAsanChunk(void *alloc_beg) { |
| 822 | if (!alloc_beg) |
| 823 | return nullptr; |
| 824 | AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); |
| 825 | if (!p) { |
| 826 | if (!allocator.FromPrimary(p: alloc_beg)) |
| 827 | return nullptr; |
| 828 | p = reinterpret_cast<AsanChunk *>(alloc_beg); |
| 829 | } |
| 830 | u8 state = atomic_load(a: &p->chunk_state, mo: memory_order_relaxed); |
| 831 | // It does not guaranty that Chunk is initialized, but it's |
| 832 | // definitely not for any other value. |
| 833 | if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE) |
| 834 | return p; |
| 835 | return nullptr; |
| 836 | } |
| 837 | |
| 838 | AsanChunk *GetAsanChunkByAddr(uptr p) { |
| 839 | void *alloc_beg = allocator.GetBlockBegin(p: reinterpret_cast<void *>(p)); |
| 840 | return GetAsanChunk(alloc_beg); |
| 841 | } |
| 842 | |
| 843 | // Allocator must be locked when this function is called. |
| 844 | AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { |
| 845 | void *alloc_beg = |
| 846 | allocator.GetBlockBeginFastLocked(p: reinterpret_cast<void *>(p)); |
| 847 | return GetAsanChunk(alloc_beg); |
| 848 | } |
| 849 | |
| 850 | uptr AllocationSize(uptr p) { |
| 851 | AsanChunk *m = GetAsanChunkByAddr(p); |
| 852 | if (!m) return 0; |
| 853 | if (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != CHUNK_ALLOCATED) |
| 854 | return 0; |
| 855 | if (m->Beg() != p) return 0; |
| 856 | return m->UsedSize(); |
| 857 | } |
| 858 | |
| 859 | uptr AllocationSizeFast(uptr p) { |
| 860 | return reinterpret_cast<AsanChunk *>(p - kChunkHeaderSize)->UsedSize(); |
| 861 | } |
| 862 | |
| 863 | AsanChunkView FindHeapChunkByAddress(uptr addr) { |
| 864 | AsanChunk *m1 = GetAsanChunkByAddr(p: addr); |
| 865 | sptr offset = 0; |
| 866 | if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, access_size: 1, offset: &offset)) { |
| 867 | // The address is in the chunk's left redzone, so maybe it is actually |
| 868 | // a right buffer overflow from the other chunk before. |
| 869 | // Search a bit before to see if there is another chunk. |
| 870 | AsanChunk *m2 = nullptr; |
| 871 | for (uptr l = 1; l < GetPageSizeCached(); l++) { |
| 872 | m2 = GetAsanChunkByAddr(p: addr - l); |
| 873 | if (m2 == m1) continue; // Still the same chunk. |
| 874 | break; |
| 875 | } |
| 876 | if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, access_size: 1, offset: &offset)) |
| 877 | m1 = ChooseChunk(addr, left_chunk: m2, right_chunk: m1); |
| 878 | } |
| 879 | return AsanChunkView(m1); |
| 880 | } |
| 881 | |
| 882 | void Purge(BufferedStackTrace *stack) { |
| 883 | AsanThread *t = GetCurrentThread(); |
| 884 | if (t) { |
| 885 | AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); |
| 886 | quarantine.DrainAndRecycle(c: GetQuarantineCache(ms), |
| 887 | cb: QuarantineCallback(GetAllocatorCache(ms), |
| 888 | stack)); |
| 889 | } |
| 890 | { |
| 891 | SpinMutexLock l(&fallback_mutex); |
| 892 | quarantine.DrainAndRecycle(c: &fallback_quarantine_cache, |
| 893 | cb: QuarantineCallback(&fallback_allocator_cache, |
| 894 | stack)); |
| 895 | } |
| 896 | |
| 897 | allocator.ForceReleaseToOS(); |
| 898 | } |
| 899 | |
| 900 | void PrintStats() { |
| 901 | allocator.PrintStats(); |
| 902 | quarantine.PrintStats(); |
| 903 | } |
| 904 | |
| 905 | void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) { |
| 906 | allocator.ForceLock(); |
| 907 | fallback_mutex.Lock(); |
| 908 | } |
| 909 | |
| 910 | void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) { |
| 911 | fallback_mutex.Unlock(); |
| 912 | allocator.ForceUnlock(); |
| 913 | } |
| 914 | }; |
| 915 | |
| 916 | static Allocator instance(LINKER_INITIALIZED); |
| 917 | |
| 918 | static AsanAllocator &get_allocator() { |
| 919 | return instance.allocator; |
| 920 | } |
| 921 | |
| 922 | bool AsanChunkView::IsValid() const { |
| 923 | return chunk_ && atomic_load(a: &chunk_->chunk_state, mo: memory_order_relaxed) != |
| 924 | CHUNK_INVALID; |
| 925 | } |
| 926 | bool AsanChunkView::IsAllocated() const { |
| 927 | return chunk_ && atomic_load(a: &chunk_->chunk_state, mo: memory_order_relaxed) == |
| 928 | CHUNK_ALLOCATED; |
| 929 | } |
| 930 | bool AsanChunkView::IsQuarantined() const { |
| 931 | return chunk_ && atomic_load(a: &chunk_->chunk_state, mo: memory_order_relaxed) == |
| 932 | CHUNK_QUARANTINE; |
| 933 | } |
| 934 | uptr AsanChunkView::Beg() const { return chunk_->Beg(); } |
| 935 | uptr AsanChunkView::End() const { return Beg() + UsedSize(); } |
| 936 | uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } |
| 937 | u32 AsanChunkView::UserRequestedAlignment() const { |
| 938 | return Allocator::ComputeUserAlignment(user_requested_alignment_log: chunk_->user_requested_alignment_log); |
| 939 | } |
| 940 | |
| 941 | uptr AsanChunkView::AllocTid() const { |
| 942 | u32 tid = 0; |
| 943 | u32 stack = 0; |
| 944 | chunk_->GetAllocContext(tid, stack); |
| 945 | return tid; |
| 946 | } |
| 947 | |
| 948 | uptr AsanChunkView::FreeTid() const { |
| 949 | if (!IsQuarantined()) |
| 950 | return kInvalidTid; |
| 951 | u32 tid = 0; |
| 952 | u32 stack = 0; |
| 953 | chunk_->GetFreeContext(tid, stack); |
| 954 | return tid; |
| 955 | } |
| 956 | |
| 957 | AllocType AsanChunkView::GetAllocType() const { |
| 958 | return (AllocType)chunk_->alloc_type; |
| 959 | } |
| 960 | |
| 961 | u32 AsanChunkView::GetAllocStackId() const { |
| 962 | u32 tid = 0; |
| 963 | u32 stack = 0; |
| 964 | chunk_->GetAllocContext(tid, stack); |
| 965 | return stack; |
| 966 | } |
| 967 | |
| 968 | u32 AsanChunkView::GetFreeStackId() const { |
| 969 | if (!IsQuarantined()) |
| 970 | return 0; |
| 971 | u32 tid = 0; |
| 972 | u32 stack = 0; |
| 973 | chunk_->GetFreeContext(tid, stack); |
| 974 | return stack; |
| 975 | } |
| 976 | |
| 977 | void InitializeAllocator(const AllocatorOptions &options) { |
| 978 | instance.InitLinkerInitialized(options); |
| 979 | } |
| 980 | |
| 981 | void ReInitializeAllocator(const AllocatorOptions &options) { |
| 982 | instance.ReInitialize(options); |
| 983 | } |
| 984 | |
| 985 | // Apply provided AllocatorOptions to an Allocator |
| 986 | void ApplyAllocatorOptions(const AllocatorOptions &options) { |
| 987 | instance.ApplyOptions(options); |
| 988 | } |
| 989 | |
| 990 | void GetAllocatorOptions(AllocatorOptions *options) { |
| 991 | instance.GetOptions(options); |
| 992 | } |
| 993 | |
| 994 | AsanChunkView FindHeapChunkByAddress(uptr addr) { |
| 995 | return instance.FindHeapChunkByAddress(addr); |
| 996 | } |
| 997 | AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { |
| 998 | return AsanChunkView(instance.GetAsanChunk(alloc_beg: reinterpret_cast<void*>(addr))); |
| 999 | } |
| 1000 | |
| 1001 | void AsanThreadLocalMallocStorage::CommitBack() { |
| 1002 | GET_STACK_TRACE_MALLOC; |
| 1003 | instance.CommitBack(ms: this, stack: &stack); |
| 1004 | } |
| 1005 | |
| 1006 | void PrintInternalAllocatorStats() { |
| 1007 | instance.PrintStats(); |
| 1008 | } |
| 1009 | |
| 1010 | void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { |
| 1011 | instance.Deallocate(ptr, delete_size: 0, delete_alignment: 0, stack, alloc_type); |
| 1012 | } |
| 1013 | |
| 1014 | void asan_delete(void *ptr, uptr size, uptr alignment, |
| 1015 | BufferedStackTrace *stack, AllocType alloc_type) { |
| 1016 | instance.Deallocate(ptr, delete_size: size, delete_alignment: alignment, stack, alloc_type); |
| 1017 | } |
| 1018 | |
| 1019 | void *asan_malloc(uptr size, BufferedStackTrace *stack) { |
| 1020 | return SetErrnoOnNull(instance.Allocate(size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
| 1021 | } |
| 1022 | |
| 1023 | void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
| 1024 | return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); |
| 1025 | } |
| 1026 | |
| 1027 | void *asan_reallocarray(void *p, uptr nmemb, uptr size, |
| 1028 | BufferedStackTrace *stack) { |
| 1029 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| 1030 | errno = errno_ENOMEM; |
| 1031 | if (AllocatorMayReturnNull()) |
| 1032 | return nullptr; |
| 1033 | ReportReallocArrayOverflow(count: nmemb, size, stack); |
| 1034 | } |
| 1035 | return asan_realloc(p, size: nmemb * size, stack); |
| 1036 | } |
| 1037 | |
| 1038 | void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { |
| 1039 | if (!p) |
| 1040 | return SetErrnoOnNull(instance.Allocate(size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
| 1041 | if (size == 0) { |
| 1042 | if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { |
| 1043 | instance.Deallocate(ptr: p, delete_size: 0, delete_alignment: 0, stack, alloc_type: FROM_MALLOC); |
| 1044 | return nullptr; |
| 1045 | } |
| 1046 | // Allocate a size of 1 if we shouldn't free() on Realloc to 0 |
| 1047 | size = 1; |
| 1048 | } |
| 1049 | return SetErrnoOnNull(instance.Reallocate(old_ptr: p, new_size: size, stack)); |
| 1050 | } |
| 1051 | |
| 1052 | void *asan_valloc(uptr size, BufferedStackTrace *stack) { |
| 1053 | return SetErrnoOnNull( |
| 1054 | instance.Allocate(size, alignment: GetPageSizeCached(), stack, alloc_type: FROM_MALLOC, can_fill: true)); |
| 1055 | } |
| 1056 | |
| 1057 | void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { |
| 1058 | uptr PageSize = GetPageSizeCached(); |
| 1059 | if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
| 1060 | errno = errno_ENOMEM; |
| 1061 | if (AllocatorMayReturnNull()) |
| 1062 | return nullptr; |
| 1063 | ReportPvallocOverflow(size, stack); |
| 1064 | } |
| 1065 | // pvalloc(0) should allocate one page. |
| 1066 | size = size ? RoundUpTo(size, boundary: PageSize) : PageSize; |
| 1067 | return SetErrnoOnNull( |
| 1068 | instance.Allocate(size, alignment: PageSize, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
| 1069 | } |
| 1070 | |
| 1071 | void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, |
| 1072 | AllocType alloc_type) { |
| 1073 | if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
| 1074 | errno = errno_EINVAL; |
| 1075 | if (AllocatorMayReturnNull()) |
| 1076 | return nullptr; |
| 1077 | ReportInvalidAllocationAlignment(alignment, stack); |
| 1078 | } |
| 1079 | return SetErrnoOnNull( |
| 1080 | instance.Allocate(size, alignment, stack, alloc_type, can_fill: true)); |
| 1081 | } |
| 1082 | |
| 1083 | void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { |
| 1084 | if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
| 1085 | errno = errno_EINVAL; |
| 1086 | if (AllocatorMayReturnNull()) |
| 1087 | return nullptr; |
| 1088 | ReportInvalidAlignedAllocAlignment(size, alignment, stack); |
| 1089 | } |
| 1090 | return SetErrnoOnNull( |
| 1091 | instance.Allocate(size, alignment, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
| 1092 | } |
| 1093 | |
| 1094 | int asan_posix_memalign(void **memptr, uptr alignment, uptr size, |
| 1095 | BufferedStackTrace *stack) { |
| 1096 | if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
| 1097 | if (AllocatorMayReturnNull()) |
| 1098 | return errno_EINVAL; |
| 1099 | ReportInvalidPosixMemalignAlignment(alignment, stack); |
| 1100 | } |
| 1101 | void *ptr = instance.Allocate(size, alignment, stack, alloc_type: FROM_MALLOC, can_fill: true); |
| 1102 | if (UNLIKELY(!ptr)) |
| 1103 | // OOM error is already taken care of by Allocate. |
| 1104 | return errno_ENOMEM; |
| 1105 | CHECK(IsAligned((uptr)ptr, alignment)); |
| 1106 | *memptr = ptr; |
| 1107 | return 0; |
| 1108 | } |
| 1109 | |
| 1110 | uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { |
| 1111 | if (!ptr) return 0; |
| 1112 | uptr usable_size = instance.AllocationSize(p: reinterpret_cast<uptr>(ptr)); |
| 1113 | if (flags()->check_malloc_usable_size && (usable_size == 0)) { |
| 1114 | GET_STACK_TRACE_FATAL(pc, bp); |
| 1115 | ReportMallocUsableSizeNotOwned(addr: (uptr)ptr, stack: &stack); |
| 1116 | } |
| 1117 | return usable_size; |
| 1118 | } |
| 1119 | |
| 1120 | uptr asan_mz_size(const void *ptr) { |
| 1121 | return instance.AllocationSize(p: reinterpret_cast<uptr>(ptr)); |
| 1122 | } |
| 1123 | |
| 1124 | void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 1125 | instance.ForceLock(); |
| 1126 | } |
| 1127 | |
| 1128 | void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 1129 | instance.ForceUnlock(); |
| 1130 | } |
| 1131 | |
| 1132 | } // namespace __asan |
| 1133 | |
| 1134 | // --- Implementation of LSan-specific functions --- {{{1 |
| 1135 | namespace __lsan { |
| 1136 | void LockAllocator() { |
| 1137 | __asan::get_allocator().ForceLock(); |
| 1138 | } |
| 1139 | |
| 1140 | void UnlockAllocator() { |
| 1141 | __asan::get_allocator().ForceUnlock(); |
| 1142 | } |
| 1143 | |
| 1144 | void GetAllocatorGlobalRange(uptr *begin, uptr *end) { |
| 1145 | *begin = (uptr)&__asan::get_allocator(); |
| 1146 | *end = *begin + sizeof(__asan::get_allocator()); |
| 1147 | } |
| 1148 | |
| 1149 | uptr PointsIntoChunk(void *p) { |
| 1150 | uptr addr = reinterpret_cast<uptr>(p); |
| 1151 | __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(p: addr); |
| 1152 | if (!m || atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != |
| 1153 | __asan::CHUNK_ALLOCATED) |
| 1154 | return 0; |
| 1155 | uptr chunk = m->Beg(); |
| 1156 | if (m->AddrIsInside(addr)) |
| 1157 | return chunk; |
| 1158 | if (IsSpecialCaseOfOperatorNew0(chunk_beg: chunk, chunk_size: m->UsedSize(), addr)) |
| 1159 | return chunk; |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | uptr GetUserBegin(uptr chunk) { |
| 1164 | // FIXME: All usecases provide chunk address, GetAsanChunkByAddrFastLocked is |
| 1165 | // not needed. |
| 1166 | __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(p: chunk); |
| 1167 | return m ? m->Beg() : 0; |
| 1168 | } |
| 1169 | |
| 1170 | uptr GetUserAddr(uptr chunk) { |
| 1171 | return chunk; |
| 1172 | } |
| 1173 | |
| 1174 | LsanMetadata::LsanMetadata(uptr chunk) { |
| 1175 | metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize) |
| 1176 | : nullptr; |
| 1177 | } |
| 1178 | |
| 1179 | bool LsanMetadata::allocated() const { |
| 1180 | if (!metadata_) |
| 1181 | return false; |
| 1182 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
| 1183 | return atomic_load(a: &m->chunk_state, mo: memory_order_relaxed) == |
| 1184 | __asan::CHUNK_ALLOCATED; |
| 1185 | } |
| 1186 | |
| 1187 | ChunkTag LsanMetadata::tag() const { |
| 1188 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
| 1189 | return static_cast<ChunkTag>(m->lsan_tag); |
| 1190 | } |
| 1191 | |
| 1192 | void LsanMetadata::set_tag(ChunkTag value) { |
| 1193 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
| 1194 | m->lsan_tag = value; |
| 1195 | } |
| 1196 | |
| 1197 | uptr LsanMetadata::requested_size() const { |
| 1198 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
| 1199 | return m->UsedSize(); |
| 1200 | } |
| 1201 | |
| 1202 | u32 LsanMetadata::stack_trace_id() const { |
| 1203 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
| 1204 | u32 tid = 0; |
| 1205 | u32 stack = 0; |
| 1206 | m->GetAllocContext(tid, stack); |
| 1207 | return stack; |
| 1208 | } |
| 1209 | |
| 1210 | void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| 1211 | __asan::get_allocator().ForEachChunk(callback, arg); |
| 1212 | } |
| 1213 | |
| 1214 | IgnoreObjectResult IgnoreObject(const void *p) { |
| 1215 | uptr addr = reinterpret_cast<uptr>(p); |
| 1216 | __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(p: addr); |
| 1217 | if (!m || |
| 1218 | (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != |
| 1219 | __asan::CHUNK_ALLOCATED) || |
| 1220 | !m->AddrIsInside(addr)) { |
| 1221 | return kIgnoreObjectInvalid; |
| 1222 | } |
| 1223 | if (m->lsan_tag == kIgnored) |
| 1224 | return kIgnoreObjectAlreadyIgnored; |
| 1225 | m->lsan_tag = __lsan::kIgnored; |
| 1226 | return kIgnoreObjectSuccess; |
| 1227 | } |
| 1228 | |
| 1229 | } // namespace __lsan |
| 1230 | |
| 1231 | // ---------------------- Interface ---------------- {{{1 |
| 1232 | using namespace __asan; |
| 1233 | |
| 1234 | static const void *AllocationBegin(const void *p) { |
| 1235 | AsanChunk *m = __asan::instance.GetAsanChunkByAddr(p: (uptr)p); |
| 1236 | if (!m) |
| 1237 | return nullptr; |
| 1238 | if (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != CHUNK_ALLOCATED) |
| 1239 | return nullptr; |
| 1240 | if (m->UsedSize() == 0) |
| 1241 | return nullptr; |
| 1242 | return (const void *)(m->Beg()); |
| 1243 | } |
| 1244 | |
| 1245 | // ASan allocator doesn't reserve extra bytes, so normally we would |
| 1246 | // just return "size". We don't want to expose our redzone sizes, etc here. |
| 1247 | uptr __sanitizer_get_estimated_allocated_size(uptr size) { |
| 1248 | return size; |
| 1249 | } |
| 1250 | |
| 1251 | int __sanitizer_get_ownership(const void *p) { |
| 1252 | uptr ptr = reinterpret_cast<uptr>(p); |
| 1253 | return instance.AllocationSize(p: ptr) > 0; |
| 1254 | } |
| 1255 | |
| 1256 | uptr __sanitizer_get_allocated_size(const void *p) { |
| 1257 | if (!p) return 0; |
| 1258 | uptr ptr = reinterpret_cast<uptr>(p); |
| 1259 | uptr allocated_size = instance.AllocationSize(p: ptr); |
| 1260 | // Die if p is not malloced or if it is already freed. |
| 1261 | if (allocated_size == 0) { |
| 1262 | GET_STACK_TRACE_FATAL_HERE; |
| 1263 | ReportSanitizerGetAllocatedSizeNotOwned(addr: ptr, stack: &stack); |
| 1264 | } |
| 1265 | return allocated_size; |
| 1266 | } |
| 1267 | |
| 1268 | uptr __sanitizer_get_allocated_size_fast(const void *p) { |
| 1269 | DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
| 1270 | uptr ret = instance.AllocationSizeFast(p: reinterpret_cast<uptr>(p)); |
| 1271 | DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
| 1272 | return ret; |
| 1273 | } |
| 1274 | |
| 1275 | const void *__sanitizer_get_allocated_begin(const void *p) { |
| 1276 | return AllocationBegin(p); |
| 1277 | } |
| 1278 | |
| 1279 | void __sanitizer_purge_allocator() { |
| 1280 | GET_STACK_TRACE_MALLOC; |
| 1281 | instance.Purge(stack: &stack); |
| 1282 | } |
| 1283 | |
| 1284 | int __asan_update_allocation_context(void* addr) { |
| 1285 | GET_STACK_TRACE_MALLOC; |
| 1286 | return instance.UpdateAllocationStack(addr: (uptr)addr, stack: &stack); |
| 1287 | } |
| 1288 | |