| 1 | //===-- primary32.h ---------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef SCUDO_PRIMARY32_H_ |
| 10 | #define SCUDO_PRIMARY32_H_ |
| 11 | |
| 12 | #include "allocator_common.h" |
| 13 | #include "bytemap.h" |
| 14 | #include "common.h" |
| 15 | #include "list.h" |
| 16 | #include "options.h" |
| 17 | #include "release.h" |
| 18 | #include "report.h" |
| 19 | #include "size_class_allocator.h" |
| 20 | #include "stats.h" |
| 21 | #include "string_utils.h" |
| 22 | #include "thread_annotations.h" |
| 23 | |
| 24 | namespace scudo { |
| 25 | |
| 26 | // SizeClassAllocator32 is an allocator for 32 or 64-bit address space. |
| 27 | // |
| 28 | // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes |
| 29 | // boundary, and keeps a bytemap of the mappable address space to track the size |
| 30 | // class they are associated with. |
| 31 | // |
| 32 | // Mapped regions are split into equally sized Blocks according to the size |
| 33 | // class they belong to, and the associated pointers are shuffled to prevent any |
| 34 | // predictable address pattern (the predictability increases with the block |
| 35 | // size). |
| 36 | // |
| 37 | // Regions for size class 0 are special and used to hold TransferBatches, which |
| 38 | // allow to transfer arrays of pointers from the global size class freelist to |
| 39 | // the thread specific freelist for said class, and back. |
| 40 | // |
| 41 | // Memory used by this allocator is never unmapped but can be partially |
| 42 | // reclaimed if the platform allows for it. |
| 43 | |
| 44 | template <typename Config> class SizeClassAllocator32 { |
| 45 | public: |
| 46 | typedef typename Config::CompactPtrT CompactPtrT; |
| 47 | typedef typename Config::SizeClassMap SizeClassMap; |
| 48 | static const uptr GroupSizeLog = Config::getGroupSizeLog(); |
| 49 | // The bytemap can only track UINT8_MAX - 1 classes. |
| 50 | static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "" ); |
| 51 | // Regions should be large enough to hold the largest Block. |
| 52 | static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize, |
| 53 | "" ); |
| 54 | typedef SizeClassAllocator32<Config> ThisT; |
| 55 | using SizeClassAllocatorT = |
| 56 | typename Conditional<Config::getEnableBlockCache(), |
| 57 | SizeClassAllocatorLocalCache<ThisT>, |
| 58 | SizeClassAllocatorNoCache<ThisT>>::type; |
| 59 | typedef TransferBatch<ThisT> TransferBatchT; |
| 60 | typedef BatchGroup<ThisT> BatchGroupT; |
| 61 | |
| 62 | static uptr getSizeByClassId(uptr ClassId) { |
| 63 | return (ClassId == SizeClassMap::BatchClassId) |
| 64 | ? Max(A: sizeof(BatchGroupT), B: sizeof(TransferBatchT)) |
| 65 | : SizeClassMap::getSizeByClassId(ClassId); |
| 66 | } |
| 67 | |
| 68 | static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } |
| 69 | |
| 70 | void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS { |
| 71 | if (SCUDO_FUCHSIA) |
| 72 | reportError(Message: "SizeClassAllocator32 is not supported on Fuchsia" ); |
| 73 | |
| 74 | if (SCUDO_TRUSTY) |
| 75 | reportError(Message: "SizeClassAllocator32 is not supported on Trusty" ); |
| 76 | |
| 77 | DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT))); |
| 78 | PossibleRegions.init(); |
| 79 | u32 Seed; |
| 80 | const u64 Time = getMonotonicTimeFast(); |
| 81 | if (!getRandom(Buffer: reinterpret_cast<void *>(&Seed), Length: sizeof(Seed))) |
| 82 | Seed = static_cast<u32>( |
| 83 | Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6)); |
| 84 | for (uptr I = 0; I < NumClasses; I++) { |
| 85 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 86 | Sci->RandState = getRandomU32(State: &Seed); |
| 87 | // Sci->MaxRegionIndex is already initialized to 0. |
| 88 | Sci->MinRegionIndex = NumRegions; |
| 89 | Sci->ReleaseInfo.LastReleaseAtNs = Time; |
| 90 | } |
| 91 | |
| 92 | // The default value in the primary config has the higher priority. |
| 93 | if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN) |
| 94 | ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs(); |
| 95 | setOption(O: Option::ReleaseInterval, Value: static_cast<sptr>(ReleaseToOsInterval)); |
| 96 | } |
| 97 | |
| 98 | void unmapTestOnly() { |
| 99 | { |
| 100 | ScopedLock L(RegionsStashMutex); |
| 101 | while (NumberOfStashedRegions > 0) { |
| 102 | unmap(Addr: reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]), |
| 103 | Size: RegionSize); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; |
| 108 | for (uptr I = 0; I < NumClasses; I++) { |
| 109 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 110 | ScopedLock L(Sci->Mutex); |
| 111 | if (Sci->MinRegionIndex < MinRegionIndex) |
| 112 | MinRegionIndex = Sci->MinRegionIndex; |
| 113 | if (Sci->MaxRegionIndex > MaxRegionIndex) |
| 114 | MaxRegionIndex = Sci->MaxRegionIndex; |
| 115 | *Sci = {}; |
| 116 | } |
| 117 | |
| 118 | ScopedLock L(ByteMapMutex); |
| 119 | for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) |
| 120 | if (PossibleRegions[I]) |
| 121 | unmap(Addr: reinterpret_cast<void *>(I * RegionSize), Size: RegionSize); |
| 122 | PossibleRegions.unmapTestOnly(); |
| 123 | } |
| 124 | |
| 125 | // When all blocks are freed, it has to be the same size as `AllocatedUser`. |
| 126 | void verifyAllBlocksAreReleasedTestOnly() { |
| 127 | // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass. |
| 128 | uptr BatchClassUsedInFreeLists = 0; |
| 129 | for (uptr I = 0; I < NumClasses; I++) { |
| 130 | // We have to count BatchClassUsedInFreeLists in other regions first. |
| 131 | if (I == SizeClassMap::BatchClassId) |
| 132 | continue; |
| 133 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 134 | ScopedLock L1(Sci->Mutex); |
| 135 | uptr TotalBlocks = 0; |
| 136 | for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { |
| 137 | // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`. |
| 138 | BatchClassUsedInFreeLists += BG.Batches.size() + 1; |
| 139 | for (const auto &It : BG.Batches) |
| 140 | TotalBlocks += It.getCount(); |
| 141 | } |
| 142 | |
| 143 | const uptr BlockSize = getSizeByClassId(ClassId: I); |
| 144 | DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize); |
| 145 | DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks); |
| 146 | } |
| 147 | |
| 148 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: SizeClassMap::BatchClassId); |
| 149 | ScopedLock L1(Sci->Mutex); |
| 150 | uptr TotalBlocks = 0; |
| 151 | for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { |
| 152 | if (LIKELY(!BG.Batches.empty())) { |
| 153 | for (const auto &It : BG.Batches) |
| 154 | TotalBlocks += It.getCount(); |
| 155 | } else { |
| 156 | // `BatchGroup` with empty freelist doesn't have `TransferBatch` record |
| 157 | // itself. |
| 158 | ++TotalBlocks; |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | const uptr BlockSize = getSizeByClassId(ClassId: SizeClassMap::BatchClassId); |
| 163 | DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists, |
| 164 | Sci->AllocatedUser / BlockSize); |
| 165 | const uptr BlocksInUse = |
| 166 | Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; |
| 167 | DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists); |
| 168 | } |
| 169 | |
| 170 | CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const { |
| 171 | return static_cast<CompactPtrT>(Ptr); |
| 172 | } |
| 173 | |
| 174 | void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const { |
| 175 | return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr)); |
| 176 | } |
| 177 | |
| 178 | uptr compactPtrGroupBase(CompactPtrT CompactPtr) { |
| 179 | const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1; |
| 180 | return CompactPtr & ~Mask; |
| 181 | } |
| 182 | |
| 183 | uptr decompactGroupBase(uptr CompactPtrGroupBase) { |
| 184 | return CompactPtrGroupBase; |
| 185 | } |
| 186 | |
| 187 | ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) { |
| 188 | const uptr PageSize = getPageSizeCached(); |
| 189 | return BlockSize < PageSize / 16U; |
| 190 | } |
| 191 | |
| 192 | ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) { |
| 193 | const uptr PageSize = getPageSizeCached(); |
| 194 | return BlockSize > PageSize; |
| 195 | } |
| 196 | |
| 197 | u16 popBlocks(SizeClassAllocatorT *SizeClassAllocator, uptr ClassId, |
| 198 | CompactPtrT *ToArray, const u16 MaxBlockCount) { |
| 199 | DCHECK_LT(ClassId, NumClasses); |
| 200 | SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| 201 | ScopedLock L(Sci->Mutex); |
| 202 | |
| 203 | u16 PopCount = |
| 204 | popBlocksImpl(SizeClassAllocator, ClassId, Sci, ToArray, MaxBlockCount); |
| 205 | if (UNLIKELY(PopCount == 0)) { |
| 206 | if (UNLIKELY(!populateFreeList(SizeClassAllocator, ClassId, Sci))) |
| 207 | return 0U; |
| 208 | PopCount = popBlocksImpl(SizeClassAllocator, ClassId, Sci, ToArray, |
| 209 | MaxBlockCount); |
| 210 | DCHECK_NE(PopCount, 0U); |
| 211 | } |
| 212 | |
| 213 | return PopCount; |
| 214 | } |
| 215 | |
| 216 | // Push the array of free blocks to the designated batch group. |
| 217 | void pushBlocks(SizeClassAllocatorT *SizeClassAllocator, uptr ClassId, |
| 218 | CompactPtrT *Array, u32 Size) { |
| 219 | DCHECK_LT(ClassId, NumClasses); |
| 220 | DCHECK_GT(Size, 0); |
| 221 | |
| 222 | SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| 223 | if (ClassId == SizeClassMap::BatchClassId) { |
| 224 | ScopedLock L(Sci->Mutex); |
| 225 | pushBatchClassBlocks(Sci, Array, Size); |
| 226 | return; |
| 227 | } |
| 228 | |
| 229 | // TODO(chiahungduan): Consider not doing grouping if the group size is not |
| 230 | // greater than the block size with a certain scale. |
| 231 | |
| 232 | // Sort the blocks so that blocks belonging to the same group can be pushed |
| 233 | // together. |
| 234 | bool SameGroup = true; |
| 235 | for (u32 I = 1; I < Size; ++I) { |
| 236 | if (compactPtrGroupBase(CompactPtr: Array[I - 1]) != compactPtrGroupBase(CompactPtr: Array[I])) |
| 237 | SameGroup = false; |
| 238 | CompactPtrT Cur = Array[I]; |
| 239 | u32 J = I; |
| 240 | while (J > 0 && |
| 241 | compactPtrGroupBase(CompactPtr: Cur) < compactPtrGroupBase(CompactPtr: Array[J - 1])) { |
| 242 | Array[J] = Array[J - 1]; |
| 243 | --J; |
| 244 | } |
| 245 | Array[J] = Cur; |
| 246 | } |
| 247 | |
| 248 | ScopedLock L(Sci->Mutex); |
| 249 | pushBlocksImpl(SizeClassAllocator, ClassId, Sci, Array, Size, SameGroup); |
| 250 | } |
| 251 | |
| 252 | void disable() NO_THREAD_SAFETY_ANALYSIS { |
| 253 | // The BatchClassId must be locked last since other classes can use it. |
| 254 | for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) { |
| 255 | if (static_cast<uptr>(I) == SizeClassMap::BatchClassId) |
| 256 | continue; |
| 257 | getSizeClassInfo(ClassId: static_cast<uptr>(I))->Mutex.lock(); |
| 258 | } |
| 259 | getSizeClassInfo(ClassId: SizeClassMap::BatchClassId)->Mutex.lock(); |
| 260 | RegionsStashMutex.lock(); |
| 261 | ByteMapMutex.lock(); |
| 262 | } |
| 263 | |
| 264 | void enable() NO_THREAD_SAFETY_ANALYSIS { |
| 265 | ByteMapMutex.unlock(); |
| 266 | RegionsStashMutex.unlock(); |
| 267 | getSizeClassInfo(ClassId: SizeClassMap::BatchClassId)->Mutex.unlock(); |
| 268 | for (uptr I = 0; I < NumClasses; I++) { |
| 269 | if (I == SizeClassMap::BatchClassId) |
| 270 | continue; |
| 271 | getSizeClassInfo(ClassId: I)->Mutex.unlock(); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | template <typename F> void iterateOverBlocks(F Callback) { |
| 276 | uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; |
| 277 | for (uptr I = 0; I < NumClasses; I++) { |
| 278 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 279 | // TODO: The call of `iterateOverBlocks` requires disabling |
| 280 | // SizeClassAllocator32. We may consider locking each region on demand |
| 281 | // only. |
| 282 | Sci->Mutex.assertHeld(); |
| 283 | if (Sci->MinRegionIndex < MinRegionIndex) |
| 284 | MinRegionIndex = Sci->MinRegionIndex; |
| 285 | if (Sci->MaxRegionIndex > MaxRegionIndex) |
| 286 | MaxRegionIndex = Sci->MaxRegionIndex; |
| 287 | } |
| 288 | |
| 289 | // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held. |
| 290 | ByteMapMutex.assertHeld(); |
| 291 | |
| 292 | for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) { |
| 293 | if (PossibleRegions[I] && |
| 294 | (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) { |
| 295 | const uptr BlockSize = getSizeByClassId(ClassId: PossibleRegions[I] - 1U); |
| 296 | const uptr From = I * RegionSize; |
| 297 | const uptr To = From + (RegionSize / BlockSize) * BlockSize; |
| 298 | for (uptr Block = From; Block < To; Block += BlockSize) |
| 299 | Callback(Block); |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | void getStats(ScopedString *Str) { |
| 305 | // TODO(kostyak): get the RSS per region. |
| 306 | uptr TotalMapped = 0; |
| 307 | uptr PoppedBlocks = 0; |
| 308 | uptr PushedBlocks = 0; |
| 309 | for (uptr I = 0; I < NumClasses; I++) { |
| 310 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 311 | ScopedLock L(Sci->Mutex); |
| 312 | TotalMapped += Sci->AllocatedUser; |
| 313 | PoppedBlocks += Sci->FreeListInfo.PoppedBlocks; |
| 314 | PushedBlocks += Sci->FreeListInfo.PushedBlocks; |
| 315 | } |
| 316 | Str->append(Format: "Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; " |
| 317 | "remains %zu\n" , |
| 318 | TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks); |
| 319 | for (uptr I = 0; I < NumClasses; I++) { |
| 320 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 321 | ScopedLock L(Sci->Mutex); |
| 322 | getStats(Str, I, Sci); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | void getFragmentationInfo(ScopedString *Str) { |
| 327 | Str->append( |
| 328 | Format: "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n" , |
| 329 | getPageSizeCached()); |
| 330 | |
| 331 | for (uptr I = 1; I < NumClasses; I++) { |
| 332 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 333 | ScopedLock L(Sci->Mutex); |
| 334 | getSizeClassFragmentationInfo(Sci, ClassId: I, Str); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | void getMemoryGroupFragmentationInfo(ScopedString *Str) { |
| 339 | // Each region is also a memory group because region size is the same as |
| 340 | // group size. |
| 341 | getFragmentationInfo(Str); |
| 342 | } |
| 343 | |
| 344 | bool setOption(Option O, sptr Value) { |
| 345 | if (O == Option::ReleaseInterval) { |
| 346 | const s32 Interval = Max( |
| 347 | Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()), |
| 348 | Config::getMinReleaseToOsIntervalMs()); |
| 349 | atomic_store_relaxed(A: &ReleaseToOsIntervalMs, V: Interval); |
| 350 | return true; |
| 351 | } |
| 352 | // Not supported by the Primary, but not an error either. |
| 353 | return true; |
| 354 | } |
| 355 | |
| 356 | uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) { |
| 357 | SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| 358 | // TODO: Once we have separate locks like primary64, we may consider using |
| 359 | // tryLock() as well. |
| 360 | ScopedLock L(Sci->Mutex); |
| 361 | return releaseToOSMaybe(Sci, ClassId, ReleaseType); |
| 362 | } |
| 363 | |
| 364 | uptr releaseToOS(ReleaseToOS ReleaseType) { |
| 365 | uptr TotalReleasedBytes = 0; |
| 366 | for (uptr I = 0; I < NumClasses; I++) { |
| 367 | if (I == SizeClassMap::BatchClassId) |
| 368 | continue; |
| 369 | SizeClassInfo *Sci = getSizeClassInfo(ClassId: I); |
| 370 | ScopedLock L(Sci->Mutex); |
| 371 | TotalReleasedBytes += releaseToOSMaybe(Sci, ClassId: I, ReleaseType); |
| 372 | } |
| 373 | return TotalReleasedBytes; |
| 374 | } |
| 375 | |
| 376 | const char *getRegionInfoArrayAddress() const { return nullptr; } |
| 377 | static uptr getRegionInfoArraySize() { return 0; } |
| 378 | |
| 379 | static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData, |
| 380 | UNUSED uptr Ptr) { |
| 381 | return {}; |
| 382 | } |
| 383 | |
| 384 | AtomicOptions Options; |
| 385 | |
| 386 | private: |
| 387 | static const uptr NumClasses = SizeClassMap::NumClasses; |
| 388 | static const uptr RegionSize = 1UL << Config::getRegionSizeLog(); |
| 389 | static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> |
| 390 | Config::getRegionSizeLog(); |
| 391 | static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; |
| 392 | typedef FlatByteMap<NumRegions> ByteMap; |
| 393 | |
| 394 | struct ReleaseToOsInfo { |
| 395 | uptr BytesInFreeListAtLastCheckpoint; |
| 396 | uptr NumReleasesAttempted; |
| 397 | uptr LastReleasedBytes; |
| 398 | u64 LastReleaseAtNs; |
| 399 | }; |
| 400 | |
| 401 | struct BlocksInfo { |
| 402 | SinglyLinkedList<BatchGroupT> BlockList = {}; |
| 403 | uptr PoppedBlocks = 0; |
| 404 | uptr PushedBlocks = 0; |
| 405 | }; |
| 406 | |
| 407 | struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo { |
| 408 | HybridMutex Mutex; |
| 409 | BlocksInfo FreeListInfo GUARDED_BY(Mutex); |
| 410 | uptr CurrentRegion GUARDED_BY(Mutex); |
| 411 | uptr CurrentRegionAllocated GUARDED_BY(Mutex); |
| 412 | u32 RandState; |
| 413 | uptr AllocatedUser GUARDED_BY(Mutex); |
| 414 | // Lowest & highest region index allocated for this size class, to avoid |
| 415 | // looping through the whole NumRegions. |
| 416 | uptr MinRegionIndex GUARDED_BY(Mutex); |
| 417 | uptr MaxRegionIndex GUARDED_BY(Mutex); |
| 418 | ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex); |
| 419 | }; |
| 420 | static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "" ); |
| 421 | |
| 422 | uptr computeRegionId(uptr Mem) { |
| 423 | const uptr Id = Mem >> Config::getRegionSizeLog(); |
| 424 | CHECK_LT(Id, NumRegions); |
| 425 | return Id; |
| 426 | } |
| 427 | |
| 428 | uptr allocateRegionSlow() { |
| 429 | uptr MapSize = 2 * RegionSize; |
| 430 | const uptr MapBase = reinterpret_cast<uptr>( |
| 431 | map(Addr: nullptr, Size: MapSize, Name: "scudo:primary" , MAP_ALLOWNOMEM)); |
| 432 | if (!MapBase) |
| 433 | return 0; |
| 434 | const uptr MapEnd = MapBase + MapSize; |
| 435 | uptr Region = MapBase; |
| 436 | if (isAligned(X: Region, Alignment: RegionSize)) { |
| 437 | ScopedLock L(RegionsStashMutex); |
| 438 | if (NumberOfStashedRegions < MaxStashedRegions) |
| 439 | RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize; |
| 440 | else |
| 441 | MapSize = RegionSize; |
| 442 | } else { |
| 443 | Region = roundUp(X: MapBase, Boundary: RegionSize); |
| 444 | unmap(Addr: reinterpret_cast<void *>(MapBase), Size: Region - MapBase); |
| 445 | MapSize = RegionSize; |
| 446 | } |
| 447 | const uptr End = Region + MapSize; |
| 448 | if (End != MapEnd) |
| 449 | unmap(Addr: reinterpret_cast<void *>(End), Size: MapEnd - End); |
| 450 | |
| 451 | DCHECK_EQ(Region % RegionSize, 0U); |
| 452 | static_assert(Config::getRegionSizeLog() == GroupSizeLog, |
| 453 | "Memory group should be the same size as Region" ); |
| 454 | |
| 455 | return Region; |
| 456 | } |
| 457 | |
| 458 | uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) { |
| 459 | DCHECK_LT(ClassId, NumClasses); |
| 460 | uptr Region = 0; |
| 461 | { |
| 462 | ScopedLock L(RegionsStashMutex); |
| 463 | if (NumberOfStashedRegions > 0) |
| 464 | Region = RegionsStash[--NumberOfStashedRegions]; |
| 465 | } |
| 466 | if (!Region) |
| 467 | Region = allocateRegionSlow(); |
| 468 | if (LIKELY(Region)) { |
| 469 | // Sci->Mutex is held by the caller, updating the Min/Max is safe. |
| 470 | const uptr RegionIndex = computeRegionId(Mem: Region); |
| 471 | if (RegionIndex < Sci->MinRegionIndex) |
| 472 | Sci->MinRegionIndex = RegionIndex; |
| 473 | if (RegionIndex > Sci->MaxRegionIndex) |
| 474 | Sci->MaxRegionIndex = RegionIndex; |
| 475 | ScopedLock L(ByteMapMutex); |
| 476 | PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U)); |
| 477 | } |
| 478 | return Region; |
| 479 | } |
| 480 | |
| 481 | SizeClassInfo *getSizeClassInfo(uptr ClassId) { |
| 482 | DCHECK_LT(ClassId, NumClasses); |
| 483 | return &SizeClassInfoArray[ClassId]; |
| 484 | } |
| 485 | |
| 486 | void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size) |
| 487 | REQUIRES(Sci->Mutex) { |
| 488 | DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId)); |
| 489 | |
| 490 | // Free blocks are recorded by TransferBatch in freelist for all |
| 491 | // size-classes. In addition, TransferBatch is allocated from BatchClassId. |
| 492 | // In order not to use additional block to record the free blocks in |
| 493 | // BatchClassId, they are self-contained. I.e., A TransferBatch records the |
| 494 | // block address of itself. See the figure below: |
| 495 | // |
| 496 | // TransferBatch at 0xABCD |
| 497 | // +----------------------------+ |
| 498 | // | Free blocks' addr | |
| 499 | // | +------+------+------+ | |
| 500 | // | |0xABCD|... |... | | |
| 501 | // | +------+------+------+ | |
| 502 | // +----------------------------+ |
| 503 | // |
| 504 | // When we allocate all the free blocks in the TransferBatch, the block used |
| 505 | // by TransferBatch is also free for use. We don't need to recycle the |
| 506 | // TransferBatch. Note that the correctness is maintained by the invariant, |
| 507 | // |
| 508 | // Each popBlocks() request returns the entire TransferBatch. Returning |
| 509 | // part of the blocks in a TransferBatch is invalid. |
| 510 | // |
| 511 | // This ensures that TransferBatch won't leak the address itself while it's |
| 512 | // still holding other valid data. |
| 513 | // |
| 514 | // Besides, BatchGroup is also allocated from BatchClassId and has its |
| 515 | // address recorded in the TransferBatch too. To maintain the correctness, |
| 516 | // |
| 517 | // The address of BatchGroup is always recorded in the last TransferBatch |
| 518 | // in the freelist (also imply that the freelist should only be |
| 519 | // updated with push_front). Once the last TransferBatch is popped, |
| 520 | // the block used by BatchGroup is also free for use. |
| 521 | // |
| 522 | // With this approach, the blocks used by BatchGroup and TransferBatch are |
| 523 | // reusable and don't need additional space for them. |
| 524 | |
| 525 | Sci->FreeListInfo.PushedBlocks += Size; |
| 526 | BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); |
| 527 | |
| 528 | if (BG == nullptr) { |
| 529 | // Construct `BatchGroup` on the last element. |
| 530 | BG = reinterpret_cast<BatchGroupT *>( |
| 531 | decompactPtr(ClassId: SizeClassMap::BatchClassId, CompactPtr: Array[Size - 1])); |
| 532 | --Size; |
| 533 | BG->Batches.clear(); |
| 534 | // BatchClass hasn't enabled memory group. Use `0` to indicate there's no |
| 535 | // memory group here. |
| 536 | BG->CompactPtrGroupBase = 0; |
| 537 | BG->BytesInBGAtLastCheckpoint = 0; |
| 538 | BG->MaxCachedPerBatch = SizeClassAllocatorT::getMaxCached( |
| 539 | getSizeByClassId(ClassId: SizeClassMap::BatchClassId)); |
| 540 | |
| 541 | Sci->FreeListInfo.BlockList.push_front(BG); |
| 542 | } |
| 543 | |
| 544 | if (UNLIKELY(Size == 0)) |
| 545 | return; |
| 546 | |
| 547 | // This happens under 2 cases. |
| 548 | // 1. just allocated a new `BatchGroup`. |
| 549 | // 2. Only 1 block is pushed when the freelist is empty. |
| 550 | if (BG->Batches.empty()) { |
| 551 | // Construct the `TransferBatch` on the last element. |
| 552 | TransferBatchT *TB = reinterpret_cast<TransferBatchT *>( |
| 553 | decompactPtr(ClassId: SizeClassMap::BatchClassId, CompactPtr: Array[Size - 1])); |
| 554 | TB->clear(); |
| 555 | // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are |
| 556 | // recorded in the TransferBatch. |
| 557 | TB->add(Array[Size - 1]); |
| 558 | TB->add( |
| 559 | compactPtr(ClassId: SizeClassMap::BatchClassId, Ptr: reinterpret_cast<uptr>(BG))); |
| 560 | --Size; |
| 561 | BG->Batches.push_front(TB); |
| 562 | } |
| 563 | |
| 564 | TransferBatchT *CurBatch = BG->Batches.front(); |
| 565 | DCHECK_NE(CurBatch, nullptr); |
| 566 | |
| 567 | for (u32 I = 0; I < Size;) { |
| 568 | u16 UnusedSlots = |
| 569 | static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
| 570 | if (UnusedSlots == 0) { |
| 571 | CurBatch = reinterpret_cast<TransferBatchT *>( |
| 572 | decompactPtr(ClassId: SizeClassMap::BatchClassId, CompactPtr: Array[I])); |
| 573 | CurBatch->clear(); |
| 574 | // Self-contained |
| 575 | CurBatch->add(Array[I]); |
| 576 | ++I; |
| 577 | // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of |
| 578 | // BatchClassId. |
| 579 | BG->Batches.push_front(CurBatch); |
| 580 | UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1); |
| 581 | } |
| 582 | // `UnusedSlots` is u16 so the result will be also fit in u16. |
| 583 | const u16 AppendSize = static_cast<u16>(Min<u32>(A: UnusedSlots, B: Size - I)); |
| 584 | CurBatch->appendFromArray(&Array[I], AppendSize); |
| 585 | I += AppendSize; |
| 586 | } |
| 587 | } |
| 588 | // Push the blocks to their batch group. The layout will be like, |
| 589 | // |
| 590 | // FreeListInfo.BlockList - > BG -> BG -> BG |
| 591 | // | | | |
| 592 | // v v v |
| 593 | // TB TB TB |
| 594 | // | |
| 595 | // v |
| 596 | // TB |
| 597 | // |
| 598 | // Each BlockGroup(BG) will associate with unique group id and the free blocks |
| 599 | // are managed by a list of TransferBatch(TB). To reduce the time of inserting |
| 600 | // blocks, BGs are sorted and the input `Array` are supposed to be sorted so |
| 601 | // that we can get better performance of maintaining sorted property. |
| 602 | // Use `SameGroup=true` to indicate that all blocks in the array are from the |
| 603 | // same group then we will skip checking the group id of each block. |
| 604 | // |
| 605 | // The region mutex needs to be held while calling this method. |
| 606 | void pushBlocksImpl(SizeClassAllocatorT *SizeClassAllocator, uptr ClassId, |
| 607 | SizeClassInfo *Sci, CompactPtrT *Array, u32 Size, |
| 608 | bool SameGroup = false) REQUIRES(Sci->Mutex) { |
| 609 | DCHECK_NE(ClassId, SizeClassMap::BatchClassId); |
| 610 | DCHECK_GT(Size, 0U); |
| 611 | |
| 612 | auto CreateGroup = [&](uptr CompactPtrGroupBase) { |
| 613 | BatchGroupT *BG = reinterpret_cast<BatchGroupT *>( |
| 614 | SizeClassAllocator->getBatchClassBlock()); |
| 615 | BG->Batches.clear(); |
| 616 | TransferBatchT *TB = reinterpret_cast<TransferBatchT *>( |
| 617 | SizeClassAllocator->getBatchClassBlock()); |
| 618 | TB->clear(); |
| 619 | |
| 620 | BG->CompactPtrGroupBase = CompactPtrGroupBase; |
| 621 | BG->Batches.push_front(TB); |
| 622 | BG->BytesInBGAtLastCheckpoint = 0; |
| 623 | BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached; |
| 624 | |
| 625 | return BG; |
| 626 | }; |
| 627 | |
| 628 | auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) { |
| 629 | SinglyLinkedList<TransferBatchT> &Batches = BG->Batches; |
| 630 | TransferBatchT *CurBatch = Batches.front(); |
| 631 | DCHECK_NE(CurBatch, nullptr); |
| 632 | |
| 633 | for (u32 I = 0; I < Size;) { |
| 634 | DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); |
| 635 | u16 UnusedSlots = |
| 636 | static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
| 637 | if (UnusedSlots == 0) { |
| 638 | CurBatch = reinterpret_cast<TransferBatchT *>( |
| 639 | SizeClassAllocator->getBatchClassBlock()); |
| 640 | CurBatch->clear(); |
| 641 | Batches.push_front(CurBatch); |
| 642 | UnusedSlots = BG->MaxCachedPerBatch; |
| 643 | } |
| 644 | // `UnusedSlots` is u16 so the result will be also fit in u16. |
| 645 | u16 AppendSize = static_cast<u16>(Min<u32>(A: UnusedSlots, B: Size - I)); |
| 646 | CurBatch->appendFromArray(&Array[I], AppendSize); |
| 647 | I += AppendSize; |
| 648 | } |
| 649 | }; |
| 650 | |
| 651 | Sci->FreeListInfo.PushedBlocks += Size; |
| 652 | BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front(); |
| 653 | |
| 654 | // In the following, `Cur` always points to the BatchGroup for blocks that |
| 655 | // will be pushed next. `Prev` is the element right before `Cur`. |
| 656 | BatchGroupT *Prev = nullptr; |
| 657 | |
| 658 | while (Cur != nullptr && |
| 659 | compactPtrGroupBase(CompactPtr: Array[0]) > Cur->CompactPtrGroupBase) { |
| 660 | Prev = Cur; |
| 661 | Cur = Cur->Next; |
| 662 | } |
| 663 | |
| 664 | if (Cur == nullptr || |
| 665 | compactPtrGroupBase(CompactPtr: Array[0]) != Cur->CompactPtrGroupBase) { |
| 666 | Cur = CreateGroup(compactPtrGroupBase(CompactPtr: Array[0])); |
| 667 | if (Prev == nullptr) |
| 668 | Sci->FreeListInfo.BlockList.push_front(Cur); |
| 669 | else |
| 670 | Sci->FreeListInfo.BlockList.insert(Prev, Cur); |
| 671 | } |
| 672 | |
| 673 | // All the blocks are from the same group, just push without checking group |
| 674 | // id. |
| 675 | if (SameGroup) { |
| 676 | for (u32 I = 0; I < Size; ++I) |
| 677 | DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase); |
| 678 | |
| 679 | InsertBlocks(Cur, Array, Size); |
| 680 | return; |
| 681 | } |
| 682 | |
| 683 | // The blocks are sorted by group id. Determine the segment of group and |
| 684 | // push them to their group together. |
| 685 | u32 Count = 1; |
| 686 | for (u32 I = 1; I < Size; ++I) { |
| 687 | if (compactPtrGroupBase(CompactPtr: Array[I - 1]) != compactPtrGroupBase(CompactPtr: Array[I])) { |
| 688 | DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase); |
| 689 | InsertBlocks(Cur, Array + I - Count, Count); |
| 690 | |
| 691 | while (Cur != nullptr && |
| 692 | compactPtrGroupBase(CompactPtr: Array[I]) > Cur->CompactPtrGroupBase) { |
| 693 | Prev = Cur; |
| 694 | Cur = Cur->Next; |
| 695 | } |
| 696 | |
| 697 | if (Cur == nullptr || |
| 698 | compactPtrGroupBase(CompactPtr: Array[I]) != Cur->CompactPtrGroupBase) { |
| 699 | Cur = CreateGroup(compactPtrGroupBase(CompactPtr: Array[I])); |
| 700 | DCHECK_NE(Prev, nullptr); |
| 701 | Sci->FreeListInfo.BlockList.insert(Prev, Cur); |
| 702 | } |
| 703 | |
| 704 | Count = 1; |
| 705 | } else { |
| 706 | ++Count; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | InsertBlocks(Cur, Array + Size - Count, Count); |
| 711 | } |
| 712 | |
| 713 | u16 popBlocksImpl(SizeClassAllocatorT *SizeClassAllocator, uptr ClassId, |
| 714 | SizeClassInfo *Sci, CompactPtrT *ToArray, |
| 715 | const u16 MaxBlockCount) REQUIRES(Sci->Mutex) { |
| 716 | if (Sci->FreeListInfo.BlockList.empty()) |
| 717 | return 0U; |
| 718 | |
| 719 | SinglyLinkedList<TransferBatchT> &Batches = |
| 720 | Sci->FreeListInfo.BlockList.front()->Batches; |
| 721 | |
| 722 | if (Batches.empty()) { |
| 723 | DCHECK_EQ(ClassId, SizeClassMap::BatchClassId); |
| 724 | BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); |
| 725 | Sci->FreeListInfo.BlockList.pop_front(); |
| 726 | |
| 727 | // Block used by `BatchGroup` is from BatchClassId. Turn the block into |
| 728 | // `TransferBatch` with single block. |
| 729 | TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG); |
| 730 | ToArray[0] = |
| 731 | compactPtr(ClassId: SizeClassMap::BatchClassId, Ptr: reinterpret_cast<uptr>(TB)); |
| 732 | Sci->FreeListInfo.PoppedBlocks += 1; |
| 733 | return 1U; |
| 734 | } |
| 735 | |
| 736 | // So far, instead of always filling the blocks to `MaxBlockCount`, we only |
| 737 | // examine single `TransferBatch` to minimize the time spent on the primary |
| 738 | // allocator. Besides, the sizes of `TransferBatch` and |
| 739 | // `SizeClassAllocatorT::getMaxCached()` may also impact the time spent on |
| 740 | // accessing the primary allocator. |
| 741 | // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount` |
| 742 | // blocks and/or adjust the size of `TransferBatch` according to |
| 743 | // `SizeClassAllocatorT::getMaxCached()`. |
| 744 | TransferBatchT *B = Batches.front(); |
| 745 | DCHECK_NE(B, nullptr); |
| 746 | DCHECK_GT(B->getCount(), 0U); |
| 747 | |
| 748 | // BachClassId should always take all blocks in the TransferBatch. Read the |
| 749 | // comment in `pushBatchClassBlocks()` for more details. |
| 750 | const u16 PopCount = ClassId == SizeClassMap::BatchClassId |
| 751 | ? B->getCount() |
| 752 | : Min(MaxBlockCount, B->getCount()); |
| 753 | B->moveNToArray(ToArray, PopCount); |
| 754 | |
| 755 | // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be |
| 756 | // done without holding `Mutex`. |
| 757 | if (B->empty()) { |
| 758 | Batches.pop_front(); |
| 759 | // `TransferBatch` of BatchClassId is self-contained, no need to |
| 760 | // deallocate. Read the comment in `pushBatchClassBlocks()` for more |
| 761 | // details. |
| 762 | if (ClassId != SizeClassMap::BatchClassId) |
| 763 | SizeClassAllocator->deallocate(SizeClassMap::BatchClassId, B); |
| 764 | |
| 765 | if (Batches.empty()) { |
| 766 | BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); |
| 767 | Sci->FreeListInfo.BlockList.pop_front(); |
| 768 | |
| 769 | // We don't keep BatchGroup with zero blocks to avoid empty-checking |
| 770 | // while allocating. Note that block used for constructing BatchGroup is |
| 771 | // recorded as free blocks in the last element of BatchGroup::Batches. |
| 772 | // Which means, once we pop the last TransferBatch, the block is |
| 773 | // implicitly deallocated. |
| 774 | if (ClassId != SizeClassMap::BatchClassId) |
| 775 | SizeClassAllocator->deallocate(SizeClassMap::BatchClassId, BG); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | Sci->FreeListInfo.PoppedBlocks += PopCount; |
| 780 | return PopCount; |
| 781 | } |
| 782 | |
| 783 | NOINLINE bool populateFreeList(SizeClassAllocatorT *SizeClassAllocator, |
| 784 | uptr ClassId, SizeClassInfo *Sci) |
| 785 | REQUIRES(Sci->Mutex) { |
| 786 | uptr Region; |
| 787 | uptr Offset; |
| 788 | // If the size-class currently has a region associated to it, use it. The |
| 789 | // newly created blocks will be located after the currently allocated memory |
| 790 | // for that region (up to RegionSize). Otherwise, create a new region, where |
| 791 | // the new blocks will be carved from the beginning. |
| 792 | if (Sci->CurrentRegion) { |
| 793 | Region = Sci->CurrentRegion; |
| 794 | DCHECK_GT(Sci->CurrentRegionAllocated, 0U); |
| 795 | Offset = Sci->CurrentRegionAllocated; |
| 796 | } else { |
| 797 | DCHECK_EQ(Sci->CurrentRegionAllocated, 0U); |
| 798 | Region = allocateRegion(Sci, ClassId); |
| 799 | if (UNLIKELY(!Region)) |
| 800 | return false; |
| 801 | SizeClassAllocator->getStats().add(StatMapped, RegionSize); |
| 802 | Sci->CurrentRegion = Region; |
| 803 | Offset = 0; |
| 804 | } |
| 805 | |
| 806 | const uptr Size = getSizeByClassId(ClassId); |
| 807 | const u16 MaxCount = SizeClassAllocatorT::getMaxCached(Size); |
| 808 | DCHECK_GT(MaxCount, 0U); |
| 809 | // The maximum number of blocks we should carve in the region is dictated |
| 810 | // by the maximum number of batches we want to fill, and the amount of |
| 811 | // memory left in the current region (we use the lowest of the two). This |
| 812 | // will not be 0 as we ensure that a region can at least hold one block (via |
| 813 | // static_assert and at the end of this function). |
| 814 | const u32 NumberOfBlocks = |
| 815 | Min(A: MaxNumBatches * MaxCount, |
| 816 | B: static_cast<u32>((RegionSize - Offset) / Size)); |
| 817 | DCHECK_GT(NumberOfBlocks, 0U); |
| 818 | |
| 819 | constexpr u32 ShuffleArraySize = |
| 820 | MaxNumBatches * TransferBatchT::MaxNumCached; |
| 821 | // Fill the transfer batches and put them in the size-class freelist. We |
| 822 | // need to randomize the blocks for security purposes, so we first fill a |
| 823 | // local array that we then shuffle before populating the batches. |
| 824 | CompactPtrT ShuffleArray[ShuffleArraySize]; |
| 825 | DCHECK_LE(NumberOfBlocks, ShuffleArraySize); |
| 826 | |
| 827 | uptr P = Region + Offset; |
| 828 | for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) |
| 829 | ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P); |
| 830 | |
| 831 | if (ClassId != SizeClassMap::BatchClassId) { |
| 832 | u32 N = 1; |
| 833 | uptr CurGroup = compactPtrGroupBase(CompactPtr: ShuffleArray[0]); |
| 834 | for (u32 I = 1; I < NumberOfBlocks; I++) { |
| 835 | if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) { |
| 836 | shuffle(ShuffleArray + I - N, N, &Sci->RandState); |
| 837 | pushBlocksImpl(SizeClassAllocator, ClassId, Sci, Array: ShuffleArray + I - N, |
| 838 | Size: N, |
| 839 | /*SameGroup=*/SameGroup: true); |
| 840 | N = 1; |
| 841 | CurGroup = compactPtrGroupBase(CompactPtr: ShuffleArray[I]); |
| 842 | } else { |
| 843 | ++N; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState); |
| 848 | pushBlocksImpl(SizeClassAllocator, ClassId, Sci, |
| 849 | Array: &ShuffleArray[NumberOfBlocks - N], Size: N, |
| 850 | /*SameGroup=*/SameGroup: true); |
| 851 | } else { |
| 852 | pushBatchClassBlocks(Sci, Array: ShuffleArray, Size: NumberOfBlocks); |
| 853 | } |
| 854 | |
| 855 | // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record |
| 856 | // the requests from `PushBlocks` and `PopBatch` which are external |
| 857 | // interfaces. `populateFreeList` is the internal interface so we should set |
| 858 | // the values back to avoid incorrectly setting the stats. |
| 859 | Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks; |
| 860 | |
| 861 | const uptr AllocatedUser = Size * NumberOfBlocks; |
| 862 | SizeClassAllocator->getStats().add(StatFree, AllocatedUser); |
| 863 | DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize); |
| 864 | // If there is not enough room in the region currently associated to fit |
| 865 | // more blocks, we deassociate the region by resetting CurrentRegion and |
| 866 | // CurrentRegionAllocated. Otherwise, update the allocated amount. |
| 867 | if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) { |
| 868 | Sci->CurrentRegion = 0; |
| 869 | Sci->CurrentRegionAllocated = 0; |
| 870 | } else { |
| 871 | Sci->CurrentRegionAllocated += AllocatedUser; |
| 872 | } |
| 873 | Sci->AllocatedUser += AllocatedUser; |
| 874 | |
| 875 | return true; |
| 876 | } |
| 877 | |
| 878 | void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci) |
| 879 | REQUIRES(Sci->Mutex) { |
| 880 | if (Sci->AllocatedUser == 0) |
| 881 | return; |
| 882 | const uptr BlockSize = getSizeByClassId(ClassId); |
| 883 | const uptr InUse = |
| 884 | Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; |
| 885 | const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize; |
| 886 | uptr PushedBytesDelta = 0; |
| 887 | if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) { |
| 888 | PushedBytesDelta = |
| 889 | BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; |
| 890 | } |
| 891 | const uptr AvailableChunks = Sci->AllocatedUser / BlockSize; |
| 892 | Str->append( |
| 893 | Format: " %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " |
| 894 | "inuse: %6zu avail: %6zu releases attempted: %6zu last released: %6zuK " |
| 895 | "latest pushed bytes: %6zuK\n" , |
| 896 | ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10, |
| 897 | Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks, InUse, |
| 898 | AvailableChunks, Sci->ReleaseInfo.NumReleasesAttempted, |
| 899 | Sci->ReleaseInfo.LastReleasedBytes >> 10, PushedBytesDelta >> 10); |
| 900 | } |
| 901 | |
| 902 | void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId, |
| 903 | ScopedString *Str) REQUIRES(Sci->Mutex) { |
| 904 | const uptr BlockSize = getSizeByClassId(ClassId); |
| 905 | const uptr First = Sci->MinRegionIndex; |
| 906 | const uptr Last = Sci->MaxRegionIndex; |
| 907 | const uptr Base = First * RegionSize; |
| 908 | const uptr NumberOfRegions = Last - First + 1U; |
| 909 | auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { |
| 910 | ScopedLock L(ByteMapMutex); |
| 911 | return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; |
| 912 | }; |
| 913 | |
| 914 | FragmentationRecorder Recorder; |
| 915 | if (!Sci->FreeListInfo.BlockList.empty()) { |
| 916 | PageReleaseContext Context = |
| 917 | markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions, |
| 918 | ReleaseType: ReleaseToOS::ForceAll); |
| 919 | releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
| 920 | } |
| 921 | |
| 922 | const uptr PageSize = getPageSizeCached(); |
| 923 | const uptr TotalBlocks = Sci->AllocatedUser / BlockSize; |
| 924 | const uptr InUseBlocks = |
| 925 | Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; |
| 926 | uptr AllocatedPagesCount = 0; |
| 927 | if (TotalBlocks != 0U) { |
| 928 | for (uptr I = 0; I < NumberOfRegions; ++I) { |
| 929 | if (SkipRegion(I)) |
| 930 | continue; |
| 931 | AllocatedPagesCount += RegionSize / PageSize; |
| 932 | } |
| 933 | |
| 934 | DCHECK_NE(AllocatedPagesCount, 0U); |
| 935 | } |
| 936 | |
| 937 | DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount()); |
| 938 | const uptr InUsePages = |
| 939 | AllocatedPagesCount - Recorder.getReleasedPagesCount(); |
| 940 | const uptr InUseBytes = InUsePages * PageSize; |
| 941 | |
| 942 | uptr Integral; |
| 943 | uptr Fractional; |
| 944 | computePercentage(Numerator: BlockSize * InUseBlocks, Denominator: InUseBytes, Integral: &Integral, |
| 945 | Fractional: &Fractional); |
| 946 | Str->append(Format: " %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total " |
| 947 | "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n" , |
| 948 | ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages, |
| 949 | AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional); |
| 950 | } |
| 951 | |
| 952 | NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId, |
| 953 | ReleaseToOS ReleaseType = ReleaseToOS::Normal) |
| 954 | REQUIRES(Sci->Mutex) { |
| 955 | const uptr BlockSize = getSizeByClassId(ClassId); |
| 956 | |
| 957 | DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); |
| 958 | const uptr BytesInFreeList = |
| 959 | Sci->AllocatedUser - |
| 960 | (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) * |
| 961 | BlockSize; |
| 962 | |
| 963 | if (UNLIKELY(BytesInFreeList == 0)) |
| 964 | return 0; |
| 965 | |
| 966 | // ====================================================================== // |
| 967 | // 1. Check if we have enough free blocks and if it's worth doing a page |
| 968 | // release. |
| 969 | // ====================================================================== // |
| 970 | if (ReleaseType != ReleaseToOS::ForceAll && |
| 971 | !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList, |
| 972 | ReleaseType)) { |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | const uptr First = Sci->MinRegionIndex; |
| 977 | const uptr Last = Sci->MaxRegionIndex; |
| 978 | DCHECK_NE(Last, 0U); |
| 979 | DCHECK_LE(First, Last); |
| 980 | uptr TotalReleasedBytes = 0; |
| 981 | const uptr Base = First * RegionSize; |
| 982 | const uptr NumberOfRegions = Last - First + 1U; |
| 983 | |
| 984 | // The following steps contribute to the majority time spent in page |
| 985 | // releasing thus we increment the counter here. |
| 986 | ++Sci->ReleaseInfo.NumReleasesAttempted; |
| 987 | |
| 988 | // ==================================================================== // |
| 989 | // 2. Mark the free blocks and we can tell which pages are in-use by |
| 990 | // querying `PageReleaseContext`. |
| 991 | // ==================================================================== // |
| 992 | PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base, |
| 993 | NumberOfRegions, ReleaseType); |
| 994 | if (!Context.hasBlockMarked()) |
| 995 | return 0; |
| 996 | |
| 997 | // ==================================================================== // |
| 998 | // 3. Release the unused physical pages back to the OS. |
| 999 | // ==================================================================== // |
| 1000 | ReleaseRecorder Recorder(Base); |
| 1001 | auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { |
| 1002 | ScopedLock L(ByteMapMutex); |
| 1003 | return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; |
| 1004 | }; |
| 1005 | releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
| 1006 | |
| 1007 | if (Recorder.getReleasedBytes() > 0) { |
| 1008 | Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; |
| 1009 | Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); |
| 1010 | TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes; |
| 1011 | } |
| 1012 | Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast(); |
| 1013 | |
| 1014 | return TotalReleasedBytes; |
| 1015 | } |
| 1016 | |
| 1017 | bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize, |
| 1018 | uptr BytesInFreeList, ReleaseToOS ReleaseType) |
| 1019 | REQUIRES(Sci->Mutex) { |
| 1020 | DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); |
| 1021 | const uptr PageSize = getPageSizeCached(); |
| 1022 | |
| 1023 | if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) |
| 1024 | Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; |
| 1025 | |
| 1026 | // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value |
| 1027 | // so that we won't underestimate the releasable pages. For example, the |
| 1028 | // following is the region usage, |
| 1029 | // |
| 1030 | // BytesInFreeListAtLastCheckpoint AllocatedUser |
| 1031 | // v v |
| 1032 | // |---------------------------------------> |
| 1033 | // ^ ^ |
| 1034 | // BytesInFreeList ReleaseThreshold |
| 1035 | // |
| 1036 | // In general, if we have collected enough bytes and the amount of free |
| 1037 | // bytes meets the ReleaseThreshold, we will try to do page release. If we |
| 1038 | // don't update `BytesInFreeListAtLastCheckpoint` when the current |
| 1039 | // `BytesInFreeList` is smaller, we may take longer time to wait for enough |
| 1040 | // freed blocks because we miss the bytes between |
| 1041 | // (BytesInFreeListAtLastCheckpoint - BytesInFreeList). |
| 1042 | const uptr PushedBytesDelta = |
| 1043 | BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; |
| 1044 | if (PushedBytesDelta < PageSize) |
| 1045 | return false; |
| 1046 | |
| 1047 | // Releasing smaller blocks is expensive, so we want to make sure that a |
| 1048 | // significant amount of bytes are free, and that there has been a good |
| 1049 | // amount of batches pushed to the freelist before attempting to release. |
| 1050 | if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal) |
| 1051 | if (PushedBytesDelta < Sci->AllocatedUser / 16U) |
| 1052 | return false; |
| 1053 | |
| 1054 | if (ReleaseType == ReleaseToOS::Normal) { |
| 1055 | const s32 IntervalMs = atomic_load_relaxed(A: &ReleaseToOsIntervalMs); |
| 1056 | if (IntervalMs < 0) |
| 1057 | return false; |
| 1058 | |
| 1059 | // The constant 8 here is selected from profiling some apps and the number |
| 1060 | // of unreleased pages in the large size classes is around 16 pages or |
| 1061 | // more. Choose half of it as a heuristic and which also avoids page |
| 1062 | // release every time for every pushBlocks() attempt by large blocks. |
| 1063 | const bool ByPassReleaseInterval = |
| 1064 | isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize; |
| 1065 | if (!ByPassReleaseInterval) { |
| 1066 | if (Sci->ReleaseInfo.LastReleaseAtNs + |
| 1067 | static_cast<u64>(IntervalMs) * 1000000 > |
| 1068 | getMonotonicTimeFast()) { |
| 1069 | // Memory was returned recently. |
| 1070 | return false; |
| 1071 | } |
| 1072 | } |
| 1073 | } // if (ReleaseType == ReleaseToOS::Normal) |
| 1074 | |
| 1075 | return true; |
| 1076 | } |
| 1077 | |
| 1078 | PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId, |
| 1079 | const uptr BlockSize, const uptr Base, |
| 1080 | const uptr NumberOfRegions, |
| 1081 | ReleaseToOS ReleaseType) |
| 1082 | REQUIRES(Sci->Mutex) { |
| 1083 | const uptr PageSize = getPageSizeCached(); |
| 1084 | const uptr GroupSize = (1UL << GroupSizeLog); |
| 1085 | const uptr CurGroupBase = |
| 1086 | compactPtrGroupBase(CompactPtr: compactPtr(ClassId, Ptr: Sci->CurrentRegion)); |
| 1087 | |
| 1088 | PageReleaseContext Context(BlockSize, NumberOfRegions, |
| 1089 | /*ReleaseSize=*/RegionSize); |
| 1090 | |
| 1091 | auto DecompactPtr = [](CompactPtrT CompactPtr) { |
| 1092 | return reinterpret_cast<uptr>(CompactPtr); |
| 1093 | }; |
| 1094 | for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { |
| 1095 | const uptr GroupBase = decompactGroupBase(CompactPtrGroupBase: BG.CompactPtrGroupBase); |
| 1096 | // The `GroupSize` may not be divided by `BlockSize`, which means there is |
| 1097 | // an unused space at the end of Region. Exclude that space to avoid |
| 1098 | // unused page map entry. |
| 1099 | uptr AllocatedGroupSize = GroupBase == CurGroupBase |
| 1100 | ? Sci->CurrentRegionAllocated |
| 1101 | : roundDownSlow(X: GroupSize, Boundary: BlockSize); |
| 1102 | if (AllocatedGroupSize == 0) |
| 1103 | continue; |
| 1104 | |
| 1105 | // TransferBatches are pushed in front of BG.Batches. The first one may |
| 1106 | // not have all caches used. |
| 1107 | const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + |
| 1108 | BG.Batches.front()->getCount(); |
| 1109 | const uptr BytesInBG = NumBlocks * BlockSize; |
| 1110 | |
| 1111 | if (ReleaseType != ReleaseToOS::ForceAll) { |
| 1112 | if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) { |
| 1113 | BG.BytesInBGAtLastCheckpoint = BytesInBG; |
| 1114 | continue; |
| 1115 | } |
| 1116 | |
| 1117 | const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint; |
| 1118 | if (PushedBytesDelta < PageSize) |
| 1119 | continue; |
| 1120 | |
| 1121 | // Given the randomness property, we try to release the pages only if |
| 1122 | // the bytes used by free blocks exceed certain proportion of allocated |
| 1123 | // spaces. |
| 1124 | if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize < |
| 1125 | (100U - 1U - BlockSize / 16U)) { |
| 1126 | continue; |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | // TODO: Consider updating this after page release if `ReleaseRecorder` |
| 1131 | // can tell the released bytes in each group. |
| 1132 | BG.BytesInBGAtLastCheckpoint = BytesInBG; |
| 1133 | |
| 1134 | const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize; |
| 1135 | const uptr RegionIndex = (GroupBase - Base) / RegionSize; |
| 1136 | |
| 1137 | if (NumBlocks == MaxContainedBlocks) { |
| 1138 | for (const auto &It : BG.Batches) |
| 1139 | for (u16 I = 0; I < It.getCount(); ++I) |
| 1140 | DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase); |
| 1141 | |
| 1142 | const uptr To = GroupBase + AllocatedGroupSize; |
| 1143 | Context.markRangeAsAllCounted(From: GroupBase, To, Base: GroupBase, RegionIndex, |
| 1144 | RegionSize: AllocatedGroupSize); |
| 1145 | } else { |
| 1146 | DCHECK_LT(NumBlocks, MaxContainedBlocks); |
| 1147 | |
| 1148 | // Note that we don't always visit blocks in each BatchGroup so that we |
| 1149 | // may miss the chance of releasing certain pages that cross |
| 1150 | // BatchGroups. |
| 1151 | Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase, |
| 1152 | RegionIndex, AllocatedGroupSize, |
| 1153 | /*MayContainLastBlockInRegion=*/true); |
| 1154 | } |
| 1155 | |
| 1156 | // We may not be able to do the page release In a rare case that we may |
| 1157 | // fail on PageMap allocation. |
| 1158 | if (UNLIKELY(!Context.hasBlockMarked())) |
| 1159 | break; |
| 1160 | } |
| 1161 | |
| 1162 | return Context; |
| 1163 | } |
| 1164 | |
| 1165 | SizeClassInfo SizeClassInfoArray[NumClasses] = {}; |
| 1166 | |
| 1167 | HybridMutex ByteMapMutex; |
| 1168 | // Track the regions in use, 0 is unused, otherwise store ClassId + 1. |
| 1169 | ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {}; |
| 1170 | atomic_s32 ReleaseToOsIntervalMs = {}; |
| 1171 | // Unless several threads request regions simultaneously from different size |
| 1172 | // classes, the stash rarely contains more than 1 entry. |
| 1173 | static constexpr uptr MaxStashedRegions = 4; |
| 1174 | HybridMutex RegionsStashMutex; |
| 1175 | uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0; |
| 1176 | uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {}; |
| 1177 | }; |
| 1178 | |
| 1179 | } // namespace scudo |
| 1180 | |
| 1181 | #endif // SCUDO_PRIMARY32_H_ |
| 1182 | |