| 1 | //===-- tsan_interceptors_posix.cpp ---------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of ThreadSanitizer (TSan), a race detector. |
| 10 | // |
| 11 | // FIXME: move as many interceptors as possible into |
| 12 | // sanitizer_common/sanitizer_common_interceptors.inc |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include <stdarg.h> |
| 16 | |
| 17 | #include "interception/interception.h" |
| 18 | #include "sanitizer_common/sanitizer_allocator_dlsym.h" |
| 19 | #include "sanitizer_common/sanitizer_atomic.h" |
| 20 | #include "sanitizer_common/sanitizer_errno.h" |
| 21 | #include "sanitizer_common/sanitizer_glibc_version.h" |
| 22 | #include "sanitizer_common/sanitizer_internal_defs.h" |
| 23 | #include "sanitizer_common/sanitizer_libc.h" |
| 24 | #include "sanitizer_common/sanitizer_linux.h" |
| 25 | #include "sanitizer_common/sanitizer_platform_interceptors.h" |
| 26 | #include "sanitizer_common/sanitizer_platform_limits_netbsd.h" |
| 27 | #include "sanitizer_common/sanitizer_platform_limits_posix.h" |
| 28 | #include "sanitizer_common/sanitizer_posix.h" |
| 29 | #include "sanitizer_common/sanitizer_stacktrace.h" |
| 30 | #include "sanitizer_common/sanitizer_tls_get_addr.h" |
| 31 | #include "sanitizer_common/sanitizer_vector.h" |
| 32 | #include "tsan_fd.h" |
| 33 | #include "tsan_interceptors.h" |
| 34 | #include "tsan_interface.h" |
| 35 | #include "tsan_mman.h" |
| 36 | #include "tsan_platform.h" |
| 37 | #include "tsan_rtl.h" |
| 38 | #include "tsan_suppressions.h" |
| 39 | |
| 40 | using namespace __tsan; |
| 41 | |
| 42 | DECLARE_REAL(void *, memcpy, void *to, const void *from, SIZE_T size) |
| 43 | DECLARE_REAL(void *, memset, void *block, int c, SIZE_T size) |
| 44 | |
| 45 | #if SANITIZER_FREEBSD || SANITIZER_APPLE |
| 46 | #define stdout __stdoutp |
| 47 | #define stderr __stderrp |
| 48 | #endif |
| 49 | |
| 50 | #if SANITIZER_NETBSD |
| 51 | #define dirfd(dirp) (*(int *)(dirp)) |
| 52 | #define fileno_unlocked(fp) \ |
| 53 | (((__sanitizer_FILE *)fp)->_file == -1 \ |
| 54 | ? -1 \ |
| 55 | : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file)) |
| 56 | |
| 57 | #define stdout ((__sanitizer_FILE*)&__sF[1]) |
| 58 | #define stderr ((__sanitizer_FILE*)&__sF[2]) |
| 59 | |
| 60 | #define nanosleep __nanosleep50 |
| 61 | #define vfork __vfork14 |
| 62 | #endif |
| 63 | |
| 64 | #ifdef __mips__ |
| 65 | const int kSigCount = 129; |
| 66 | #else |
| 67 | const int kSigCount = 65; |
| 68 | #endif |
| 69 | |
| 70 | #ifdef __mips__ |
| 71 | struct ucontext_t { |
| 72 | u64 opaque[768 / sizeof(u64) + 1]; |
| 73 | }; |
| 74 | #else |
| 75 | struct ucontext_t { |
| 76 | // The size is determined by looking at sizeof of real ucontext_t on linux. |
| 77 | u64 opaque[936 / sizeof(u64) + 1]; |
| 78 | }; |
| 79 | #endif |
| 80 | |
| 81 | #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \ |
| 82 | defined(__s390x__) |
| 83 | #define PTHREAD_ABI_BASE "GLIBC_2.3.2" |
| 84 | #elif defined(__aarch64__) || SANITIZER_PPC64V2 |
| 85 | #define PTHREAD_ABI_BASE "GLIBC_2.17" |
| 86 | #elif SANITIZER_LOONGARCH64 |
| 87 | #define PTHREAD_ABI_BASE "GLIBC_2.36" |
| 88 | #elif SANITIZER_RISCV64 |
| 89 | # define PTHREAD_ABI_BASE "GLIBC_2.27" |
| 90 | #endif |
| 91 | |
| 92 | extern "C" int pthread_attr_init(void *attr); |
| 93 | extern "C" int pthread_attr_destroy(void *attr); |
| 94 | DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *) |
| 95 | extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize); |
| 96 | extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void), |
| 97 | void (*child)(void)); |
| 98 | extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v)); |
| 99 | extern "C" int pthread_setspecific(unsigned key, const void *v); |
| 100 | DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *) |
| 101 | DECLARE_REAL(int, fflush, __sanitizer_FILE *fp) |
| 102 | DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, usize size) |
| 103 | DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr) |
| 104 | extern "C" int pthread_equal(void *t1, void *t2); |
| 105 | extern "C" void *pthread_self(); |
| 106 | extern "C" void _exit(int status); |
| 107 | #if !SANITIZER_NETBSD |
| 108 | extern "C" int fileno_unlocked(void *stream); |
| 109 | extern "C" int dirfd(void *dirp); |
| 110 | #endif |
| 111 | #if SANITIZER_NETBSD |
| 112 | extern __sanitizer_FILE __sF[]; |
| 113 | #else |
| 114 | extern __sanitizer_FILE *stdout, *stderr; |
| 115 | #endif |
| 116 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD |
| 117 | const int PTHREAD_MUTEX_RECURSIVE = 1; |
| 118 | const int PTHREAD_MUTEX_RECURSIVE_NP = 1; |
| 119 | #else |
| 120 | const int PTHREAD_MUTEX_RECURSIVE = 2; |
| 121 | const int PTHREAD_MUTEX_RECURSIVE_NP = 2; |
| 122 | #endif |
| 123 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD |
| 124 | const int EPOLL_CTL_ADD = 1; |
| 125 | #endif |
| 126 | const int SIGILL = 4; |
| 127 | const int SIGTRAP = 5; |
| 128 | const int SIGABRT = 6; |
| 129 | const int SIGFPE = 8; |
| 130 | const int SIGSEGV = 11; |
| 131 | const int SIGPIPE = 13; |
| 132 | const int SIGTERM = 15; |
| 133 | #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD |
| 134 | const int SIGBUS = 10; |
| 135 | const int SIGSYS = 12; |
| 136 | #else |
| 137 | const int SIGBUS = 7; |
| 138 | const int SIGSYS = 31; |
| 139 | #endif |
| 140 | #if SANITIZER_HAS_SIGINFO |
| 141 | const int SI_TIMER = -2; |
| 142 | #endif |
| 143 | void *const MAP_FAILED = (void*)-1; |
| 144 | #if SANITIZER_NETBSD |
| 145 | const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567; |
| 146 | #elif !SANITIZER_APPLE |
| 147 | const int PTHREAD_BARRIER_SERIAL_THREAD = -1; |
| 148 | #endif |
| 149 | const int MAP_FIXED = 0x10; |
| 150 | typedef long long_t; |
| 151 | typedef __sanitizer::u16 mode_t; |
| 152 | |
| 153 | // From /usr/include/unistd.h |
| 154 | # define F_ULOCK 0 /* Unlock a previously locked region. */ |
| 155 | # define F_LOCK 1 /* Lock a region for exclusive use. */ |
| 156 | # define F_TLOCK 2 /* Test and lock a region for exclusive use. */ |
| 157 | # define F_TEST 3 /* Test a region for other processes locks. */ |
| 158 | |
| 159 | #if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD |
| 160 | const int SA_SIGINFO = 0x40; |
| 161 | const int SIG_SETMASK = 3; |
| 162 | #elif defined(__mips__) |
| 163 | const int SA_SIGINFO = 8; |
| 164 | const int SIG_SETMASK = 3; |
| 165 | #else |
| 166 | const int SA_SIGINFO = 4; |
| 167 | const int SIG_SETMASK = 2; |
| 168 | #endif |
| 169 | |
| 170 | namespace __tsan { |
| 171 | struct SignalDesc { |
| 172 | bool armed; |
| 173 | __sanitizer_siginfo siginfo; |
| 174 | ucontext_t ctx; |
| 175 | }; |
| 176 | |
| 177 | struct ThreadSignalContext { |
| 178 | int int_signal_send; |
| 179 | SignalDesc pending_signals[kSigCount]; |
| 180 | // emptyset and oldset are too big for stack. |
| 181 | __sanitizer_sigset_t emptyset; |
| 182 | __sanitizer::Vector<__sanitizer_sigset_t> oldset; |
| 183 | }; |
| 184 | |
| 185 | void EnterBlockingFunc(ThreadState *thr) { |
| 186 | for (;;) { |
| 187 | // The order is important to not delay a signal infinitely if it's |
| 188 | // delivered right before we set in_blocking_func. Note: we can't call |
| 189 | // ProcessPendingSignals when in_blocking_func is set, or we can handle |
| 190 | // a signal synchronously when we are already handling a signal. |
| 191 | atomic_store(a: &thr->in_blocking_func, v: 1, mo: memory_order_relaxed); |
| 192 | if (atomic_load(a: &thr->pending_signals, mo: memory_order_relaxed) == 0) |
| 193 | break; |
| 194 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
| 195 | ProcessPendingSignals(thr); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | // The sole reason tsan wraps atexit callbacks is to establish synchronization |
| 200 | // between callback setup and callback execution. |
| 201 | struct AtExitCtx { |
| 202 | void (*f)(); |
| 203 | void *arg; |
| 204 | uptr pc; |
| 205 | }; |
| 206 | |
| 207 | // InterceptorContext holds all global data required for interceptors. |
| 208 | // It's explicitly constructed in InitializeInterceptors with placement new |
| 209 | // and is never destroyed. This allows usage of members with non-trivial |
| 210 | // constructors and destructors. |
| 211 | struct InterceptorContext { |
| 212 | // The object is 64-byte aligned, because we want hot data to be located |
| 213 | // in a single cache line if possible (it's accessed in every interceptor). |
| 214 | alignas(64) LibIgnore libignore; |
| 215 | __sanitizer_sigaction sigactions[kSigCount]; |
| 216 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD |
| 217 | unsigned finalize_key; |
| 218 | #endif |
| 219 | |
| 220 | Mutex atexit_mu; |
| 221 | Vector<struct AtExitCtx *> AtExitStack; |
| 222 | |
| 223 | InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {} |
| 224 | }; |
| 225 | |
| 226 | alignas(64) static char interceptor_placeholder[sizeof(InterceptorContext)]; |
| 227 | InterceptorContext *interceptor_ctx() { |
| 228 | return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]); |
| 229 | } |
| 230 | |
| 231 | LibIgnore *libignore() { |
| 232 | return &interceptor_ctx()->libignore; |
| 233 | } |
| 234 | |
| 235 | void InitializeLibIgnore() { |
| 236 | const SuppressionContext &supp = *Suppressions(); |
| 237 | const uptr n = supp.SuppressionCount(); |
| 238 | for (uptr i = 0; i < n; i++) { |
| 239 | const Suppression *s = supp.SuppressionAt(i); |
| 240 | if (0 == internal_strcmp(s1: s->type, s2: kSuppressionLib)) |
| 241 | libignore()->AddIgnoredLibrary(name_templ: s->templ); |
| 242 | } |
| 243 | if (flags()->ignore_noninstrumented_modules) |
| 244 | libignore()->IgnoreNoninstrumentedModules(enable: true); |
| 245 | libignore()->OnLibraryLoaded(name: 0); |
| 246 | } |
| 247 | |
| 248 | // The following two hooks can be used by for cooperative scheduling when |
| 249 | // locking. |
| 250 | #ifdef TSAN_EXTERNAL_HOOKS |
| 251 | void OnPotentiallyBlockingRegionBegin(); |
| 252 | void OnPotentiallyBlockingRegionEnd(); |
| 253 | #else |
| 254 | SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {} |
| 255 | SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {} |
| 256 | #endif |
| 257 | |
| 258 | // FIXME: Use for `in_symbolizer()` as well. As-is we can't use |
| 259 | // `DlSymAllocator`, because it uses the primary allocator only. Symbolizer |
| 260 | // requires support of the secondary allocator for larger blocks. |
| 261 | struct DlsymAlloc : public DlSymAllocator<DlsymAlloc> { |
| 262 | static bool UseImpl() { return (ctx && !ctx->initialized); } |
| 263 | }; |
| 264 | |
| 265 | } // namespace __tsan |
| 266 | |
| 267 | static ThreadSignalContext *SigCtx(ThreadState *thr) { |
| 268 | // This function may be called reentrantly if it is interrupted by a signal |
| 269 | // handler. Use CAS to handle the race. |
| 270 | uptr ctx = atomic_load(a: &thr->signal_ctx, mo: memory_order_relaxed); |
| 271 | if (ctx == 0 && !thr->is_dead) { |
| 272 | uptr pctx = |
| 273 | (uptr)MmapOrDie(size: sizeof(ThreadSignalContext), mem_type: "ThreadSignalContext" ); |
| 274 | MemoryResetRange(thr, pc: (uptr)&SigCtx, addr: pctx, size: sizeof(ThreadSignalContext)); |
| 275 | if (atomic_compare_exchange_strong(a: &thr->signal_ctx, cmp: &ctx, xchg: pctx, |
| 276 | mo: memory_order_relaxed)) { |
| 277 | ctx = pctx; |
| 278 | } else { |
| 279 | UnmapOrDie(addr: (ThreadSignalContext *)pctx, size: sizeof(ThreadSignalContext)); |
| 280 | } |
| 281 | } |
| 282 | return (ThreadSignalContext *)ctx; |
| 283 | } |
| 284 | |
| 285 | ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname, |
| 286 | uptr pc) |
| 287 | : thr_(thr) { |
| 288 | LazyInitialize(thr); |
| 289 | if (UNLIKELY(atomic_load(&thr->in_blocking_func, memory_order_relaxed))) { |
| 290 | // pthread_join is marked as blocking, but it's also known to call other |
| 291 | // intercepted functions (mmap, free). If we don't reset in_blocking_func |
| 292 | // we can get deadlocks and memory corruptions if we deliver a synchronous |
| 293 | // signal inside of an mmap/free interceptor. |
| 294 | // So reset it and restore it back in the destructor. |
| 295 | // See https://github.com/google/sanitizers/issues/1540 |
| 296 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
| 297 | in_blocking_func_ = true; |
| 298 | } |
| 299 | if (!thr_->is_inited) return; |
| 300 | if (!thr_->ignore_interceptors) FuncEntry(thr, pc); |
| 301 | DPrintf("#%d: intercept %s()\n" , thr_->tid, fname); |
| 302 | ignoring_ = |
| 303 | !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses || |
| 304 | libignore()->IsIgnored(pc, pc_in_ignored_lib: &in_ignored_lib_)); |
| 305 | EnableIgnores(); |
| 306 | } |
| 307 | |
| 308 | ScopedInterceptor::~ScopedInterceptor() { |
| 309 | if (!thr_->is_inited) return; |
| 310 | DisableIgnores(); |
| 311 | if (UNLIKELY(in_blocking_func_)) |
| 312 | EnterBlockingFunc(thr: thr_); |
| 313 | if (!thr_->ignore_interceptors) { |
| 314 | ProcessPendingSignals(thr: thr_); |
| 315 | FuncExit(thr: thr_); |
| 316 | CheckedMutex::CheckNoLocks(); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | NOINLINE |
| 321 | void ScopedInterceptor::EnableIgnoresImpl() { |
| 322 | ThreadIgnoreBegin(thr: thr_, pc: 0); |
| 323 | if (flags()->ignore_noninstrumented_modules) |
| 324 | thr_->suppress_reports++; |
| 325 | if (in_ignored_lib_) { |
| 326 | DCHECK(!thr_->in_ignored_lib); |
| 327 | thr_->in_ignored_lib = true; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | NOINLINE |
| 332 | void ScopedInterceptor::DisableIgnoresImpl() { |
| 333 | ThreadIgnoreEnd(thr: thr_); |
| 334 | if (flags()->ignore_noninstrumented_modules) |
| 335 | thr_->suppress_reports--; |
| 336 | if (in_ignored_lib_) { |
| 337 | DCHECK(thr_->in_ignored_lib); |
| 338 | thr_->in_ignored_lib = false; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func) |
| 343 | #if SANITIZER_FREEBSD || SANITIZER_NETBSD |
| 344 | # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func) |
| 345 | #else |
| 346 | # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver) |
| 347 | #endif |
| 348 | #if SANITIZER_FREEBSD |
| 349 | # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \ |
| 350 | INTERCEPT_FUNCTION(_pthread_##func) |
| 351 | #else |
| 352 | # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) |
| 353 | #endif |
| 354 | #if SANITIZER_NETBSD |
| 355 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \ |
| 356 | INTERCEPT_FUNCTION(__libc_##func) |
| 357 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \ |
| 358 | INTERCEPT_FUNCTION(__libc_thr_##func) |
| 359 | #else |
| 360 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) |
| 361 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) |
| 362 | #endif |
| 363 | |
| 364 | #define READ_STRING_OF_LEN(thr, pc, s, len, n) \ |
| 365 | MemoryAccessRange((thr), (pc), (uptr)(s), \ |
| 366 | common_flags()->strict_string_checks ? (len) + 1 : (n), false) |
| 367 | |
| 368 | #define READ_STRING(thr, pc, s, n) \ |
| 369 | READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n)) |
| 370 | |
| 371 | #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name)) |
| 372 | |
| 373 | struct BlockingCall { |
| 374 | explicit BlockingCall(ThreadState *thr) |
| 375 | : thr(thr) { |
| 376 | EnterBlockingFunc(thr); |
| 377 | // When we are in a "blocking call", we process signals asynchronously |
| 378 | // (right when they arrive). In this context we do not expect to be |
| 379 | // executing any user/runtime code. The known interceptor sequence when |
| 380 | // this is not true is: pthread_join -> munmap(stack). It's fine |
| 381 | // to ignore munmap in this case -- we handle stack shadow separately. |
| 382 | thr->ignore_interceptors++; |
| 383 | } |
| 384 | |
| 385 | ~BlockingCall() { |
| 386 | thr->ignore_interceptors--; |
| 387 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
| 388 | } |
| 389 | |
| 390 | ThreadState *thr; |
| 391 | }; |
| 392 | |
| 393 | TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) { |
| 394 | SCOPED_TSAN_INTERCEPTOR(sleep, sec); |
| 395 | unsigned res = BLOCK_REAL(sleep)(sec); |
| 396 | AfterSleep(thr, pc); |
| 397 | return res; |
| 398 | } |
| 399 | |
| 400 | TSAN_INTERCEPTOR(int, usleep, long_t usec) { |
| 401 | SCOPED_TSAN_INTERCEPTOR(usleep, usec); |
| 402 | int res = BLOCK_REAL(usleep)(usec); |
| 403 | AfterSleep(thr, pc); |
| 404 | return res; |
| 405 | } |
| 406 | |
| 407 | TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) { |
| 408 | SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem); |
| 409 | int res = BLOCK_REAL(nanosleep)(req, rem); |
| 410 | AfterSleep(thr, pc); |
| 411 | return res; |
| 412 | } |
| 413 | |
| 414 | TSAN_INTERCEPTOR(int, pause, int fake) { |
| 415 | SCOPED_TSAN_INTERCEPTOR(pause, fake); |
| 416 | return BLOCK_REAL(pause)(fake); |
| 417 | } |
| 418 | |
| 419 | // Note: we specifically call the function in such strange way |
| 420 | // with "installed_at" because in reports it will appear between |
| 421 | // callback frames and the frame that installed the callback. |
| 422 | static void at_exit_callback_installed_at() { |
| 423 | AtExitCtx *ctx; |
| 424 | { |
| 425 | // Ensure thread-safety. |
| 426 | Lock l(&interceptor_ctx()->atexit_mu); |
| 427 | |
| 428 | // Pop AtExitCtx from the top of the stack of callback functions |
| 429 | uptr element = interceptor_ctx()->AtExitStack.Size() - 1; |
| 430 | ctx = interceptor_ctx()->AtExitStack[element]; |
| 431 | interceptor_ctx()->AtExitStack.PopBack(); |
| 432 | } |
| 433 | |
| 434 | ThreadState *thr = cur_thread(); |
| 435 | Acquire(thr, pc: ctx->pc, addr: (uptr)ctx); |
| 436 | FuncEntry(thr, pc: ctx->pc); |
| 437 | ((void(*)())ctx->f)(); |
| 438 | FuncExit(thr); |
| 439 | Free(p&: ctx); |
| 440 | } |
| 441 | |
| 442 | static void cxa_at_exit_callback_installed_at(void *arg) { |
| 443 | ThreadState *thr = cur_thread(); |
| 444 | AtExitCtx *ctx = (AtExitCtx*)arg; |
| 445 | Acquire(thr, pc: ctx->pc, addr: (uptr)arg); |
| 446 | FuncEntry(thr, pc: ctx->pc); |
| 447 | ((void(*)(void *arg))ctx->f)(ctx->arg); |
| 448 | FuncExit(thr); |
| 449 | Free(p&: ctx); |
| 450 | } |
| 451 | |
| 452 | static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(), |
| 453 | void *arg, void *dso); |
| 454 | |
| 455 | #if !SANITIZER_ANDROID |
| 456 | TSAN_INTERCEPTOR(int, atexit, void (*f)()) { |
| 457 | if (in_symbolizer()) |
| 458 | return 0; |
| 459 | // We want to setup the atexit callback even if we are in ignored lib |
| 460 | // or after fork. |
| 461 | SCOPED_INTERCEPTOR_RAW(atexit, f); |
| 462 | return setup_at_exit_wrapper(thr, GET_CALLER_PC(), f: (void (*)())f, arg: 0, dso: 0); |
| 463 | } |
| 464 | #endif |
| 465 | |
| 466 | TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) { |
| 467 | if (in_symbolizer()) |
| 468 | return 0; |
| 469 | SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso); |
| 470 | return setup_at_exit_wrapper(thr, GET_CALLER_PC(), f: (void (*)())f, arg, dso); |
| 471 | } |
| 472 | |
| 473 | static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(), |
| 474 | void *arg, void *dso) { |
| 475 | auto *ctx = New<AtExitCtx>(); |
| 476 | ctx->f = f; |
| 477 | ctx->arg = arg; |
| 478 | ctx->pc = pc; |
| 479 | Release(thr, pc, addr: (uptr)ctx); |
| 480 | // Memory allocation in __cxa_atexit will race with free during exit, |
| 481 | // because we do not see synchronization around atexit callback list. |
| 482 | ThreadIgnoreBegin(thr, pc); |
| 483 | int res; |
| 484 | if (!dso) { |
| 485 | // NetBSD does not preserve the 2nd argument if dso is equal to 0 |
| 486 | // Store ctx in a local stack-like structure |
| 487 | |
| 488 | // Ensure thread-safety. |
| 489 | Lock l(&interceptor_ctx()->atexit_mu); |
| 490 | // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail |
| 491 | // due to atexit_mu held on exit from the calloc interceptor. |
| 492 | ScopedIgnoreInterceptors ignore; |
| 493 | |
| 494 | res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at, |
| 495 | 0, 0); |
| 496 | // Push AtExitCtx on the top of the stack of callback functions |
| 497 | if (!res) { |
| 498 | interceptor_ctx()->AtExitStack.PushBack(v: ctx); |
| 499 | } |
| 500 | } else { |
| 501 | res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso); |
| 502 | } |
| 503 | ThreadIgnoreEnd(thr); |
| 504 | return res; |
| 505 | } |
| 506 | |
| 507 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD |
| 508 | static void on_exit_callback_installed_at(int status, void *arg) { |
| 509 | ThreadState *thr = cur_thread(); |
| 510 | AtExitCtx *ctx = (AtExitCtx*)arg; |
| 511 | Acquire(thr, pc: ctx->pc, addr: (uptr)arg); |
| 512 | FuncEntry(thr, pc: ctx->pc); |
| 513 | ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg); |
| 514 | FuncExit(thr); |
| 515 | Free(p&: ctx); |
| 516 | } |
| 517 | |
| 518 | TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) { |
| 519 | if (in_symbolizer()) |
| 520 | return 0; |
| 521 | SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg); |
| 522 | auto *ctx = New<AtExitCtx>(); |
| 523 | ctx->f = (void(*)())f; |
| 524 | ctx->arg = arg; |
| 525 | ctx->pc = GET_CALLER_PC(); |
| 526 | Release(thr, pc, addr: (uptr)ctx); |
| 527 | // Memory allocation in __cxa_atexit will race with free during exit, |
| 528 | // because we do not see synchronization around atexit callback list. |
| 529 | ThreadIgnoreBegin(thr, pc); |
| 530 | int res = REAL(on_exit)(on_exit_callback_installed_at, ctx); |
| 531 | ThreadIgnoreEnd(thr); |
| 532 | return res; |
| 533 | } |
| 534 | #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit) |
| 535 | #else |
| 536 | #define TSAN_MAYBE_INTERCEPT_ON_EXIT |
| 537 | #endif |
| 538 | |
| 539 | // Cleanup old bufs. |
| 540 | static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) { |
| 541 | for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { |
| 542 | JmpBuf *buf = &thr->jmp_bufs[i]; |
| 543 | if (buf->sp <= sp) { |
| 544 | uptr sz = thr->jmp_bufs.Size(); |
| 545 | internal_memcpy(dest: buf, src: &thr->jmp_bufs[sz - 1], n: sizeof(*buf)); |
| 546 | thr->jmp_bufs.PopBack(); |
| 547 | i--; |
| 548 | } |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | static void SetJmp(ThreadState *thr, uptr sp) { |
| 553 | if (!thr->is_inited) // called from libc guts during bootstrap |
| 554 | return; |
| 555 | // Cleanup old bufs. |
| 556 | JmpBufGarbageCollect(thr, sp); |
| 557 | // Remember the buf. |
| 558 | JmpBuf *buf = thr->jmp_bufs.PushBack(); |
| 559 | buf->sp = sp; |
| 560 | buf->shadow_stack_pos = thr->shadow_stack_pos; |
| 561 | ThreadSignalContext *sctx = SigCtx(thr); |
| 562 | buf->int_signal_send = sctx ? sctx->int_signal_send : 0; |
| 563 | buf->oldset_stack_size = sctx ? sctx->oldset.Size() : 0; |
| 564 | buf->in_blocking_func = atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed); |
| 565 | buf->in_signal_handler = atomic_load(a: &thr->in_signal_handler, |
| 566 | mo: memory_order_relaxed); |
| 567 | } |
| 568 | |
| 569 | static void LongJmp(ThreadState *thr, uptr *env) { |
| 570 | uptr sp = ExtractLongJmpSp(env); |
| 571 | // Find the saved buf with matching sp. |
| 572 | for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { |
| 573 | JmpBuf *buf = &thr->jmp_bufs[i]; |
| 574 | if (buf->sp == sp) { |
| 575 | CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos); |
| 576 | // Unwind the stack. |
| 577 | while (thr->shadow_stack_pos > buf->shadow_stack_pos) |
| 578 | FuncExit(thr); |
| 579 | ThreadSignalContext *sctx = SigCtx(thr); |
| 580 | if (sctx) { |
| 581 | sctx->int_signal_send = buf->int_signal_send; |
| 582 | while (sctx->oldset.Size() > buf->oldset_stack_size) |
| 583 | sctx->oldset.PopBack(); |
| 584 | } |
| 585 | atomic_store(a: &thr->in_blocking_func, v: buf->in_blocking_func, |
| 586 | mo: memory_order_relaxed); |
| 587 | atomic_store(a: &thr->in_signal_handler, v: buf->in_signal_handler, |
| 588 | mo: memory_order_relaxed); |
| 589 | JmpBufGarbageCollect(thr, sp: buf->sp - 1); // do not collect buf->sp |
| 590 | return; |
| 591 | } |
| 592 | } |
| 593 | Printf(format: "ThreadSanitizer: can't find longjmp buf\n" ); |
| 594 | CHECK(0); |
| 595 | } |
| 596 | |
| 597 | // FIXME: put everything below into a common extern "C" block? |
| 598 | extern "C" void __tsan_setjmp(uptr sp) { SetJmp(thr: cur_thread_init(), sp); } |
| 599 | |
| 600 | #if SANITIZER_APPLE |
| 601 | TSAN_INTERCEPTOR(int, setjmp, void *env); |
| 602 | TSAN_INTERCEPTOR(int, _setjmp, void *env); |
| 603 | TSAN_INTERCEPTOR(int, sigsetjmp, void *env); |
| 604 | #else // SANITIZER_APPLE |
| 605 | |
| 606 | #if SANITIZER_NETBSD |
| 607 | #define setjmp_symname __setjmp14 |
| 608 | #define sigsetjmp_symname __sigsetjmp14 |
| 609 | #else |
| 610 | #define setjmp_symname setjmp |
| 611 | #define sigsetjmp_symname sigsetjmp |
| 612 | #endif |
| 613 | |
| 614 | DEFINE_REAL(int, setjmp_symname, void *env) |
| 615 | DEFINE_REAL(int, _setjmp, void *env) |
| 616 | DEFINE_REAL(int, sigsetjmp_symname, void *env) |
| 617 | #if !SANITIZER_NETBSD |
| 618 | DEFINE_REAL(int, __sigsetjmp, void *env) |
| 619 | #endif |
| 620 | |
| 621 | // The real interceptor for setjmp is special, and implemented in pure asm. We |
| 622 | // just need to initialize the REAL functions so that they can be used in asm. |
| 623 | static void InitializeSetjmpInterceptors() { |
| 624 | // We can not use TSAN_INTERCEPT to get setjmp addr, because it does &setjmp and |
| 625 | // setjmp is not present in some versions of libc. |
| 626 | using __interception::InterceptFunction; |
| 627 | InterceptFunction(SANITIZER_STRINGIFY(setjmp_symname), ptr_to_real: (uptr*)&REAL(setjmp_symname), func: 0, trampoline: 0); |
| 628 | InterceptFunction(name: "_setjmp" , ptr_to_real: (uptr*)&REAL(_setjmp), func: 0, trampoline: 0); |
| 629 | InterceptFunction(SANITIZER_STRINGIFY(sigsetjmp_symname), ptr_to_real: (uptr*)&REAL(sigsetjmp_symname), func: 0, |
| 630 | trampoline: 0); |
| 631 | #if !SANITIZER_NETBSD |
| 632 | InterceptFunction(name: "__sigsetjmp" , ptr_to_real: (uptr*)&REAL(__sigsetjmp), func: 0, trampoline: 0); |
| 633 | #endif |
| 634 | } |
| 635 | #endif // SANITIZER_APPLE |
| 636 | |
| 637 | #if SANITIZER_NETBSD |
| 638 | #define longjmp_symname __longjmp14 |
| 639 | #define siglongjmp_symname __siglongjmp14 |
| 640 | #else |
| 641 | #define longjmp_symname longjmp |
| 642 | #define siglongjmp_symname siglongjmp |
| 643 | #endif |
| 644 | |
| 645 | TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) { |
| 646 | // Note: if we call REAL(longjmp) in the context of ScopedInterceptor, |
| 647 | // bad things will happen. We will jump over ScopedInterceptor dtor and can |
| 648 | // leave thr->in_ignored_lib set. |
| 649 | { |
| 650 | SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val); |
| 651 | } |
| 652 | LongJmp(thr: cur_thread(), env); |
| 653 | REAL(longjmp_symname)(env, val); |
| 654 | } |
| 655 | |
| 656 | TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) { |
| 657 | { |
| 658 | SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val); |
| 659 | } |
| 660 | LongJmp(thr: cur_thread(), env); |
| 661 | REAL(siglongjmp_symname)(env, val); |
| 662 | } |
| 663 | |
| 664 | #if SANITIZER_NETBSD |
| 665 | TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) { |
| 666 | { |
| 667 | SCOPED_INTERCEPTOR_RAW(_longjmp, env, val); |
| 668 | } |
| 669 | LongJmp(cur_thread(), env); |
| 670 | REAL(_longjmp)(env, val); |
| 671 | } |
| 672 | #endif |
| 673 | |
| 674 | #if !SANITIZER_APPLE |
| 675 | TSAN_INTERCEPTOR(void*, malloc, uptr size) { |
| 676 | if (in_symbolizer()) |
| 677 | return InternalAlloc(size); |
| 678 | if (DlsymAlloc::Use()) |
| 679 | return DlsymAlloc::Allocate(size_in_bytes: size); |
| 680 | void *p = 0; |
| 681 | { |
| 682 | SCOPED_INTERCEPTOR_RAW(malloc, size); |
| 683 | p = user_alloc(thr, pc, sz: size); |
| 684 | } |
| 685 | invoke_malloc_hook(ptr: p, size); |
| 686 | return p; |
| 687 | } |
| 688 | |
| 689 | // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept |
| 690 | // __libc_memalign so that (1) we can detect races (2) free will not be called |
| 691 | // on libc internally allocated blocks. |
| 692 | TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) { |
| 693 | SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz); |
| 694 | return user_memalign(thr, pc, align, sz); |
| 695 | } |
| 696 | |
| 697 | TSAN_INTERCEPTOR(void *, calloc, uptr n, uptr size) { |
| 698 | if (in_symbolizer()) |
| 699 | return InternalCalloc(count: n, size); |
| 700 | if (DlsymAlloc::Use()) |
| 701 | return DlsymAlloc::Callocate(nmemb: n, size); |
| 702 | void *p = 0; |
| 703 | { |
| 704 | SCOPED_INTERCEPTOR_RAW(calloc, n, size); |
| 705 | p = user_calloc(thr, pc, sz: size, n); |
| 706 | } |
| 707 | invoke_malloc_hook(ptr: p, size: n * size); |
| 708 | return p; |
| 709 | } |
| 710 | |
| 711 | TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) { |
| 712 | if (in_symbolizer()) |
| 713 | return InternalRealloc(p, size); |
| 714 | if (DlsymAlloc::Use() || DlsymAlloc::PointerIsMine(ptr: p)) |
| 715 | return DlsymAlloc::Realloc(ptr: p, new_size: size); |
| 716 | if (p) |
| 717 | invoke_free_hook(ptr: p); |
| 718 | { |
| 719 | SCOPED_INTERCEPTOR_RAW(realloc, p, size); |
| 720 | p = user_realloc(thr, pc, p, sz: size); |
| 721 | } |
| 722 | invoke_malloc_hook(ptr: p, size); |
| 723 | return p; |
| 724 | } |
| 725 | |
| 726 | TSAN_INTERCEPTOR(void *, reallocarray, void *p, uptr n, uptr size) { |
| 727 | if (in_symbolizer()) |
| 728 | return InternalReallocArray(p, count: n, size); |
| 729 | if (p) |
| 730 | invoke_free_hook(ptr: p); |
| 731 | { |
| 732 | SCOPED_INTERCEPTOR_RAW(reallocarray, p, n, size); |
| 733 | p = user_reallocarray(thr, pc, p, sz: size, n); |
| 734 | } |
| 735 | invoke_malloc_hook(ptr: p, size); |
| 736 | return p; |
| 737 | } |
| 738 | |
| 739 | TSAN_INTERCEPTOR(void, free, void *p) { |
| 740 | if (UNLIKELY(!p)) |
| 741 | return; |
| 742 | if (in_symbolizer()) |
| 743 | return InternalFree(p); |
| 744 | if (DlsymAlloc::PointerIsMine(ptr: p)) |
| 745 | return DlsymAlloc::Free(ptr: p); |
| 746 | invoke_free_hook(ptr: p); |
| 747 | SCOPED_INTERCEPTOR_RAW(free, p); |
| 748 | user_free(thr, pc, p); |
| 749 | } |
| 750 | |
| 751 | # if SANITIZER_INTERCEPT_FREE_SIZED |
| 752 | TSAN_INTERCEPTOR(void, free_sized, void *p, uptr size) { |
| 753 | if (UNLIKELY(!p)) |
| 754 | return; |
| 755 | if (in_symbolizer()) |
| 756 | return InternalFree(p); |
| 757 | if (DlsymAlloc::PointerIsMine(ptr: p)) |
| 758 | return DlsymAlloc::Free(ptr: p); |
| 759 | invoke_free_hook(ptr: p); |
| 760 | SCOPED_INTERCEPTOR_RAW(free_sized, p, size); |
| 761 | user_free(thr, pc, p); |
| 762 | } |
| 763 | # define TSAN_MAYBE_INTERCEPT_FREE_SIZED INTERCEPT_FUNCTION(free_sized) |
| 764 | # else |
| 765 | # define TSAN_MAYBE_INTERCEPT_FREE_SIZED |
| 766 | # endif |
| 767 | |
| 768 | # if SANITIZER_INTERCEPT_FREE_ALIGNED_SIZED |
| 769 | TSAN_INTERCEPTOR(void, free_aligned_sized, void *p, uptr alignment, uptr size) { |
| 770 | if (UNLIKELY(!p)) |
| 771 | return; |
| 772 | if (in_symbolizer()) |
| 773 | return InternalFree(p); |
| 774 | if (DlsymAlloc::PointerIsMine(ptr: p)) |
| 775 | return DlsymAlloc::Free(ptr: p); |
| 776 | invoke_free_hook(ptr: p); |
| 777 | SCOPED_INTERCEPTOR_RAW(free_aligned_sized, p, alignment, size); |
| 778 | user_free(thr, pc, p); |
| 779 | } |
| 780 | # define TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED \ |
| 781 | INTERCEPT_FUNCTION(free_aligned_sized) |
| 782 | # else |
| 783 | # define TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED |
| 784 | # endif |
| 785 | |
| 786 | TSAN_INTERCEPTOR(void, cfree, void *p) { |
| 787 | if (UNLIKELY(!p)) |
| 788 | return; |
| 789 | if (in_symbolizer()) |
| 790 | return InternalFree(p); |
| 791 | if (DlsymAlloc::PointerIsMine(ptr: p)) |
| 792 | return DlsymAlloc::Free(ptr: p); |
| 793 | invoke_free_hook(ptr: p); |
| 794 | SCOPED_INTERCEPTOR_RAW(cfree, p); |
| 795 | user_free(thr, pc, p); |
| 796 | } |
| 797 | |
| 798 | TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) { |
| 799 | SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p); |
| 800 | return user_alloc_usable_size(p); |
| 801 | } |
| 802 | #else |
| 803 | # define TSAN_MAYBE_INTERCEPT_FREE_SIZED |
| 804 | # define TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED |
| 805 | #endif |
| 806 | |
| 807 | TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) { |
| 808 | SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); |
| 809 | uptr srclen = internal_strlen(s: src); |
| 810 | MemoryAccessRange(thr, pc, addr: (uptr)dst, size: srclen + 1, is_write: true); |
| 811 | MemoryAccessRange(thr, pc, addr: (uptr)src, size: srclen + 1, is_write: false); |
| 812 | return REAL(strcpy)(dst, src); |
| 813 | } |
| 814 | |
| 815 | TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, usize n) { |
| 816 | SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n); |
| 817 | uptr srclen = internal_strnlen(s: src, maxlen: n); |
| 818 | MemoryAccessRange(thr, pc, addr: (uptr)dst, size: n, is_write: true); |
| 819 | MemoryAccessRange(thr, pc, addr: (uptr)src, size: min(a: srclen + 1, b: n), is_write: false); |
| 820 | return REAL(strncpy)(dst, src, n); |
| 821 | } |
| 822 | |
| 823 | TSAN_INTERCEPTOR(char*, strdup, const char *str) { |
| 824 | SCOPED_TSAN_INTERCEPTOR(strdup, str); |
| 825 | // strdup will call malloc, so no instrumentation is required here. |
| 826 | return REAL(strdup)(str); |
| 827 | } |
| 828 | |
| 829 | // Zero out addr if it points into shadow memory and was provided as a hint |
| 830 | // only, i.e., MAP_FIXED is not set. |
| 831 | static bool fix_mmap_addr(void **addr, long_t sz, int flags) { |
| 832 | if (*addr) { |
| 833 | if (!IsAppMem(mem: (uptr)*addr) || !IsAppMem(mem: (uptr)*addr + sz - 1)) { |
| 834 | if (flags & MAP_FIXED) { |
| 835 | errno = errno_EINVAL; |
| 836 | return false; |
| 837 | } else { |
| 838 | *addr = 0; |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | return true; |
| 843 | } |
| 844 | |
| 845 | template <class Mmap> |
| 846 | static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap, |
| 847 | void *addr, SIZE_T sz, int prot, int flags, |
| 848 | int fd, OFF64_T off) { |
| 849 | if (!fix_mmap_addr(addr: &addr, sz, flags)) return MAP_FAILED; |
| 850 | void *res = real_mmap(addr, sz, prot, flags, fd, off); |
| 851 | if (res != MAP_FAILED) { |
| 852 | if (!IsAppMem(mem: (uptr)res) || !IsAppMem(mem: (uptr)res + sz - 1)) { |
| 853 | Report(format: "ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n" , |
| 854 | addr, (void*)sz, res); |
| 855 | Die(); |
| 856 | } |
| 857 | if (fd > 0) FdAccess(thr, pc, fd); |
| 858 | MemoryRangeImitateWriteOrResetRange(thr, pc, addr: (uptr)res, size: sz); |
| 859 | } |
| 860 | return res; |
| 861 | } |
| 862 | |
| 863 | template <class Munmap> |
| 864 | static int munmap_interceptor(ThreadState *thr, uptr pc, Munmap real_munmap, |
| 865 | void *addr, SIZE_T sz) { |
| 866 | UnmapShadow(thr, addr: (uptr)addr, size: sz); |
| 867 | int res = real_munmap(addr, sz); |
| 868 | return res; |
| 869 | } |
| 870 | |
| 871 | #if SANITIZER_LINUX |
| 872 | TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) { |
| 873 | SCOPED_INTERCEPTOR_RAW(memalign, align, sz); |
| 874 | return user_memalign(thr, pc, align, sz); |
| 875 | } |
| 876 | #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign) |
| 877 | #else |
| 878 | #define TSAN_MAYBE_INTERCEPT_MEMALIGN |
| 879 | #endif |
| 880 | |
| 881 | #if !SANITIZER_APPLE |
| 882 | TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) { |
| 883 | if (in_symbolizer()) |
| 884 | return InternalAlloc(size: sz, cache: nullptr, alignment: align); |
| 885 | SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz); |
| 886 | return user_aligned_alloc(thr, pc, align, sz); |
| 887 | } |
| 888 | |
| 889 | TSAN_INTERCEPTOR(void*, valloc, uptr sz) { |
| 890 | if (in_symbolizer()) |
| 891 | return InternalAlloc(size: sz, cache: nullptr, alignment: GetPageSizeCached()); |
| 892 | SCOPED_INTERCEPTOR_RAW(valloc, sz); |
| 893 | return user_valloc(thr, pc, sz); |
| 894 | } |
| 895 | #endif |
| 896 | |
| 897 | #if SANITIZER_LINUX |
| 898 | TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) { |
| 899 | if (in_symbolizer()) { |
| 900 | uptr PageSize = GetPageSizeCached(); |
| 901 | sz = sz ? RoundUpTo(size: sz, boundary: PageSize) : PageSize; |
| 902 | return InternalAlloc(size: sz, cache: nullptr, alignment: PageSize); |
| 903 | } |
| 904 | SCOPED_INTERCEPTOR_RAW(pvalloc, sz); |
| 905 | return user_pvalloc(thr, pc, sz); |
| 906 | } |
| 907 | #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc) |
| 908 | #else |
| 909 | #define TSAN_MAYBE_INTERCEPT_PVALLOC |
| 910 | #endif |
| 911 | |
| 912 | #if !SANITIZER_APPLE |
| 913 | TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) { |
| 914 | if (in_symbolizer()) { |
| 915 | void *p = InternalAlloc(size: sz, cache: nullptr, alignment: align); |
| 916 | if (!p) |
| 917 | return errno_ENOMEM; |
| 918 | *memptr = p; |
| 919 | return 0; |
| 920 | } |
| 921 | SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz); |
| 922 | return user_posix_memalign(thr, pc, memptr, align, sz); |
| 923 | } |
| 924 | #endif |
| 925 | |
| 926 | // Both __cxa_guard_acquire and pthread_once 0-initialize |
| 927 | // the object initially. pthread_once does not have any |
| 928 | // other ABI requirements. __cxa_guard_acquire assumes |
| 929 | // that any non-0 value in the first byte means that |
| 930 | // initialization is completed. Contents of the remaining |
| 931 | // bytes are up to us. |
| 932 | constexpr u32 kGuardInit = 0; |
| 933 | constexpr u32 kGuardDone = 1; |
| 934 | constexpr u32 kGuardRunning = 1 << 16; |
| 935 | constexpr u32 kGuardWaiter = 1 << 17; |
| 936 | |
| 937 | static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g, |
| 938 | bool blocking_hooks = true) { |
| 939 | bool in_potentially_blocking_region = false; |
| 940 | auto on_exit = at_scope_exit(fn: [&] { |
| 941 | if (in_potentially_blocking_region) |
| 942 | OnPotentiallyBlockingRegionEnd(); |
| 943 | }); |
| 944 | |
| 945 | for (;;) { |
| 946 | u32 cmp = atomic_load(a: g, mo: memory_order_acquire); |
| 947 | if (cmp == kGuardInit) { |
| 948 | if (atomic_compare_exchange_strong(a: g, cmp: &cmp, xchg: kGuardRunning, |
| 949 | mo: memory_order_relaxed)) |
| 950 | return 1; |
| 951 | } else if (cmp == kGuardDone) { |
| 952 | if (!thr->in_ignored_lib) |
| 953 | Acquire(thr, pc, addr: (uptr)g); |
| 954 | return 0; |
| 955 | } else { |
| 956 | if ((cmp & kGuardWaiter) || |
| 957 | atomic_compare_exchange_strong(a: g, cmp: &cmp, xchg: cmp | kGuardWaiter, |
| 958 | mo: memory_order_relaxed)) { |
| 959 | if (blocking_hooks && !in_potentially_blocking_region) { |
| 960 | in_potentially_blocking_region = true; |
| 961 | OnPotentiallyBlockingRegionBegin(); |
| 962 | } |
| 963 | FutexWait(p: g, cmp: cmp | kGuardWaiter); |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g, |
| 970 | u32 v) { |
| 971 | if (!thr->in_ignored_lib) |
| 972 | Release(thr, pc, addr: (uptr)g); |
| 973 | u32 old = atomic_exchange(a: g, v, mo: memory_order_release); |
| 974 | if (old & kGuardWaiter) |
| 975 | FutexWake(p: g, count: 1 << 30); |
| 976 | } |
| 977 | |
| 978 | // __cxa_guard_acquire and friends need to be intercepted in a special way - |
| 979 | // regular interceptors will break statically-linked libstdc++. Linux |
| 980 | // interceptors are especially defined as weak functions (so that they don't |
| 981 | // cause link errors when user defines them as well). So they silently |
| 982 | // auto-disable themselves when such symbol is already present in the binary. If |
| 983 | // we link libstdc++ statically, it will bring own __cxa_guard_acquire which |
| 984 | // will silently replace our interceptor. That's why on Linux we simply export |
| 985 | // these interceptors with INTERFACE_ATTRIBUTE. |
| 986 | // On OS X, we don't support statically linking, so we just use a regular |
| 987 | // interceptor. |
| 988 | #if SANITIZER_APPLE |
| 989 | #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR |
| 990 | #else |
| 991 | #define STDCXX_INTERCEPTOR(rettype, name, ...) \ |
| 992 | extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__) |
| 993 | #endif |
| 994 | |
| 995 | // Used in thread-safe function static initialization. |
| 996 | STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) { |
| 997 | SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g); |
| 998 | return guard_acquire(thr, pc, g); |
| 999 | } |
| 1000 | |
| 1001 | STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) { |
| 1002 | SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g); |
| 1003 | guard_release(thr, pc, g, v: kGuardDone); |
| 1004 | } |
| 1005 | |
| 1006 | STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) { |
| 1007 | SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g); |
| 1008 | guard_release(thr, pc, g, v: kGuardInit); |
| 1009 | } |
| 1010 | |
| 1011 | namespace __tsan { |
| 1012 | void DestroyThreadState() { |
| 1013 | ThreadState *thr = cur_thread(); |
| 1014 | Processor *proc = thr->proc(); |
| 1015 | ThreadFinish(thr); |
| 1016 | ProcUnwire(proc, thr); |
| 1017 | ProcDestroy(proc); |
| 1018 | DTLS_Destroy(); |
| 1019 | cur_thread_finalize(); |
| 1020 | } |
| 1021 | |
| 1022 | void PlatformCleanUpThreadState(ThreadState *thr) { |
| 1023 | ThreadSignalContext *sctx = (ThreadSignalContext *)atomic_load( |
| 1024 | a: &thr->signal_ctx, mo: memory_order_relaxed); |
| 1025 | if (sctx) { |
| 1026 | atomic_store(a: &thr->signal_ctx, v: 0, mo: memory_order_relaxed); |
| 1027 | sctx->oldset.Reset(); |
| 1028 | UnmapOrDie(addr: sctx, size: sizeof(*sctx)); |
| 1029 | } |
| 1030 | } |
| 1031 | } // namespace __tsan |
| 1032 | |
| 1033 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
| 1034 | static void thread_finalize(void *v) { |
| 1035 | uptr iter = (uptr)v; |
| 1036 | if (iter > 1) { |
| 1037 | if (pthread_setspecific(key: interceptor_ctx()->finalize_key, |
| 1038 | v: (void*)(iter - 1))) { |
| 1039 | Printf(format: "ThreadSanitizer: failed to set thread key\n" ); |
| 1040 | Die(); |
| 1041 | } |
| 1042 | return; |
| 1043 | } |
| 1044 | DestroyThreadState(); |
| 1045 | } |
| 1046 | #endif |
| 1047 | |
| 1048 | |
| 1049 | struct ThreadParam { |
| 1050 | void* (*callback)(void *arg); |
| 1051 | void *param; |
| 1052 | Tid tid; |
| 1053 | Semaphore created; |
| 1054 | Semaphore started; |
| 1055 | }; |
| 1056 | |
| 1057 | extern "C" void *__tsan_thread_start_func(void *arg) { |
| 1058 | ThreadParam *p = (ThreadParam*)arg; |
| 1059 | void* (*callback)(void *arg) = p->callback; |
| 1060 | void *param = p->param; |
| 1061 | { |
| 1062 | ThreadState *thr = cur_thread_init(); |
| 1063 | // Thread-local state is not initialized yet. |
| 1064 | ScopedIgnoreInterceptors ignore; |
| 1065 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
| 1066 | ThreadIgnoreBegin(thr, pc: 0); |
| 1067 | if (pthread_setspecific(key: interceptor_ctx()->finalize_key, |
| 1068 | v: (void *)GetPthreadDestructorIterations())) { |
| 1069 | Printf(format: "ThreadSanitizer: failed to set thread key\n" ); |
| 1070 | Die(); |
| 1071 | } |
| 1072 | ThreadIgnoreEnd(thr); |
| 1073 | #endif |
| 1074 | p->created.Wait(); |
| 1075 | Processor *proc = ProcCreate(); |
| 1076 | ProcWire(proc, thr); |
| 1077 | ThreadStart(thr, tid: p->tid, os_id: GetTid(), thread_type: ThreadType::Regular); |
| 1078 | p->started.Post(); |
| 1079 | } |
| 1080 | void *res = callback(param); |
| 1081 | // Prevent the callback from being tail called, |
| 1082 | // it mixes up stack traces. |
| 1083 | volatile int foo = 42; |
| 1084 | foo++; |
| 1085 | return res; |
| 1086 | } |
| 1087 | |
| 1088 | TSAN_INTERCEPTOR(int, pthread_create, |
| 1089 | void *th, void *attr, void *(*callback)(void*), void * param) { |
| 1090 | SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param); |
| 1091 | |
| 1092 | MaybeSpawnBackgroundThread(); |
| 1093 | |
| 1094 | if (ctx->after_multithreaded_fork) { |
| 1095 | if (flags()->die_after_fork) { |
| 1096 | Report(format: "ThreadSanitizer: starting new threads after multi-threaded " |
| 1097 | "fork is not supported. Dying (set die_after_fork=0 to override)\n" ); |
| 1098 | Die(); |
| 1099 | } else { |
| 1100 | VPrintf(1, |
| 1101 | "ThreadSanitizer: starting new threads after multi-threaded " |
| 1102 | "fork is not supported (pid %lu). Continuing because of " |
| 1103 | "die_after_fork=0, but you are on your own\n" , |
| 1104 | internal_getpid()); |
| 1105 | } |
| 1106 | } |
| 1107 | __sanitizer_pthread_attr_t myattr; |
| 1108 | if (attr == 0) { |
| 1109 | pthread_attr_init(attr: &myattr); |
| 1110 | attr = &myattr; |
| 1111 | } |
| 1112 | int detached = 0; |
| 1113 | REAL(pthread_attr_getdetachstate)(attr, &detached); |
| 1114 | AdjustStackSize(attr); |
| 1115 | |
| 1116 | ThreadParam p; |
| 1117 | p.callback = callback; |
| 1118 | p.param = param; |
| 1119 | p.tid = kMainTid; |
| 1120 | int res = -1; |
| 1121 | { |
| 1122 | // Otherwise we see false positives in pthread stack manipulation. |
| 1123 | ScopedIgnoreInterceptors ignore; |
| 1124 | ThreadIgnoreBegin(thr, pc); |
| 1125 | res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p); |
| 1126 | ThreadIgnoreEnd(thr); |
| 1127 | } |
| 1128 | if (res == 0) { |
| 1129 | p.tid = ThreadCreate(thr, pc, uid: *(uptr *)th, detached: IsStateDetached(state: detached)); |
| 1130 | CHECK_NE(p.tid, kMainTid); |
| 1131 | // Synchronization on p.tid serves two purposes: |
| 1132 | // 1. ThreadCreate must finish before the new thread starts. |
| 1133 | // Otherwise the new thread can call pthread_detach, but the pthread_t |
| 1134 | // identifier is not yet registered in ThreadRegistry by ThreadCreate. |
| 1135 | // 2. ThreadStart must finish before this thread continues. |
| 1136 | // Otherwise, this thread can call pthread_detach and reset thr->sync |
| 1137 | // before the new thread got a chance to acquire from it in ThreadStart. |
| 1138 | p.created.Post(); |
| 1139 | p.started.Wait(); |
| 1140 | } |
| 1141 | if (attr == &myattr) |
| 1142 | pthread_attr_destroy(attr: &myattr); |
| 1143 | return res; |
| 1144 | } |
| 1145 | |
| 1146 | TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) { |
| 1147 | SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret); |
| 1148 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
| 1149 | ThreadIgnoreBegin(thr, pc); |
| 1150 | int res = BLOCK_REAL(pthread_join)(th, ret); |
| 1151 | ThreadIgnoreEnd(thr); |
| 1152 | if (res == 0) { |
| 1153 | ThreadJoin(thr, pc, tid); |
| 1154 | } |
| 1155 | return res; |
| 1156 | } |
| 1157 | |
| 1158 | // DEFINE_INTERNAL_PTHREAD_FUNCTIONS |
| 1159 | namespace __sanitizer { |
| 1160 | int internal_pthread_create(void *th, void *attr, void *(*callback)(void *), |
| 1161 | void *param) { |
| 1162 | ScopedIgnoreInterceptors ignore; |
| 1163 | return REAL(pthread_create)(th, attr, callback, param); |
| 1164 | } |
| 1165 | int internal_pthread_join(void *th, void **ret) { |
| 1166 | ScopedIgnoreInterceptors ignore; |
| 1167 | return REAL(pthread_join)(th, ret); |
| 1168 | } |
| 1169 | } // namespace __sanitizer |
| 1170 | |
| 1171 | TSAN_INTERCEPTOR(int, pthread_detach, void *th) { |
| 1172 | SCOPED_INTERCEPTOR_RAW(pthread_detach, th); |
| 1173 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
| 1174 | int res = REAL(pthread_detach)(th); |
| 1175 | if (res == 0) { |
| 1176 | ThreadDetach(thr, pc, tid); |
| 1177 | } |
| 1178 | return res; |
| 1179 | } |
| 1180 | |
| 1181 | TSAN_INTERCEPTOR(void, pthread_exit, void *retval) { |
| 1182 | { |
| 1183 | SCOPED_INTERCEPTOR_RAW(pthread_exit, retval); |
| 1184 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
| 1185 | CHECK_EQ(thr, &cur_thread_placeholder); |
| 1186 | #endif |
| 1187 | } |
| 1188 | REAL(pthread_exit)(retval); |
| 1189 | } |
| 1190 | |
| 1191 | #if SANITIZER_LINUX |
| 1192 | TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) { |
| 1193 | SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret); |
| 1194 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
| 1195 | ThreadIgnoreBegin(thr, pc); |
| 1196 | int res = REAL(pthread_tryjoin_np)(th, ret); |
| 1197 | ThreadIgnoreEnd(thr); |
| 1198 | if (res == 0) |
| 1199 | ThreadJoin(thr, pc, tid); |
| 1200 | else |
| 1201 | ThreadNotJoined(thr, pc, tid, uid: (uptr)th); |
| 1202 | return res; |
| 1203 | } |
| 1204 | |
| 1205 | TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret, |
| 1206 | const struct timespec *abstime) { |
| 1207 | SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime); |
| 1208 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
| 1209 | ThreadIgnoreBegin(thr, pc); |
| 1210 | int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime); |
| 1211 | ThreadIgnoreEnd(thr); |
| 1212 | if (res == 0) |
| 1213 | ThreadJoin(thr, pc, tid); |
| 1214 | else |
| 1215 | ThreadNotJoined(thr, pc, tid, uid: (uptr)th); |
| 1216 | return res; |
| 1217 | } |
| 1218 | #endif |
| 1219 | |
| 1220 | // Problem: |
| 1221 | // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2). |
| 1222 | // pthread_cond_t has different size in the different versions. |
| 1223 | // If call new REAL functions for old pthread_cond_t, they will corrupt memory |
| 1224 | // after pthread_cond_t (old cond is smaller). |
| 1225 | // If we call old REAL functions for new pthread_cond_t, we will lose some |
| 1226 | // functionality (e.g. old functions do not support waiting against |
| 1227 | // CLOCK_REALTIME). |
| 1228 | // Proper handling would require to have 2 versions of interceptors as well. |
| 1229 | // But this is messy, in particular requires linker scripts when sanitizer |
| 1230 | // runtime is linked into a shared library. |
| 1231 | // Instead we assume we don't have dynamic libraries built against old |
| 1232 | // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag |
| 1233 | // that allows to work with old libraries (but this mode does not support |
| 1234 | // some features, e.g. pthread_condattr_getpshared). |
| 1235 | static void *init_cond(void *c, bool force = false) { |
| 1236 | // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions. |
| 1237 | // So we allocate additional memory on the side large enough to hold |
| 1238 | // any pthread_cond_t object. Always call new REAL functions, but pass |
| 1239 | // the aux object to them. |
| 1240 | // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes |
| 1241 | // first word of pthread_cond_t to zero. |
| 1242 | // It's all relevant only for linux. |
| 1243 | if (!common_flags()->legacy_pthread_cond) |
| 1244 | return c; |
| 1245 | atomic_uintptr_t *p = (atomic_uintptr_t*)c; |
| 1246 | uptr cond = atomic_load(a: p, mo: memory_order_acquire); |
| 1247 | if (!force && cond != 0) |
| 1248 | return (void*)cond; |
| 1249 | void *newcond = WRAP(malloc)(size: pthread_cond_t_sz); |
| 1250 | internal_memset(s: newcond, c: 0, n: pthread_cond_t_sz); |
| 1251 | if (atomic_compare_exchange_strong(a: p, cmp: &cond, xchg: (uptr)newcond, |
| 1252 | mo: memory_order_acq_rel)) |
| 1253 | return newcond; |
| 1254 | WRAP(free)(p: newcond); |
| 1255 | return (void*)cond; |
| 1256 | } |
| 1257 | |
| 1258 | namespace { |
| 1259 | |
| 1260 | template <class Fn> |
| 1261 | struct CondMutexUnlockCtx { |
| 1262 | ScopedInterceptor *si; |
| 1263 | ThreadState *thr; |
| 1264 | uptr pc; |
| 1265 | void *m; |
| 1266 | void *c; |
| 1267 | const Fn &fn; |
| 1268 | |
| 1269 | int Cancel() const { return fn(); } |
| 1270 | void Unlock() const; |
| 1271 | }; |
| 1272 | |
| 1273 | template <class Fn> |
| 1274 | void CondMutexUnlockCtx<Fn>::Unlock() const { |
| 1275 | // pthread_cond_wait interceptor has enabled async signal delivery |
| 1276 | // (see BlockingCall below). Disable async signals since we are running |
| 1277 | // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run |
| 1278 | // since the thread is cancelled, so we have to manually execute them |
| 1279 | // (the thread still can run some user code due to pthread_cleanup_push). |
| 1280 | CHECK_EQ(atomic_load(&thr->in_blocking_func, memory_order_relaxed), 1); |
| 1281 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
| 1282 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagDoPreLockOnPostLock); |
| 1283 | // Undo BlockingCall ctor effects. |
| 1284 | thr->ignore_interceptors--; |
| 1285 | si->~ScopedInterceptor(); |
| 1286 | } |
| 1287 | } // namespace |
| 1288 | |
| 1289 | INTERCEPTOR(int, pthread_cond_init, void *c, void *a) { |
| 1290 | void *cond = init_cond(c, force: true); |
| 1291 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a); |
| 1292 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: true); |
| 1293 | return REAL(pthread_cond_init)(cond, a); |
| 1294 | } |
| 1295 | |
| 1296 | template <class Fn> |
| 1297 | int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn, |
| 1298 | void *c, void *m) { |
| 1299 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false); |
| 1300 | MutexUnlock(thr, pc, addr: (uptr)m); |
| 1301 | int res = 0; |
| 1302 | // This ensures that we handle mutex lock even in case of pthread_cancel. |
| 1303 | // See test/tsan/cond_cancel.cpp. |
| 1304 | { |
| 1305 | // Enable signal delivery while the thread is blocked. |
| 1306 | BlockingCall bc(thr); |
| 1307 | CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn}; |
| 1308 | res = call_pthread_cancel_with_cleanup( |
| 1309 | [](void *arg) -> int { |
| 1310 | return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel(); |
| 1311 | }, |
| 1312 | [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); }, |
| 1313 | &arg); |
| 1314 | } |
| 1315 | if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, addr: (uptr)m); |
| 1316 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagDoPreLockOnPostLock); |
| 1317 | return res; |
| 1318 | } |
| 1319 | |
| 1320 | INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) { |
| 1321 | void *cond = init_cond(c); |
| 1322 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m); |
| 1323 | return cond_wait( |
| 1324 | thr, pc, si: &si, fn: [=]() { return REAL(pthread_cond_wait)(cond, m); }, c: cond, |
| 1325 | m); |
| 1326 | } |
| 1327 | |
| 1328 | INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) { |
| 1329 | void *cond = init_cond(c); |
| 1330 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime); |
| 1331 | return cond_wait( |
| 1332 | thr, pc, si: &si, |
| 1333 | fn: [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, c: cond, |
| 1334 | m); |
| 1335 | } |
| 1336 | |
| 1337 | #if SANITIZER_LINUX |
| 1338 | INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m, |
| 1339 | __sanitizer_clockid_t clock, void *abstime) { |
| 1340 | void *cond = init_cond(c); |
| 1341 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime); |
| 1342 | return cond_wait( |
| 1343 | thr, pc, si: &si, |
| 1344 | fn: [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); }, |
| 1345 | c: cond, m); |
| 1346 | } |
| 1347 | #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait) |
| 1348 | #else |
| 1349 | #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT |
| 1350 | #endif |
| 1351 | |
| 1352 | #if SANITIZER_APPLE |
| 1353 | INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m, |
| 1354 | void *reltime) { |
| 1355 | void *cond = init_cond(c); |
| 1356 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime); |
| 1357 | return cond_wait( |
| 1358 | thr, pc, &si, |
| 1359 | [=]() { |
| 1360 | return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime); |
| 1361 | }, |
| 1362 | cond, m); |
| 1363 | } |
| 1364 | #endif |
| 1365 | |
| 1366 | INTERCEPTOR(int, pthread_cond_signal, void *c) { |
| 1367 | void *cond = init_cond(c); |
| 1368 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond); |
| 1369 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false); |
| 1370 | return REAL(pthread_cond_signal)(cond); |
| 1371 | } |
| 1372 | |
| 1373 | INTERCEPTOR(int, pthread_cond_broadcast, void *c) { |
| 1374 | void *cond = init_cond(c); |
| 1375 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond); |
| 1376 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false); |
| 1377 | return REAL(pthread_cond_broadcast)(cond); |
| 1378 | } |
| 1379 | |
| 1380 | INTERCEPTOR(int, pthread_cond_destroy, void *c) { |
| 1381 | void *cond = init_cond(c); |
| 1382 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond); |
| 1383 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: true); |
| 1384 | int res = REAL(pthread_cond_destroy)(cond); |
| 1385 | if (common_flags()->legacy_pthread_cond) { |
| 1386 | // Free our aux cond and zero the pointer to not leave dangling pointers. |
| 1387 | WRAP(free)(p: cond); |
| 1388 | atomic_store(a: (atomic_uintptr_t*)c, v: 0, mo: memory_order_relaxed); |
| 1389 | } |
| 1390 | return res; |
| 1391 | } |
| 1392 | |
| 1393 | TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) { |
| 1394 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a); |
| 1395 | int res = REAL(pthread_mutex_init)(m, a); |
| 1396 | if (res == 0) { |
| 1397 | u32 flagz = 0; |
| 1398 | if (a) { |
| 1399 | int type = 0; |
| 1400 | if (REAL(pthread_mutexattr_gettype)(a, &type) == 0) |
| 1401 | if (type == PTHREAD_MUTEX_RECURSIVE || |
| 1402 | type == PTHREAD_MUTEX_RECURSIVE_NP) |
| 1403 | flagz |= MutexFlagWriteReentrant; |
| 1404 | } |
| 1405 | MutexCreate(thr, pc, addr: (uptr)m, flagz); |
| 1406 | } |
| 1407 | return res; |
| 1408 | } |
| 1409 | |
| 1410 | TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) { |
| 1411 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m); |
| 1412 | int res = REAL(pthread_mutex_destroy)(m); |
| 1413 | if (res == 0 || res == errno_EBUSY) { |
| 1414 | MutexDestroy(thr, pc, addr: (uptr)m); |
| 1415 | } |
| 1416 | return res; |
| 1417 | } |
| 1418 | |
| 1419 | TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) { |
| 1420 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m); |
| 1421 | MutexPreLock(thr, pc, addr: (uptr)m); |
| 1422 | int res = BLOCK_REAL(pthread_mutex_lock)(m); |
| 1423 | if (res == errno_EOWNERDEAD) |
| 1424 | MutexRepair(thr, pc, addr: (uptr)m); |
| 1425 | if (res == 0 || res == errno_EOWNERDEAD) |
| 1426 | MutexPostLock(thr, pc, addr: (uptr)m); |
| 1427 | if (res == errno_EINVAL) |
| 1428 | MutexInvalidAccess(thr, pc, addr: (uptr)m); |
| 1429 | return res; |
| 1430 | } |
| 1431 | |
| 1432 | TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) { |
| 1433 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m); |
| 1434 | int res = REAL(pthread_mutex_trylock)(m); |
| 1435 | if (res == errno_EOWNERDEAD) |
| 1436 | MutexRepair(thr, pc, addr: (uptr)m); |
| 1437 | if (res == 0 || res == errno_EOWNERDEAD) |
| 1438 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
| 1439 | return res; |
| 1440 | } |
| 1441 | |
| 1442 | #if !SANITIZER_APPLE |
| 1443 | TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) { |
| 1444 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime); |
| 1445 | int res = REAL(pthread_mutex_timedlock)(m, abstime); |
| 1446 | if (res == 0) { |
| 1447 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
| 1448 | } |
| 1449 | return res; |
| 1450 | } |
| 1451 | #endif |
| 1452 | |
| 1453 | TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) { |
| 1454 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m); |
| 1455 | MutexUnlock(thr, pc, addr: (uptr)m); |
| 1456 | int res = REAL(pthread_mutex_unlock)(m); |
| 1457 | if (res == errno_EINVAL) |
| 1458 | MutexInvalidAccess(thr, pc, addr: (uptr)m); |
| 1459 | return res; |
| 1460 | } |
| 1461 | |
| 1462 | #if SANITIZER_LINUX |
| 1463 | TSAN_INTERCEPTOR(int, pthread_mutex_clocklock, void *m, |
| 1464 | __sanitizer_clockid_t clock, void *abstime) { |
| 1465 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_clocklock, m, clock, abstime); |
| 1466 | MutexPreLock(thr, pc, addr: (uptr)m); |
| 1467 | int res = BLOCK_REAL(pthread_mutex_clocklock)(m, clock, abstime); |
| 1468 | if (res == errno_EOWNERDEAD) |
| 1469 | MutexRepair(thr, pc, addr: (uptr)m); |
| 1470 | if (res == 0 || res == errno_EOWNERDEAD) |
| 1471 | MutexPostLock(thr, pc, addr: (uptr)m); |
| 1472 | if (res == errno_EINVAL) |
| 1473 | MutexInvalidAccess(thr, pc, addr: (uptr)m); |
| 1474 | return res; |
| 1475 | } |
| 1476 | #endif |
| 1477 | |
| 1478 | #if SANITIZER_GLIBC |
| 1479 | # if !__GLIBC_PREREQ(2, 34) |
| 1480 | // glibc 2.34 applies a non-default version for the two functions. They are no |
| 1481 | // longer expected to be intercepted by programs. |
| 1482 | TSAN_INTERCEPTOR(int, __pthread_mutex_lock, void *m) { |
| 1483 | SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock, m); |
| 1484 | MutexPreLock(thr, pc, (uptr)m); |
| 1485 | int res = BLOCK_REAL(__pthread_mutex_lock)(m); |
| 1486 | if (res == errno_EOWNERDEAD) |
| 1487 | MutexRepair(thr, pc, (uptr)m); |
| 1488 | if (res == 0 || res == errno_EOWNERDEAD) |
| 1489 | MutexPostLock(thr, pc, (uptr)m); |
| 1490 | if (res == errno_EINVAL) |
| 1491 | MutexInvalidAccess(thr, pc, (uptr)m); |
| 1492 | return res; |
| 1493 | } |
| 1494 | |
| 1495 | TSAN_INTERCEPTOR(int, __pthread_mutex_unlock, void *m) { |
| 1496 | SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock, m); |
| 1497 | MutexUnlock(thr, pc, (uptr)m); |
| 1498 | int res = REAL(__pthread_mutex_unlock)(m); |
| 1499 | if (res == errno_EINVAL) |
| 1500 | MutexInvalidAccess(thr, pc, (uptr)m); |
| 1501 | return res; |
| 1502 | } |
| 1503 | # endif |
| 1504 | #endif |
| 1505 | |
| 1506 | #if !SANITIZER_APPLE |
| 1507 | TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) { |
| 1508 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared); |
| 1509 | int res = REAL(pthread_spin_init)(m, pshared); |
| 1510 | if (res == 0) { |
| 1511 | MutexCreate(thr, pc, addr: (uptr)m); |
| 1512 | } |
| 1513 | return res; |
| 1514 | } |
| 1515 | |
| 1516 | TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) { |
| 1517 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m); |
| 1518 | int res = REAL(pthread_spin_destroy)(m); |
| 1519 | if (res == 0) { |
| 1520 | MutexDestroy(thr, pc, addr: (uptr)m); |
| 1521 | } |
| 1522 | return res; |
| 1523 | } |
| 1524 | |
| 1525 | TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) { |
| 1526 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m); |
| 1527 | MutexPreLock(thr, pc, addr: (uptr)m); |
| 1528 | int res = BLOCK_REAL(pthread_spin_lock)(m); |
| 1529 | if (res == 0) { |
| 1530 | MutexPostLock(thr, pc, addr: (uptr)m); |
| 1531 | } |
| 1532 | return res; |
| 1533 | } |
| 1534 | |
| 1535 | TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) { |
| 1536 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m); |
| 1537 | int res = REAL(pthread_spin_trylock)(m); |
| 1538 | if (res == 0) { |
| 1539 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
| 1540 | } |
| 1541 | return res; |
| 1542 | } |
| 1543 | |
| 1544 | TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) { |
| 1545 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m); |
| 1546 | MutexUnlock(thr, pc, addr: (uptr)m); |
| 1547 | int res = REAL(pthread_spin_unlock)(m); |
| 1548 | return res; |
| 1549 | } |
| 1550 | #endif |
| 1551 | |
| 1552 | TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) { |
| 1553 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a); |
| 1554 | int res = REAL(pthread_rwlock_init)(m, a); |
| 1555 | if (res == 0) { |
| 1556 | MutexCreate(thr, pc, addr: (uptr)m); |
| 1557 | } |
| 1558 | return res; |
| 1559 | } |
| 1560 | |
| 1561 | TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) { |
| 1562 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m); |
| 1563 | int res = REAL(pthread_rwlock_destroy)(m); |
| 1564 | if (res == 0) { |
| 1565 | MutexDestroy(thr, pc, addr: (uptr)m); |
| 1566 | } |
| 1567 | return res; |
| 1568 | } |
| 1569 | |
| 1570 | TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) { |
| 1571 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m); |
| 1572 | MutexPreReadLock(thr, pc, addr: (uptr)m); |
| 1573 | int res = REAL(pthread_rwlock_rdlock)(m); |
| 1574 | if (res == 0) { |
| 1575 | MutexPostReadLock(thr, pc, addr: (uptr)m); |
| 1576 | } |
| 1577 | return res; |
| 1578 | } |
| 1579 | |
| 1580 | TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) { |
| 1581 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m); |
| 1582 | int res = REAL(pthread_rwlock_tryrdlock)(m); |
| 1583 | if (res == 0) { |
| 1584 | MutexPostReadLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
| 1585 | } |
| 1586 | return res; |
| 1587 | } |
| 1588 | |
| 1589 | #if !SANITIZER_APPLE |
| 1590 | TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) { |
| 1591 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime); |
| 1592 | int res = REAL(pthread_rwlock_timedrdlock)(m, abstime); |
| 1593 | if (res == 0) { |
| 1594 | MutexPostReadLock(thr, pc, addr: (uptr)m); |
| 1595 | } |
| 1596 | return res; |
| 1597 | } |
| 1598 | #endif |
| 1599 | |
| 1600 | TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) { |
| 1601 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m); |
| 1602 | MutexPreLock(thr, pc, addr: (uptr)m); |
| 1603 | int res = BLOCK_REAL(pthread_rwlock_wrlock)(m); |
| 1604 | if (res == 0) { |
| 1605 | MutexPostLock(thr, pc, addr: (uptr)m); |
| 1606 | } |
| 1607 | return res; |
| 1608 | } |
| 1609 | |
| 1610 | TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) { |
| 1611 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m); |
| 1612 | int res = REAL(pthread_rwlock_trywrlock)(m); |
| 1613 | if (res == 0) { |
| 1614 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
| 1615 | } |
| 1616 | return res; |
| 1617 | } |
| 1618 | |
| 1619 | #if !SANITIZER_APPLE |
| 1620 | TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) { |
| 1621 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime); |
| 1622 | int res = REAL(pthread_rwlock_timedwrlock)(m, abstime); |
| 1623 | if (res == 0) { |
| 1624 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
| 1625 | } |
| 1626 | return res; |
| 1627 | } |
| 1628 | #endif |
| 1629 | |
| 1630 | TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) { |
| 1631 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m); |
| 1632 | MutexReadOrWriteUnlock(thr, pc, addr: (uptr)m); |
| 1633 | int res = REAL(pthread_rwlock_unlock)(m); |
| 1634 | return res; |
| 1635 | } |
| 1636 | |
| 1637 | #if !SANITIZER_APPLE |
| 1638 | TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) { |
| 1639 | SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count); |
| 1640 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessWrite); |
| 1641 | int res = REAL(pthread_barrier_init)(b, a, count); |
| 1642 | return res; |
| 1643 | } |
| 1644 | |
| 1645 | TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) { |
| 1646 | SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b); |
| 1647 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessWrite); |
| 1648 | int res = REAL(pthread_barrier_destroy)(b); |
| 1649 | return res; |
| 1650 | } |
| 1651 | |
| 1652 | TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) { |
| 1653 | SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b); |
| 1654 | Release(thr, pc, addr: (uptr)b); |
| 1655 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessRead); |
| 1656 | int res = REAL(pthread_barrier_wait)(b); |
| 1657 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessRead); |
| 1658 | if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) { |
| 1659 | Acquire(thr, pc, addr: (uptr)b); |
| 1660 | } |
| 1661 | return res; |
| 1662 | } |
| 1663 | #endif |
| 1664 | |
| 1665 | TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) { |
| 1666 | SCOPED_INTERCEPTOR_RAW(pthread_once, o, f); |
| 1667 | if (o == 0 || f == 0) |
| 1668 | return errno_EINVAL; |
| 1669 | atomic_uint32_t *a; |
| 1670 | |
| 1671 | if (SANITIZER_APPLE) |
| 1672 | a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t))); |
| 1673 | else if (SANITIZER_NETBSD) |
| 1674 | a = static_cast<atomic_uint32_t*> |
| 1675 | ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz)); |
| 1676 | else |
| 1677 | a = static_cast<atomic_uint32_t*>(o); |
| 1678 | |
| 1679 | // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks |
| 1680 | // result in crashes due to too little stack space. |
| 1681 | if (guard_acquire(thr, pc, g: a, blocking_hooks: !SANITIZER_APPLE)) { |
| 1682 | (*f)(); |
| 1683 | guard_release(thr, pc, g: a, v: kGuardDone); |
| 1684 | } |
| 1685 | return 0; |
| 1686 | } |
| 1687 | |
| 1688 | #if SANITIZER_GLIBC |
| 1689 | TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) { |
| 1690 | SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf); |
| 1691 | if (fd > 0) |
| 1692 | FdAccess(thr, pc, fd); |
| 1693 | return REAL(__fxstat)(version, fd, buf); |
| 1694 | } |
| 1695 | |
| 1696 | TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) { |
| 1697 | SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf); |
| 1698 | if (fd > 0) |
| 1699 | FdAccess(thr, pc, fd); |
| 1700 | return REAL(__fxstat64)(version, fd, buf); |
| 1701 | } |
| 1702 | #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat); TSAN_INTERCEPT(__fxstat64) |
| 1703 | #else |
| 1704 | #define TSAN_MAYBE_INTERCEPT___FXSTAT |
| 1705 | #endif |
| 1706 | |
| 1707 | #if !SANITIZER_GLIBC || __GLIBC_PREREQ(2, 33) |
| 1708 | TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) { |
| 1709 | SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf); |
| 1710 | if (fd > 0) |
| 1711 | FdAccess(thr, pc, fd); |
| 1712 | return REAL(fstat)(fd, buf); |
| 1713 | } |
| 1714 | # define TSAN_MAYBE_INTERCEPT_FSTAT TSAN_INTERCEPT(fstat) |
| 1715 | #else |
| 1716 | # define TSAN_MAYBE_INTERCEPT_FSTAT |
| 1717 | #endif |
| 1718 | |
| 1719 | #if __GLIBC_PREREQ(2, 33) |
| 1720 | TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) { |
| 1721 | SCOPED_TSAN_INTERCEPTOR(fstat64, fd, buf); |
| 1722 | if (fd > 0) |
| 1723 | FdAccess(thr, pc, fd); |
| 1724 | return REAL(fstat64)(fd, buf); |
| 1725 | } |
| 1726 | # define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64) |
| 1727 | #else |
| 1728 | # define TSAN_MAYBE_INTERCEPT_FSTAT64 |
| 1729 | #endif |
| 1730 | |
| 1731 | TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) { |
| 1732 | mode_t mode = 0; |
| 1733 | if (OpenReadsVaArgs(oflag)) { |
| 1734 | va_list ap; |
| 1735 | va_start(ap, oflag); |
| 1736 | mode = va_arg(ap, int); |
| 1737 | va_end(ap); |
| 1738 | } |
| 1739 | |
| 1740 | SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode); |
| 1741 | READ_STRING(thr, pc, name, 0); |
| 1742 | |
| 1743 | int fd; |
| 1744 | if (OpenReadsVaArgs(oflag)) |
| 1745 | fd = REAL(open)(name, oflag, mode); |
| 1746 | else |
| 1747 | fd = REAL(open)(name, oflag); |
| 1748 | |
| 1749 | if (fd >= 0) |
| 1750 | FdFileCreate(thr, pc, fd); |
| 1751 | return fd; |
| 1752 | } |
| 1753 | |
| 1754 | #if SANITIZER_LINUX |
| 1755 | TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) { |
| 1756 | va_list ap; |
| 1757 | va_start(ap, oflag); |
| 1758 | mode_t mode = va_arg(ap, int); |
| 1759 | va_end(ap); |
| 1760 | SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode); |
| 1761 | READ_STRING(thr, pc, name, 0); |
| 1762 | int fd = REAL(open64)(name, oflag, mode); |
| 1763 | if (fd >= 0) |
| 1764 | FdFileCreate(thr, pc, fd); |
| 1765 | return fd; |
| 1766 | } |
| 1767 | #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64) |
| 1768 | #else |
| 1769 | #define TSAN_MAYBE_INTERCEPT_OPEN64 |
| 1770 | #endif |
| 1771 | |
| 1772 | TSAN_INTERCEPTOR(int, creat, const char *name, int mode) { |
| 1773 | SCOPED_TSAN_INTERCEPTOR(creat, name, mode); |
| 1774 | READ_STRING(thr, pc, name, 0); |
| 1775 | int fd = REAL(creat)(name, mode); |
| 1776 | if (fd >= 0) |
| 1777 | FdFileCreate(thr, pc, fd); |
| 1778 | return fd; |
| 1779 | } |
| 1780 | |
| 1781 | #if SANITIZER_LINUX |
| 1782 | TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) { |
| 1783 | SCOPED_TSAN_INTERCEPTOR(creat64, name, mode); |
| 1784 | READ_STRING(thr, pc, name, 0); |
| 1785 | int fd = REAL(creat64)(name, mode); |
| 1786 | if (fd >= 0) |
| 1787 | FdFileCreate(thr, pc, fd); |
| 1788 | return fd; |
| 1789 | } |
| 1790 | #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64) |
| 1791 | #else |
| 1792 | #define TSAN_MAYBE_INTERCEPT_CREAT64 |
| 1793 | #endif |
| 1794 | |
| 1795 | TSAN_INTERCEPTOR(int, dup, int oldfd) { |
| 1796 | SCOPED_TSAN_INTERCEPTOR(dup, oldfd); |
| 1797 | int newfd = REAL(dup)(oldfd); |
| 1798 | if (oldfd >= 0 && newfd >= 0 && newfd != oldfd) |
| 1799 | FdDup(thr, pc, oldfd, newfd, write: true); |
| 1800 | return newfd; |
| 1801 | } |
| 1802 | |
| 1803 | TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) { |
| 1804 | SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd); |
| 1805 | int newfd2 = REAL(dup2)(oldfd, newfd); |
| 1806 | if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) |
| 1807 | FdDup(thr, pc, oldfd, newfd: newfd2, write: false); |
| 1808 | return newfd2; |
| 1809 | } |
| 1810 | |
| 1811 | #if !SANITIZER_APPLE |
| 1812 | TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) { |
| 1813 | SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags); |
| 1814 | int newfd2 = REAL(dup3)(oldfd, newfd, flags); |
| 1815 | if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) |
| 1816 | FdDup(thr, pc, oldfd, newfd: newfd2, write: false); |
| 1817 | return newfd2; |
| 1818 | } |
| 1819 | #endif |
| 1820 | |
| 1821 | #if SANITIZER_LINUX |
| 1822 | TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) { |
| 1823 | SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags); |
| 1824 | int fd = REAL(eventfd)(initval, flags); |
| 1825 | if (fd >= 0) |
| 1826 | FdEventCreate(thr, pc, fd); |
| 1827 | return fd; |
| 1828 | } |
| 1829 | #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd) |
| 1830 | #else |
| 1831 | #define TSAN_MAYBE_INTERCEPT_EVENTFD |
| 1832 | #endif |
| 1833 | |
| 1834 | #if SANITIZER_LINUX |
| 1835 | TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) { |
| 1836 | SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags); |
| 1837 | FdClose(thr, pc, fd); |
| 1838 | fd = REAL(signalfd)(fd, mask, flags); |
| 1839 | if (!MustIgnoreInterceptor(thr)) |
| 1840 | FdSignalCreate(thr, pc, fd); |
| 1841 | return fd; |
| 1842 | } |
| 1843 | #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd) |
| 1844 | #else |
| 1845 | #define TSAN_MAYBE_INTERCEPT_SIGNALFD |
| 1846 | #endif |
| 1847 | |
| 1848 | #if SANITIZER_LINUX |
| 1849 | TSAN_INTERCEPTOR(int, inotify_init, int fake) { |
| 1850 | SCOPED_TSAN_INTERCEPTOR(inotify_init, fake); |
| 1851 | int fd = REAL(inotify_init)(fake); |
| 1852 | if (fd >= 0) |
| 1853 | FdInotifyCreate(thr, pc, fd); |
| 1854 | return fd; |
| 1855 | } |
| 1856 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init) |
| 1857 | #else |
| 1858 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT |
| 1859 | #endif |
| 1860 | |
| 1861 | #if SANITIZER_LINUX |
| 1862 | TSAN_INTERCEPTOR(int, inotify_init1, int flags) { |
| 1863 | SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags); |
| 1864 | int fd = REAL(inotify_init1)(flags); |
| 1865 | if (fd >= 0) |
| 1866 | FdInotifyCreate(thr, pc, fd); |
| 1867 | return fd; |
| 1868 | } |
| 1869 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1) |
| 1870 | #else |
| 1871 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 |
| 1872 | #endif |
| 1873 | |
| 1874 | TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) { |
| 1875 | SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol); |
| 1876 | int fd = REAL(socket)(domain, type, protocol); |
| 1877 | if (fd >= 0) |
| 1878 | FdSocketCreate(thr, pc, fd); |
| 1879 | return fd; |
| 1880 | } |
| 1881 | |
| 1882 | TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) { |
| 1883 | SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd); |
| 1884 | int res = REAL(socketpair)(domain, type, protocol, fd); |
| 1885 | if (res == 0 && fd[0] >= 0 && fd[1] >= 0) |
| 1886 | FdPipeCreate(thr, pc, rfd: fd[0], wfd: fd[1]); |
| 1887 | return res; |
| 1888 | } |
| 1889 | |
| 1890 | TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) { |
| 1891 | SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen); |
| 1892 | FdSocketConnecting(thr, pc, fd); |
| 1893 | int res = REAL(connect)(fd, addr, addrlen); |
| 1894 | if (res == 0 && fd >= 0) |
| 1895 | FdSocketConnect(thr, pc, fd); |
| 1896 | return res; |
| 1897 | } |
| 1898 | |
| 1899 | TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) { |
| 1900 | SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen); |
| 1901 | int res = REAL(bind)(fd, addr, addrlen); |
| 1902 | if (fd > 0 && res == 0) |
| 1903 | FdAccess(thr, pc, fd); |
| 1904 | return res; |
| 1905 | } |
| 1906 | |
| 1907 | TSAN_INTERCEPTOR(int, listen, int fd, int backlog) { |
| 1908 | SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog); |
| 1909 | int res = REAL(listen)(fd, backlog); |
| 1910 | if (fd > 0 && res == 0) |
| 1911 | FdAccess(thr, pc, fd); |
| 1912 | return res; |
| 1913 | } |
| 1914 | |
| 1915 | TSAN_INTERCEPTOR(int, close, int fd) { |
| 1916 | SCOPED_INTERCEPTOR_RAW(close, fd); |
| 1917 | if (!in_symbolizer()) |
| 1918 | FdClose(thr, pc, fd); |
| 1919 | return REAL(close)(fd); |
| 1920 | } |
| 1921 | |
| 1922 | #if SANITIZER_LINUX |
| 1923 | TSAN_INTERCEPTOR(int, __close, int fd) { |
| 1924 | SCOPED_INTERCEPTOR_RAW(__close, fd); |
| 1925 | FdClose(thr, pc, fd); |
| 1926 | return REAL(__close)(fd); |
| 1927 | } |
| 1928 | #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close) |
| 1929 | #else |
| 1930 | #define TSAN_MAYBE_INTERCEPT___CLOSE |
| 1931 | #endif |
| 1932 | |
| 1933 | // glibc guts |
| 1934 | #if SANITIZER_LINUX && !SANITIZER_ANDROID |
| 1935 | TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) { |
| 1936 | SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr); |
| 1937 | int fds[64]; |
| 1938 | int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds)); |
| 1939 | for (int i = 0; i < cnt; i++) FdClose(thr, pc, fd: fds[i]); |
| 1940 | REAL(__res_iclose)(state, free_addr); |
| 1941 | } |
| 1942 | #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose) |
| 1943 | #else |
| 1944 | #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE |
| 1945 | #endif |
| 1946 | |
| 1947 | TSAN_INTERCEPTOR(int, pipe, int *pipefd) { |
| 1948 | SCOPED_TSAN_INTERCEPTOR(pipe, pipefd); |
| 1949 | int res = REAL(pipe)(pipefd); |
| 1950 | if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) |
| 1951 | FdPipeCreate(thr, pc, rfd: pipefd[0], wfd: pipefd[1]); |
| 1952 | return res; |
| 1953 | } |
| 1954 | |
| 1955 | #if !SANITIZER_APPLE |
| 1956 | TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) { |
| 1957 | SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags); |
| 1958 | int res = REAL(pipe2)(pipefd, flags); |
| 1959 | if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) |
| 1960 | FdPipeCreate(thr, pc, rfd: pipefd[0], wfd: pipefd[1]); |
| 1961 | return res; |
| 1962 | } |
| 1963 | #endif |
| 1964 | |
| 1965 | TSAN_INTERCEPTOR(int, unlink, char *path) { |
| 1966 | SCOPED_TSAN_INTERCEPTOR(unlink, path); |
| 1967 | Release(thr, pc, addr: File2addr(path)); |
| 1968 | int res = REAL(unlink)(path); |
| 1969 | return res; |
| 1970 | } |
| 1971 | |
| 1972 | TSAN_INTERCEPTOR(void*, tmpfile, int fake) { |
| 1973 | SCOPED_TSAN_INTERCEPTOR(tmpfile, fake); |
| 1974 | void *res = REAL(tmpfile)(fake); |
| 1975 | if (res) { |
| 1976 | int fd = fileno_unlocked(stream: res); |
| 1977 | if (fd >= 0) |
| 1978 | FdFileCreate(thr, pc, fd); |
| 1979 | } |
| 1980 | return res; |
| 1981 | } |
| 1982 | |
| 1983 | #if SANITIZER_LINUX |
| 1984 | TSAN_INTERCEPTOR(void*, tmpfile64, int fake) { |
| 1985 | SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake); |
| 1986 | void *res = REAL(tmpfile64)(fake); |
| 1987 | if (res) { |
| 1988 | int fd = fileno_unlocked(stream: res); |
| 1989 | if (fd >= 0) |
| 1990 | FdFileCreate(thr, pc, fd); |
| 1991 | } |
| 1992 | return res; |
| 1993 | } |
| 1994 | #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64) |
| 1995 | #else |
| 1996 | #define TSAN_MAYBE_INTERCEPT_TMPFILE64 |
| 1997 | #endif |
| 1998 | |
| 1999 | static void FlushStreams() { |
| 2000 | // Flushing all the streams here may freeze the process if a child thread is |
| 2001 | // performing file stream operations at the same time. |
| 2002 | REAL(fflush)(stdout); |
| 2003 | REAL(fflush)(stderr); |
| 2004 | } |
| 2005 | |
| 2006 | TSAN_INTERCEPTOR(void, abort, int fake) { |
| 2007 | SCOPED_TSAN_INTERCEPTOR(abort, fake); |
| 2008 | FlushStreams(); |
| 2009 | REAL(abort)(fake); |
| 2010 | } |
| 2011 | |
| 2012 | TSAN_INTERCEPTOR(int, rmdir, char *path) { |
| 2013 | SCOPED_TSAN_INTERCEPTOR(rmdir, path); |
| 2014 | Release(thr, pc, addr: Dir2addr(path)); |
| 2015 | int res = REAL(rmdir)(path); |
| 2016 | return res; |
| 2017 | } |
| 2018 | |
| 2019 | TSAN_INTERCEPTOR(int, closedir, void *dirp) { |
| 2020 | SCOPED_INTERCEPTOR_RAW(closedir, dirp); |
| 2021 | if (dirp) { |
| 2022 | int fd = dirfd(dirp); |
| 2023 | FdClose(thr, pc, fd); |
| 2024 | } |
| 2025 | return REAL(closedir)(dirp); |
| 2026 | } |
| 2027 | |
| 2028 | #if SANITIZER_LINUX |
| 2029 | TSAN_INTERCEPTOR(int, epoll_create, int size) { |
| 2030 | SCOPED_TSAN_INTERCEPTOR(epoll_create, size); |
| 2031 | int fd = REAL(epoll_create)(size); |
| 2032 | if (fd >= 0) |
| 2033 | FdPollCreate(thr, pc, fd); |
| 2034 | return fd; |
| 2035 | } |
| 2036 | |
| 2037 | TSAN_INTERCEPTOR(int, epoll_create1, int flags) { |
| 2038 | SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags); |
| 2039 | int fd = REAL(epoll_create1)(flags); |
| 2040 | if (fd >= 0) |
| 2041 | FdPollCreate(thr, pc, fd); |
| 2042 | return fd; |
| 2043 | } |
| 2044 | |
| 2045 | TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) { |
| 2046 | SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev); |
| 2047 | if (epfd >= 0) |
| 2048 | FdAccess(thr, pc, fd: epfd); |
| 2049 | if (epfd >= 0 && fd >= 0) |
| 2050 | FdAccess(thr, pc, fd); |
| 2051 | if (op == EPOLL_CTL_ADD && epfd >= 0) { |
| 2052 | FdPollAdd(thr, pc, epfd, fd); |
| 2053 | FdRelease(thr, pc, fd: epfd); |
| 2054 | } |
| 2055 | int res = REAL(epoll_ctl)(epfd, op, fd, ev); |
| 2056 | return res; |
| 2057 | } |
| 2058 | |
| 2059 | TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) { |
| 2060 | SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout); |
| 2061 | if (epfd >= 0) |
| 2062 | FdAccess(thr, pc, fd: epfd); |
| 2063 | int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout); |
| 2064 | if (res > 0 && epfd >= 0) |
| 2065 | FdAcquire(thr, pc, fd: epfd); |
| 2066 | return res; |
| 2067 | } |
| 2068 | |
| 2069 | TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout, |
| 2070 | void *sigmask) { |
| 2071 | SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask); |
| 2072 | if (epfd >= 0) |
| 2073 | FdAccess(thr, pc, fd: epfd); |
| 2074 | int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask); |
| 2075 | if (res > 0 && epfd >= 0) |
| 2076 | FdAcquire(thr, pc, fd: epfd); |
| 2077 | return res; |
| 2078 | } |
| 2079 | |
| 2080 | TSAN_INTERCEPTOR(int, epoll_pwait2, int epfd, void *ev, int cnt, void *timeout, |
| 2081 | void *sigmask) { |
| 2082 | SCOPED_INTERCEPTOR_RAW(epoll_pwait2, epfd, ev, cnt, timeout, sigmask); |
| 2083 | // This function is new and may not be present in libc and/or kernel. |
| 2084 | // Since we effectively add it to libc (as will be probed by the program |
| 2085 | // using dlsym or a weak function pointer) we need to handle the case |
| 2086 | // when it's not present in the actual libc. |
| 2087 | if (!REAL(epoll_pwait2)) { |
| 2088 | errno = errno_ENOSYS; |
| 2089 | return -1; |
| 2090 | } |
| 2091 | if (MustIgnoreInterceptor(thr)) |
| 2092 | REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask); |
| 2093 | if (epfd >= 0) |
| 2094 | FdAccess(thr, pc, fd: epfd); |
| 2095 | int res = BLOCK_REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask); |
| 2096 | if (res > 0 && epfd >= 0) |
| 2097 | FdAcquire(thr, pc, fd: epfd); |
| 2098 | return res; |
| 2099 | } |
| 2100 | |
| 2101 | # define TSAN_MAYBE_INTERCEPT_EPOLL \ |
| 2102 | TSAN_INTERCEPT(epoll_create); \ |
| 2103 | TSAN_INTERCEPT(epoll_create1); \ |
| 2104 | TSAN_INTERCEPT(epoll_ctl); \ |
| 2105 | TSAN_INTERCEPT(epoll_wait); \ |
| 2106 | TSAN_INTERCEPT(epoll_pwait); \ |
| 2107 | TSAN_INTERCEPT(epoll_pwait2) |
| 2108 | #else |
| 2109 | #define TSAN_MAYBE_INTERCEPT_EPOLL |
| 2110 | #endif |
| 2111 | |
| 2112 | // The following functions are intercepted merely to process pending signals. |
| 2113 | // If program blocks signal X, we must deliver the signal before the function |
| 2114 | // returns. Similarly, if program unblocks a signal (or returns from sigsuspend) |
| 2115 | // it's better to deliver the signal straight away. |
| 2116 | TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) { |
| 2117 | SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask); |
| 2118 | return REAL(sigsuspend)(mask); |
| 2119 | } |
| 2120 | |
| 2121 | TSAN_INTERCEPTOR(int, sigblock, int mask) { |
| 2122 | SCOPED_TSAN_INTERCEPTOR(sigblock, mask); |
| 2123 | return REAL(sigblock)(mask); |
| 2124 | } |
| 2125 | |
| 2126 | TSAN_INTERCEPTOR(int, sigsetmask, int mask) { |
| 2127 | SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask); |
| 2128 | return REAL(sigsetmask)(mask); |
| 2129 | } |
| 2130 | |
| 2131 | TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set, |
| 2132 | __sanitizer_sigset_t *oldset) { |
| 2133 | SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset); |
| 2134 | return REAL(pthread_sigmask)(how, set, oldset); |
| 2135 | } |
| 2136 | |
| 2137 | namespace __tsan { |
| 2138 | |
| 2139 | static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) { |
| 2140 | VarSizeStackTrace stack; |
| 2141 | // StackTrace::GetNestInstructionPc(pc) is used because return address is |
| 2142 | // expected, OutputReport() will undo this. |
| 2143 | ObtainCurrentStack(thr, toppc: StackTrace::GetNextInstructionPc(pc), stack: &stack); |
| 2144 | ThreadRegistryLock l(&ctx->thread_registry); |
| 2145 | ScopedReport rep(ReportTypeErrnoInSignal); |
| 2146 | rep.SetSigNum(sig); |
| 2147 | if (!IsFiredSuppression(ctx, type: ReportTypeErrnoInSignal, trace: stack)) { |
| 2148 | rep.AddStack(stack, suppressable: true); |
| 2149 | OutputReport(thr, srep: rep); |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire, |
| 2154 | int sig, __sanitizer_siginfo *info, |
| 2155 | void *uctx) { |
| 2156 | CHECK(thr->slot); |
| 2157 | __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions; |
| 2158 | if (acquire) |
| 2159 | Acquire(thr, pc: 0, addr: (uptr)&sigactions[sig]); |
| 2160 | // Signals are generally asynchronous, so if we receive a signals when |
| 2161 | // ignores are enabled we should disable ignores. This is critical for sync |
| 2162 | // and interceptors, because otherwise we can miss synchronization and report |
| 2163 | // false races. |
| 2164 | int ignore_reads_and_writes = thr->ignore_reads_and_writes; |
| 2165 | int ignore_interceptors = thr->ignore_interceptors; |
| 2166 | int ignore_sync = thr->ignore_sync; |
| 2167 | // For symbolizer we only process SIGSEGVs synchronously |
| 2168 | // (bug in symbolizer or in tsan). But we want to reset |
| 2169 | // in_symbolizer to fail gracefully. Symbolizer and user code |
| 2170 | // use different memory allocators, so if we don't reset |
| 2171 | // in_symbolizer we can get memory allocated with one being |
| 2172 | // feed with another, which can cause more crashes. |
| 2173 | int in_symbolizer = thr->in_symbolizer; |
| 2174 | if (!ctx->after_multithreaded_fork) { |
| 2175 | thr->ignore_reads_and_writes = 0; |
| 2176 | thr->fast_state.ClearIgnoreBit(); |
| 2177 | thr->ignore_interceptors = 0; |
| 2178 | thr->ignore_sync = 0; |
| 2179 | thr->in_symbolizer = 0; |
| 2180 | } |
| 2181 | // Ensure that the handler does not spoil errno. |
| 2182 | const int saved_errno = errno; |
| 2183 | errno = 99; |
| 2184 | // This code races with sigaction. Be careful to not read sa_sigaction twice. |
| 2185 | // Also need to remember pc for reporting before the call, |
| 2186 | // because the handler can reset it. |
| 2187 | volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO) |
| 2188 | ? (uptr)sigactions[sig].sigaction |
| 2189 | : (uptr)sigactions[sig].handler; |
| 2190 | if (pc != sig_dfl && pc != sig_ign) { |
| 2191 | // The callback can be either sa_handler or sa_sigaction. |
| 2192 | // They have different signatures, but we assume that passing |
| 2193 | // additional arguments to sa_handler works and is harmless. |
| 2194 | ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx); |
| 2195 | } |
| 2196 | if (!ctx->after_multithreaded_fork) { |
| 2197 | thr->ignore_reads_and_writes = ignore_reads_and_writes; |
| 2198 | if (ignore_reads_and_writes) |
| 2199 | thr->fast_state.SetIgnoreBit(); |
| 2200 | thr->ignore_interceptors = ignore_interceptors; |
| 2201 | thr->ignore_sync = ignore_sync; |
| 2202 | thr->in_symbolizer = in_symbolizer; |
| 2203 | } |
| 2204 | // We do not detect errno spoiling for SIGTERM, |
| 2205 | // because some SIGTERM handlers do spoil errno but reraise SIGTERM, |
| 2206 | // tsan reports false positive in such case. |
| 2207 | // It's difficult to properly detect this situation (reraise), |
| 2208 | // because in async signal processing case (when handler is called directly |
| 2209 | // from rtl_generic_sighandler) we have not yet received the reraised |
| 2210 | // signal; and it looks too fragile to intercept all ways to reraise a signal. |
| 2211 | if (ShouldReport(thr, typ: ReportTypeErrnoInSignal) && !sync && sig != SIGTERM && |
| 2212 | errno != 99) |
| 2213 | ReportErrnoSpoiling(thr, pc, sig); |
| 2214 | errno = saved_errno; |
| 2215 | } |
| 2216 | |
| 2217 | void ProcessPendingSignalsImpl(ThreadState *thr) { |
| 2218 | atomic_store(a: &thr->pending_signals, v: 0, mo: memory_order_relaxed); |
| 2219 | ThreadSignalContext *sctx = SigCtx(thr); |
| 2220 | if (sctx == 0) |
| 2221 | return; |
| 2222 | atomic_fetch_add(a: &thr->in_signal_handler, v: 1, mo: memory_order_relaxed); |
| 2223 | internal_sigfillset(set: &sctx->emptyset); |
| 2224 | __sanitizer_sigset_t *oldset = sctx->oldset.PushBack(); |
| 2225 | int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, oldset); |
| 2226 | CHECK_EQ(res, 0); |
| 2227 | for (int sig = 0; sig < kSigCount; sig++) { |
| 2228 | SignalDesc *signal = &sctx->pending_signals[sig]; |
| 2229 | if (signal->armed) { |
| 2230 | signal->armed = false; |
| 2231 | CallUserSignalHandler(thr, sync: false, acquire: true, sig, info: &signal->siginfo, |
| 2232 | uctx: &signal->ctx); |
| 2233 | } |
| 2234 | } |
| 2235 | res = REAL(pthread_sigmask)(SIG_SETMASK, oldset, 0); |
| 2236 | CHECK_EQ(res, 0); |
| 2237 | sctx->oldset.PopBack(); |
| 2238 | atomic_fetch_add(a: &thr->in_signal_handler, v: -1, mo: memory_order_relaxed); |
| 2239 | } |
| 2240 | |
| 2241 | } // namespace __tsan |
| 2242 | |
| 2243 | static bool is_sync_signal(ThreadSignalContext *sctx, int sig, |
| 2244 | __sanitizer_siginfo *info) { |
| 2245 | // If we are sending signal to ourselves, we must process it now. |
| 2246 | if (sctx && sig == sctx->int_signal_send) |
| 2247 | return true; |
| 2248 | #if SANITIZER_HAS_SIGINFO |
| 2249 | // POSIX timers can be configured to send any kind of signal; however, it |
| 2250 | // doesn't make any sense to consider a timer signal as synchronous! |
| 2251 | if (info->si_code == SI_TIMER) |
| 2252 | return false; |
| 2253 | #endif |
| 2254 | return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP || |
| 2255 | sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS; |
| 2256 | } |
| 2257 | |
| 2258 | void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) { |
| 2259 | ThreadState *thr = cur_thread_init(); |
| 2260 | ThreadSignalContext *sctx = SigCtx(thr); |
| 2261 | if (sig < 0 || sig >= kSigCount) { |
| 2262 | VPrintf(1, "ThreadSanitizer: ignoring signal %d\n" , sig); |
| 2263 | return; |
| 2264 | } |
| 2265 | // Don't mess with synchronous signals. |
| 2266 | const bool sync = is_sync_signal(sctx, sig, info); |
| 2267 | if (sync || |
| 2268 | // If we are in blocking function, we can safely process it now |
| 2269 | // (but check if we are in a recursive interceptor, |
| 2270 | // i.e. pthread_join()->munmap()). |
| 2271 | atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed)) { |
| 2272 | atomic_fetch_add(a: &thr->in_signal_handler, v: 1, mo: memory_order_relaxed); |
| 2273 | if (atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed)) { |
| 2274 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
| 2275 | CallUserSignalHandler(thr, sync, acquire: true, sig, info, uctx: ctx); |
| 2276 | atomic_store(a: &thr->in_blocking_func, v: 1, mo: memory_order_relaxed); |
| 2277 | } else { |
| 2278 | // Be very conservative with when we do acquire in this case. |
| 2279 | // It's unsafe to do acquire in async handlers, because ThreadState |
| 2280 | // can be in inconsistent state. |
| 2281 | // SIGSYS looks relatively safe -- it's synchronous and can actually |
| 2282 | // need some global state. |
| 2283 | bool acq = (sig == SIGSYS); |
| 2284 | CallUserSignalHandler(thr, sync, acquire: acq, sig, info, uctx: ctx); |
| 2285 | } |
| 2286 | atomic_fetch_add(a: &thr->in_signal_handler, v: -1, mo: memory_order_relaxed); |
| 2287 | return; |
| 2288 | } |
| 2289 | |
| 2290 | if (sctx == 0) |
| 2291 | return; |
| 2292 | SignalDesc *signal = &sctx->pending_signals[sig]; |
| 2293 | if (signal->armed == false) { |
| 2294 | signal->armed = true; |
| 2295 | internal_memcpy(dest: &signal->siginfo, src: info, n: sizeof(*info)); |
| 2296 | internal_memcpy(dest: &signal->ctx, src: ctx, n: sizeof(signal->ctx)); |
| 2297 | atomic_store(a: &thr->pending_signals, v: 1, mo: memory_order_relaxed); |
| 2298 | } |
| 2299 | } |
| 2300 | |
| 2301 | TSAN_INTERCEPTOR(int, raise, int sig) { |
| 2302 | SCOPED_TSAN_INTERCEPTOR(raise, sig); |
| 2303 | ThreadSignalContext *sctx = SigCtx(thr); |
| 2304 | CHECK_NE(sctx, 0); |
| 2305 | int prev = sctx->int_signal_send; |
| 2306 | sctx->int_signal_send = sig; |
| 2307 | int res = REAL(raise)(sig); |
| 2308 | CHECK_EQ(sctx->int_signal_send, sig); |
| 2309 | sctx->int_signal_send = prev; |
| 2310 | return res; |
| 2311 | } |
| 2312 | |
| 2313 | TSAN_INTERCEPTOR(int, kill, int pid, int sig) { |
| 2314 | SCOPED_TSAN_INTERCEPTOR(kill, pid, sig); |
| 2315 | ThreadSignalContext *sctx = SigCtx(thr); |
| 2316 | CHECK_NE(sctx, 0); |
| 2317 | int prev = sctx->int_signal_send; |
| 2318 | if (pid == (int)internal_getpid()) { |
| 2319 | sctx->int_signal_send = sig; |
| 2320 | } |
| 2321 | int res = REAL(kill)(pid, sig); |
| 2322 | if (pid == (int)internal_getpid()) { |
| 2323 | CHECK_EQ(sctx->int_signal_send, sig); |
| 2324 | sctx->int_signal_send = prev; |
| 2325 | } |
| 2326 | return res; |
| 2327 | } |
| 2328 | |
| 2329 | TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) { |
| 2330 | SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig); |
| 2331 | ThreadSignalContext *sctx = SigCtx(thr); |
| 2332 | CHECK_NE(sctx, 0); |
| 2333 | int prev = sctx->int_signal_send; |
| 2334 | bool self = pthread_equal(t1: tid, t2: pthread_self()); |
| 2335 | if (self) |
| 2336 | sctx->int_signal_send = sig; |
| 2337 | int res = REAL(pthread_kill)(tid, sig); |
| 2338 | if (self) { |
| 2339 | CHECK_EQ(sctx->int_signal_send, sig); |
| 2340 | sctx->int_signal_send = prev; |
| 2341 | } |
| 2342 | return res; |
| 2343 | } |
| 2344 | |
| 2345 | TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) { |
| 2346 | SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz); |
| 2347 | // It's intercepted merely to process pending signals. |
| 2348 | return REAL(gettimeofday)(tv, tz); |
| 2349 | } |
| 2350 | |
| 2351 | TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service, |
| 2352 | void *hints, void *rv) { |
| 2353 | SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv); |
| 2354 | // We miss atomic synchronization in getaddrinfo, |
| 2355 | // and can report false race between malloc and free |
| 2356 | // inside of getaddrinfo. So ignore memory accesses. |
| 2357 | ThreadIgnoreBegin(thr, pc); |
| 2358 | int res = REAL(getaddrinfo)(node, service, hints, rv); |
| 2359 | ThreadIgnoreEnd(thr); |
| 2360 | return res; |
| 2361 | } |
| 2362 | |
| 2363 | TSAN_INTERCEPTOR(int, fork, int fake) { |
| 2364 | if (in_symbolizer()) |
| 2365 | return REAL(fork)(fake); |
| 2366 | SCOPED_INTERCEPTOR_RAW(fork, fake); |
| 2367 | return REAL(fork)(fake); |
| 2368 | } |
| 2369 | |
| 2370 | void atfork_prepare() { |
| 2371 | if (in_symbolizer()) |
| 2372 | return; |
| 2373 | ThreadState *thr = cur_thread(); |
| 2374 | const uptr pc = StackTrace::GetCurrentPc(); |
| 2375 | ForkBefore(thr, pc); |
| 2376 | } |
| 2377 | |
| 2378 | void atfork_parent() { |
| 2379 | if (in_symbolizer()) |
| 2380 | return; |
| 2381 | ThreadState *thr = cur_thread(); |
| 2382 | const uptr pc = StackTrace::GetCurrentPc(); |
| 2383 | ForkParentAfter(thr, pc); |
| 2384 | } |
| 2385 | |
| 2386 | void atfork_child() { |
| 2387 | if (in_symbolizer()) |
| 2388 | return; |
| 2389 | ThreadState *thr = cur_thread(); |
| 2390 | const uptr pc = StackTrace::GetCurrentPc(); |
| 2391 | ForkChildAfter(thr, pc, start_thread: true); |
| 2392 | FdOnFork(thr, pc); |
| 2393 | } |
| 2394 | |
| 2395 | #if !SANITIZER_IOS |
| 2396 | TSAN_INTERCEPTOR(int, vfork, int fake) { |
| 2397 | // Some programs (e.g. openjdk) call close for all file descriptors |
| 2398 | // in the child process. Under tsan it leads to false positives, because |
| 2399 | // address space is shared, so the parent process also thinks that |
| 2400 | // the descriptors are closed (while they are actually not). |
| 2401 | // This leads to false positives due to missed synchronization. |
| 2402 | // Strictly saying this is undefined behavior, because vfork child is not |
| 2403 | // allowed to call any functions other than exec/exit. But this is what |
| 2404 | // openjdk does, so we want to handle it. |
| 2405 | // We could disable interceptors in the child process. But it's not possible |
| 2406 | // to simply intercept and wrap vfork, because vfork child is not allowed |
| 2407 | // to return from the function that calls vfork, and that's exactly what |
| 2408 | // we would do. So this would require some assembly trickery as well. |
| 2409 | // Instead we simply turn vfork into fork. |
| 2410 | return WRAP(fork)(fake); |
| 2411 | } |
| 2412 | #endif |
| 2413 | |
| 2414 | #if SANITIZER_LINUX |
| 2415 | TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags, |
| 2416 | void *arg, int *parent_tid, void *tls, pid_t *child_tid) { |
| 2417 | SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls, |
| 2418 | child_tid); |
| 2419 | struct Arg { |
| 2420 | int (*fn)(void *); |
| 2421 | void *arg; |
| 2422 | }; |
| 2423 | auto wrapper = +[](void *p) -> int { |
| 2424 | auto *thr = cur_thread(); |
| 2425 | uptr pc = GET_CURRENT_PC(); |
| 2426 | // Start the background thread for fork, but not for clone. |
| 2427 | // For fork we did this always and it's known to work (or user code has |
| 2428 | // adopted). But if we do this for the new clone interceptor some code |
| 2429 | // (sandbox2) fails. So model we used to do for years and don't start the |
| 2430 | // background thread after clone. |
| 2431 | ForkChildAfter(thr, pc, start_thread: false); |
| 2432 | FdOnFork(thr, pc); |
| 2433 | auto *arg = static_cast<Arg *>(p); |
| 2434 | return arg->fn(arg->arg); |
| 2435 | }; |
| 2436 | ForkBefore(thr, pc); |
| 2437 | Arg arg_wrapper = {.fn: fn, .arg: arg}; |
| 2438 | int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls, |
| 2439 | child_tid); |
| 2440 | ForkParentAfter(thr, pc); |
| 2441 | return pid; |
| 2442 | } |
| 2443 | #endif |
| 2444 | |
| 2445 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
| 2446 | typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size, |
| 2447 | void *data); |
| 2448 | struct dl_iterate_phdr_data { |
| 2449 | ThreadState *thr; |
| 2450 | uptr pc; |
| 2451 | dl_iterate_phdr_cb_t cb; |
| 2452 | void *data; |
| 2453 | }; |
| 2454 | |
| 2455 | static bool IsAppNotRodata(uptr addr) { |
| 2456 | return IsAppMem(mem: addr) && *MemToShadow(x: addr) != Shadow::kRodata; |
| 2457 | } |
| 2458 | |
| 2459 | static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size, |
| 2460 | void *data) { |
| 2461 | dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data; |
| 2462 | // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later |
| 2463 | // accessible in dl_iterate_phdr callback. But we don't see synchronization |
| 2464 | // inside of dynamic linker, so we "unpoison" it here in order to not |
| 2465 | // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough |
| 2466 | // because some libc functions call __libc_dlopen. |
| 2467 | if (info && IsAppNotRodata(addr: (uptr)info->dlpi_name)) |
| 2468 | MemoryResetRange(thr: cbdata->thr, pc: cbdata->pc, addr: (uptr)info->dlpi_name, |
| 2469 | size: internal_strlen(s: info->dlpi_name)); |
| 2470 | int res = cbdata->cb(info, size, cbdata->data); |
| 2471 | // Perform the check one more time in case info->dlpi_name was overwritten |
| 2472 | // by user callback. |
| 2473 | if (info && IsAppNotRodata(addr: (uptr)info->dlpi_name)) |
| 2474 | MemoryResetRange(thr: cbdata->thr, pc: cbdata->pc, addr: (uptr)info->dlpi_name, |
| 2475 | size: internal_strlen(s: info->dlpi_name)); |
| 2476 | return res; |
| 2477 | } |
| 2478 | |
| 2479 | TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) { |
| 2480 | SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data); |
| 2481 | dl_iterate_phdr_data cbdata; |
| 2482 | cbdata.thr = thr; |
| 2483 | cbdata.pc = pc; |
| 2484 | cbdata.cb = cb; |
| 2485 | cbdata.data = data; |
| 2486 | int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata); |
| 2487 | return res; |
| 2488 | } |
| 2489 | #endif |
| 2490 | |
| 2491 | static int OnExit(ThreadState *thr) { |
| 2492 | int status = Finalize(thr); |
| 2493 | FlushStreams(); |
| 2494 | return status; |
| 2495 | } |
| 2496 | |
| 2497 | #if !SANITIZER_APPLE |
| 2498 | static void HandleRecvmsg(ThreadState *thr, uptr pc, |
| 2499 | __sanitizer_msghdr *msg) { |
| 2500 | int fds[64]; |
| 2501 | int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds)); |
| 2502 | for (int i = 0; i < cnt; i++) |
| 2503 | FdEventCreate(thr, pc, fd: fds[i]); |
| 2504 | } |
| 2505 | #endif |
| 2506 | |
| 2507 | #include "sanitizer_common/sanitizer_platform_interceptors.h" |
| 2508 | // Causes interceptor recursion (getaddrinfo() and fopen()) |
| 2509 | #undef SANITIZER_INTERCEPT_GETADDRINFO |
| 2510 | // We define our own. |
| 2511 | #if SANITIZER_INTERCEPT_TLS_GET_ADDR |
| 2512 | #define NEED_TLS_GET_ADDR |
| 2513 | #endif |
| 2514 | #undef SANITIZER_INTERCEPT_TLS_GET_ADDR |
| 2515 | #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1 |
| 2516 | #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK |
| 2517 | |
| 2518 | #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \ |
| 2519 | INTERCEPT_FUNCTION_VER(name, ver) |
| 2520 | #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \ |
| 2521 | (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name)) |
| 2522 | |
| 2523 | #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \ |
| 2524 | SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \ |
| 2525 | TsanInterceptorContext _ctx = {thr, pc}; \ |
| 2526 | ctx = (void *)&_ctx; \ |
| 2527 | (void)ctx; |
| 2528 | |
| 2529 | #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \ |
| 2530 | if (path) \ |
| 2531 | Acquire(thr, pc, File2addr(path)); \ |
| 2532 | if (file) { \ |
| 2533 | int fd = fileno_unlocked(file); \ |
| 2534 | if (fd >= 0) FdFileCreate(thr, pc, fd); \ |
| 2535 | } |
| 2536 | |
| 2537 | #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \ |
| 2538 | if (file) { \ |
| 2539 | int fd = fileno_unlocked(file); \ |
| 2540 | FdClose(thr, pc, fd); \ |
| 2541 | } |
| 2542 | |
| 2543 | #define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \ |
| 2544 | ({ \ |
| 2545 | CheckNoDeepBind(filename, flag); \ |
| 2546 | ThreadIgnoreBegin(thr, 0); \ |
| 2547 | void *res = REAL(dlopen)(filename, flag); \ |
| 2548 | ThreadIgnoreEnd(thr); \ |
| 2549 | res; \ |
| 2550 | }) |
| 2551 | |
| 2552 | // Ignore interceptors in OnLibraryLoaded()/Unloaded(). These hooks use code |
| 2553 | // (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make |
| 2554 | // intercepted calls, which can cause deadlockes with ReportRace() which also |
| 2555 | // uses this code. |
| 2556 | #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \ |
| 2557 | ({ \ |
| 2558 | ScopedIgnoreInterceptors ignore_interceptors; \ |
| 2559 | libignore()->OnLibraryLoaded(filename); \ |
| 2560 | }) |
| 2561 | |
| 2562 | #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \ |
| 2563 | ({ \ |
| 2564 | ScopedIgnoreInterceptors ignore_interceptors; \ |
| 2565 | libignore()->OnLibraryUnloaded(); \ |
| 2566 | }) |
| 2567 | |
| 2568 | #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \ |
| 2569 | Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u) |
| 2570 | |
| 2571 | #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \ |
| 2572 | Release(((TsanInterceptorContext *) ctx)->thr, pc, u) |
| 2573 | |
| 2574 | #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \ |
| 2575 | Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path)) |
| 2576 | |
| 2577 | #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \ |
| 2578 | FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
| 2579 | |
| 2580 | #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \ |
| 2581 | FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
| 2582 | |
| 2583 | #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \ |
| 2584 | FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
| 2585 | |
| 2586 | #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \ |
| 2587 | FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd) |
| 2588 | |
| 2589 | #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \ |
| 2590 | ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name) |
| 2591 | |
| 2592 | #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \ |
| 2593 | if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \ |
| 2594 | COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \ |
| 2595 | else \ |
| 2596 | __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name) |
| 2597 | |
| 2598 | #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name) |
| 2599 | |
| 2600 | #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \ |
| 2601 | OnExit(((TsanInterceptorContext *) ctx)->thr) |
| 2602 | |
| 2603 | #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \ |
| 2604 | off) \ |
| 2605 | do { \ |
| 2606 | return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \ |
| 2607 | off); \ |
| 2608 | } while (false) |
| 2609 | |
| 2610 | #define COMMON_INTERCEPTOR_MUNMAP_IMPL(ctx, addr, sz) \ |
| 2611 | do { \ |
| 2612 | return munmap_interceptor(thr, pc, REAL(munmap), addr, sz); \ |
| 2613 | } while (false) |
| 2614 | |
| 2615 | #if !SANITIZER_APPLE |
| 2616 | #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \ |
| 2617 | HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \ |
| 2618 | ((TsanInterceptorContext *)ctx)->pc, msg) |
| 2619 | #endif |
| 2620 | |
| 2621 | #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \ |
| 2622 | if (TsanThread *t = GetCurrentThread()) { \ |
| 2623 | *begin = t->tls_begin(); \ |
| 2624 | *end = t->tls_end(); \ |
| 2625 | } else { \ |
| 2626 | *begin = *end = 0; \ |
| 2627 | } |
| 2628 | |
| 2629 | #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \ |
| 2630 | SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START() |
| 2631 | |
| 2632 | #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \ |
| 2633 | SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END() |
| 2634 | |
| 2635 | #include "sanitizer_common/sanitizer_common_interceptors.inc" |
| 2636 | |
| 2637 | static int sigaction_impl(int sig, const __sanitizer_sigaction *act, |
| 2638 | __sanitizer_sigaction *old); |
| 2639 | static __sanitizer_sighandler_ptr signal_impl(int sig, |
| 2640 | __sanitizer_sighandler_ptr h); |
| 2641 | |
| 2642 | #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \ |
| 2643 | { return sigaction_impl(signo, act, oldact); } |
| 2644 | |
| 2645 | #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \ |
| 2646 | { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); } |
| 2647 | |
| 2648 | #define SIGNAL_INTERCEPTOR_ENTER() LazyInitialize(cur_thread_init()) |
| 2649 | |
| 2650 | #include "sanitizer_common/sanitizer_signal_interceptors.inc" |
| 2651 | |
| 2652 | int sigaction_impl(int sig, const __sanitizer_sigaction *act, |
| 2653 | __sanitizer_sigaction *old) { |
| 2654 | // Note: if we call REAL(sigaction) directly for any reason without proxying |
| 2655 | // the signal handler through sighandler, very bad things will happen. |
| 2656 | // The handler will run synchronously and corrupt tsan per-thread state. |
| 2657 | SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old); |
| 2658 | if (sig <= 0 || sig >= kSigCount) { |
| 2659 | errno = errno_EINVAL; |
| 2660 | return -1; |
| 2661 | } |
| 2662 | __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions; |
| 2663 | __sanitizer_sigaction old_stored; |
| 2664 | if (old) internal_memcpy(dest: &old_stored, src: &sigactions[sig], n: sizeof(old_stored)); |
| 2665 | __sanitizer_sigaction newact; |
| 2666 | if (act) { |
| 2667 | // Copy act into sigactions[sig]. |
| 2668 | // Can't use struct copy, because compiler can emit call to memcpy. |
| 2669 | // Can't use internal_memcpy, because it copies byte-by-byte, |
| 2670 | // and signal handler reads the handler concurrently. It can read |
| 2671 | // some bytes from old value and some bytes from new value. |
| 2672 | // Use volatile to prevent insertion of memcpy. |
| 2673 | sigactions[sig].handler = |
| 2674 | *(volatile __sanitizer_sighandler_ptr const *)&act->handler; |
| 2675 | sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags; |
| 2676 | internal_memcpy(dest: &sigactions[sig].sa_mask, src: &act->sa_mask, |
| 2677 | n: sizeof(sigactions[sig].sa_mask)); |
| 2678 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD |
| 2679 | sigactions[sig].sa_restorer = act->sa_restorer; |
| 2680 | #endif |
| 2681 | internal_memcpy(dest: &newact, src: act, n: sizeof(newact)); |
| 2682 | internal_sigfillset(set: &newact.sa_mask); |
| 2683 | if ((act->sa_flags & SA_SIGINFO) || |
| 2684 | ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) { |
| 2685 | newact.sa_flags |= SA_SIGINFO; |
| 2686 | newact.sigaction = sighandler; |
| 2687 | } |
| 2688 | ReleaseStore(thr, pc, addr: (uptr)&sigactions[sig]); |
| 2689 | act = &newact; |
| 2690 | } |
| 2691 | int res = REAL(sigaction)(sig, act, old); |
| 2692 | if (res == 0 && old && old->sigaction == sighandler) |
| 2693 | internal_memcpy(dest: old, src: &old_stored, n: sizeof(*old)); |
| 2694 | return res; |
| 2695 | } |
| 2696 | |
| 2697 | static __sanitizer_sighandler_ptr signal_impl(int sig, |
| 2698 | __sanitizer_sighandler_ptr h) { |
| 2699 | __sanitizer_sigaction act; |
| 2700 | act.handler = h; |
| 2701 | internal_memset(s: &act.sa_mask, c: -1, n: sizeof(act.sa_mask)); |
| 2702 | act.sa_flags = 0; |
| 2703 | __sanitizer_sigaction old; |
| 2704 | int res = sigaction_symname(signum: sig, act: &act, oldact: &old); |
| 2705 | if (res) return (__sanitizer_sighandler_ptr)sig_err; |
| 2706 | return old.handler; |
| 2707 | } |
| 2708 | |
| 2709 | #define TSAN_SYSCALL() \ |
| 2710 | ThreadState *thr = cur_thread(); \ |
| 2711 | if (thr->ignore_interceptors) \ |
| 2712 | return; \ |
| 2713 | ScopedSyscall scoped_syscall(thr) |
| 2714 | |
| 2715 | struct ScopedSyscall { |
| 2716 | ThreadState *thr; |
| 2717 | |
| 2718 | explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); } |
| 2719 | |
| 2720 | ~ScopedSyscall() { |
| 2721 | ProcessPendingSignals(thr); |
| 2722 | } |
| 2723 | }; |
| 2724 | |
| 2725 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE |
| 2726 | static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) { |
| 2727 | TSAN_SYSCALL(); |
| 2728 | MemoryAccessRange(thr, pc, addr: p, size: s, is_write: write); |
| 2729 | } |
| 2730 | |
| 2731 | static USED void syscall_acquire(uptr pc, uptr addr) { |
| 2732 | TSAN_SYSCALL(); |
| 2733 | Acquire(thr, pc, addr); |
| 2734 | DPrintf("syscall_acquire(0x%zx))\n" , addr); |
| 2735 | } |
| 2736 | |
| 2737 | static USED void syscall_release(uptr pc, uptr addr) { |
| 2738 | TSAN_SYSCALL(); |
| 2739 | DPrintf("syscall_release(0x%zx)\n" , addr); |
| 2740 | Release(thr, pc, addr); |
| 2741 | } |
| 2742 | |
| 2743 | static void syscall_fd_close(uptr pc, int fd) { |
| 2744 | auto *thr = cur_thread(); |
| 2745 | FdClose(thr, pc, fd); |
| 2746 | } |
| 2747 | |
| 2748 | static USED void syscall_fd_acquire(uptr pc, int fd) { |
| 2749 | TSAN_SYSCALL(); |
| 2750 | FdAcquire(thr, pc, fd); |
| 2751 | DPrintf("syscall_fd_acquire(%d)\n" , fd); |
| 2752 | } |
| 2753 | |
| 2754 | static USED void syscall_fd_release(uptr pc, int fd) { |
| 2755 | TSAN_SYSCALL(); |
| 2756 | DPrintf("syscall_fd_release(%d)\n" , fd); |
| 2757 | FdRelease(thr, pc, fd); |
| 2758 | } |
| 2759 | |
| 2760 | static USED void sycall_blocking_start() { |
| 2761 | DPrintf("sycall_blocking_start()\n" ); |
| 2762 | ThreadState *thr = cur_thread(); |
| 2763 | EnterBlockingFunc(thr); |
| 2764 | // When we are in a "blocking call", we process signals asynchronously |
| 2765 | // (right when they arrive). In this context we do not expect to be |
| 2766 | // executing any user/runtime code. The known interceptor sequence when |
| 2767 | // this is not true is: pthread_join -> munmap(stack). It's fine |
| 2768 | // to ignore munmap in this case -- we handle stack shadow separately. |
| 2769 | thr->ignore_interceptors++; |
| 2770 | } |
| 2771 | |
| 2772 | static USED void sycall_blocking_end() { |
| 2773 | DPrintf("sycall_blocking_end()\n" ); |
| 2774 | ThreadState *thr = cur_thread(); |
| 2775 | thr->ignore_interceptors--; |
| 2776 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
| 2777 | } |
| 2778 | |
| 2779 | static void syscall_pre_fork(uptr pc) { ForkBefore(thr: cur_thread(), pc); } |
| 2780 | |
| 2781 | static void syscall_post_fork(uptr pc, int pid) { |
| 2782 | ThreadState *thr = cur_thread(); |
| 2783 | if (pid == 0) { |
| 2784 | // child |
| 2785 | ForkChildAfter(thr, pc, start_thread: true); |
| 2786 | FdOnFork(thr, pc); |
| 2787 | } else if (pid > 0) { |
| 2788 | // parent |
| 2789 | ForkParentAfter(thr, pc); |
| 2790 | } else { |
| 2791 | // error |
| 2792 | ForkParentAfter(thr, pc); |
| 2793 | } |
| 2794 | } |
| 2795 | #endif |
| 2796 | |
| 2797 | #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \ |
| 2798 | syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false) |
| 2799 | |
| 2800 | #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \ |
| 2801 | syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true) |
| 2802 | |
| 2803 | #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \ |
| 2804 | do { \ |
| 2805 | (void)(p); \ |
| 2806 | (void)(s); \ |
| 2807 | } while (false) |
| 2808 | |
| 2809 | #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \ |
| 2810 | do { \ |
| 2811 | (void)(p); \ |
| 2812 | (void)(s); \ |
| 2813 | } while (false) |
| 2814 | |
| 2815 | #define COMMON_SYSCALL_ACQUIRE(addr) \ |
| 2816 | syscall_acquire(GET_CALLER_PC(), (uptr)(addr)) |
| 2817 | |
| 2818 | #define COMMON_SYSCALL_RELEASE(addr) \ |
| 2819 | syscall_release(GET_CALLER_PC(), (uptr)(addr)) |
| 2820 | |
| 2821 | #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd) |
| 2822 | |
| 2823 | #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd) |
| 2824 | |
| 2825 | #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd) |
| 2826 | |
| 2827 | #define COMMON_SYSCALL_PRE_FORK() \ |
| 2828 | syscall_pre_fork(GET_CALLER_PC()) |
| 2829 | |
| 2830 | #define COMMON_SYSCALL_POST_FORK(res) \ |
| 2831 | syscall_post_fork(GET_CALLER_PC(), res) |
| 2832 | |
| 2833 | #define COMMON_SYSCALL_BLOCKING_START() sycall_blocking_start() |
| 2834 | #define COMMON_SYSCALL_BLOCKING_END() sycall_blocking_end() |
| 2835 | |
| 2836 | #include "sanitizer_common/sanitizer_common_syscalls.inc" |
| 2837 | #include "sanitizer_common/sanitizer_syscalls_netbsd.inc" |
| 2838 | |
| 2839 | #ifdef NEED_TLS_GET_ADDR |
| 2840 | |
| 2841 | static void handle_tls_addr(void *arg, void *res) { |
| 2842 | ThreadState *thr = cur_thread(); |
| 2843 | if (!thr) |
| 2844 | return; |
| 2845 | DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, static_tls_begin: thr->tls_addr, |
| 2846 | static_tls_end: thr->tls_addr + thr->tls_size); |
| 2847 | if (!dtv) |
| 2848 | return; |
| 2849 | // New DTLS block has been allocated. |
| 2850 | MemoryResetRange(thr, pc: 0, addr: dtv->beg, size: dtv->size); |
| 2851 | } |
| 2852 | |
| 2853 | #if !SANITIZER_S390 |
| 2854 | // Define own interceptor instead of sanitizer_common's for three reasons: |
| 2855 | // 1. It must not process pending signals. |
| 2856 | // Signal handlers may contain MOVDQA instruction (see below). |
| 2857 | // 2. It must be as simple as possible to not contain MOVDQA. |
| 2858 | // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which |
| 2859 | // is empty for tsan (meant only for msan). |
| 2860 | // Note: __tls_get_addr can be called with mis-aligned stack due to: |
| 2861 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066 |
| 2862 | // So the interceptor must work with mis-aligned stack, in particular, does not |
| 2863 | // execute MOVDQA with stack addresses. |
| 2864 | TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) { |
| 2865 | void *res = REAL(__tls_get_addr)(arg); |
| 2866 | handle_tls_addr(arg, res); |
| 2867 | return res; |
| 2868 | } |
| 2869 | #else // SANITIZER_S390 |
| 2870 | TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) { |
| 2871 | uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset)); |
| 2872 | char *tp = static_cast<char *>(__builtin_thread_pointer()); |
| 2873 | handle_tls_addr(arg, res + tp); |
| 2874 | return res; |
| 2875 | } |
| 2876 | #endif |
| 2877 | #endif |
| 2878 | |
| 2879 | #if SANITIZER_NETBSD |
| 2880 | TSAN_INTERCEPTOR(void, _lwp_exit) { |
| 2881 | SCOPED_TSAN_INTERCEPTOR(_lwp_exit); |
| 2882 | DestroyThreadState(); |
| 2883 | REAL(_lwp_exit)(); |
| 2884 | } |
| 2885 | #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit) |
| 2886 | #else |
| 2887 | #define TSAN_MAYBE_INTERCEPT__LWP_EXIT |
| 2888 | #endif |
| 2889 | |
| 2890 | #if SANITIZER_FREEBSD |
| 2891 | TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) { |
| 2892 | SCOPED_TSAN_INTERCEPTOR(thr_exit, state); |
| 2893 | DestroyThreadState(); |
| 2894 | REAL(thr_exit(state)); |
| 2895 | } |
| 2896 | #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit) |
| 2897 | #else |
| 2898 | #define TSAN_MAYBE_INTERCEPT_THR_EXIT |
| 2899 | #endif |
| 2900 | |
| 2901 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a) |
| 2902 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c) |
| 2903 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c) |
| 2904 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c) |
| 2905 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m) |
| 2906 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a) |
| 2907 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m) |
| 2908 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m) |
| 2909 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m) |
| 2910 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m) |
| 2911 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a) |
| 2912 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l) |
| 2913 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l) |
| 2914 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l) |
| 2915 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l) |
| 2916 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l) |
| 2917 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l) |
| 2918 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)()) |
| 2919 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o) |
| 2920 | |
| 2921 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a) |
| 2922 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c) |
| 2923 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c) |
| 2924 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m) |
| 2925 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c) |
| 2926 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a) |
| 2927 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m) |
| 2928 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock, void *m) |
| 2929 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m) |
| 2930 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock, void *m) |
| 2931 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a) |
| 2932 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m) |
| 2933 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m) |
| 2934 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m) |
| 2935 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m) |
| 2936 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m) |
| 2937 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m) |
| 2938 | TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)()) |
| 2939 | TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b, |
| 2940 | void *c) |
| 2941 | |
| 2942 | namespace __tsan { |
| 2943 | |
| 2944 | static void finalize(void *arg) { |
| 2945 | ThreadState *thr = cur_thread(); |
| 2946 | int status = Finalize(thr); |
| 2947 | // Make sure the output is not lost. |
| 2948 | FlushStreams(); |
| 2949 | if (status) |
| 2950 | Die(); |
| 2951 | } |
| 2952 | |
| 2953 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
| 2954 | static void unreachable() { |
| 2955 | Report(format: "FATAL: ThreadSanitizer: unreachable called\n" ); |
| 2956 | Die(); |
| 2957 | } |
| 2958 | #endif |
| 2959 | |
| 2960 | // Define default implementation since interception of libdispatch is optional. |
| 2961 | SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {} |
| 2962 | |
| 2963 | void InitializeInterceptors() { |
| 2964 | #if !SANITIZER_APPLE |
| 2965 | // We need to setup it early, because functions like dlsym() can call it. |
| 2966 | REAL(memset) = internal_memset; |
| 2967 | REAL(memcpy) = internal_memcpy; |
| 2968 | #endif |
| 2969 | |
| 2970 | __interception::DoesNotSupportStaticLinking(); |
| 2971 | |
| 2972 | new(interceptor_ctx()) InterceptorContext(); |
| 2973 | |
| 2974 | // Interpose __tls_get_addr before the common interposers. This is needed |
| 2975 | // because dlsym() may call malloc on failure which could result in other |
| 2976 | // interposed functions being called that could eventually make use of TLS. |
| 2977 | #ifdef NEED_TLS_GET_ADDR |
| 2978 | # if !SANITIZER_S390 |
| 2979 | TSAN_INTERCEPT(__tls_get_addr); |
| 2980 | # else |
| 2981 | TSAN_INTERCEPT(__tls_get_addr_internal); |
| 2982 | TSAN_INTERCEPT(__tls_get_offset); |
| 2983 | # endif |
| 2984 | #endif |
| 2985 | InitializeCommonInterceptors(); |
| 2986 | InitializeSignalInterceptors(); |
| 2987 | InitializeLibdispatchInterceptors(); |
| 2988 | |
| 2989 | #if !SANITIZER_APPLE |
| 2990 | InitializeSetjmpInterceptors(); |
| 2991 | #endif |
| 2992 | |
| 2993 | TSAN_INTERCEPT(longjmp_symname); |
| 2994 | TSAN_INTERCEPT(siglongjmp_symname); |
| 2995 | #if SANITIZER_NETBSD |
| 2996 | TSAN_INTERCEPT(_longjmp); |
| 2997 | #endif |
| 2998 | |
| 2999 | TSAN_INTERCEPT(malloc); |
| 3000 | TSAN_INTERCEPT(__libc_memalign); |
| 3001 | TSAN_INTERCEPT(calloc); |
| 3002 | TSAN_INTERCEPT(realloc); |
| 3003 | TSAN_INTERCEPT(reallocarray); |
| 3004 | TSAN_INTERCEPT(free); |
| 3005 | TSAN_MAYBE_INTERCEPT_FREE_SIZED; |
| 3006 | TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED; |
| 3007 | TSAN_INTERCEPT(cfree); |
| 3008 | TSAN_INTERCEPT(munmap); |
| 3009 | TSAN_MAYBE_INTERCEPT_MEMALIGN; |
| 3010 | TSAN_INTERCEPT(valloc); |
| 3011 | TSAN_MAYBE_INTERCEPT_PVALLOC; |
| 3012 | TSAN_INTERCEPT(posix_memalign); |
| 3013 | |
| 3014 | TSAN_INTERCEPT(strcpy); |
| 3015 | TSAN_INTERCEPT(strncpy); |
| 3016 | TSAN_INTERCEPT(strdup); |
| 3017 | |
| 3018 | TSAN_INTERCEPT(pthread_create); |
| 3019 | TSAN_INTERCEPT(pthread_join); |
| 3020 | TSAN_INTERCEPT(pthread_detach); |
| 3021 | TSAN_INTERCEPT(pthread_exit); |
| 3022 | #if SANITIZER_LINUX |
| 3023 | TSAN_INTERCEPT(pthread_tryjoin_np); |
| 3024 | TSAN_INTERCEPT(pthread_timedjoin_np); |
| 3025 | #endif |
| 3026 | |
| 3027 | TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE); |
| 3028 | TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE); |
| 3029 | TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE); |
| 3030 | TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE); |
| 3031 | TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE); |
| 3032 | TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE); |
| 3033 | |
| 3034 | TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT; |
| 3035 | |
| 3036 | TSAN_INTERCEPT(pthread_mutex_init); |
| 3037 | TSAN_INTERCEPT(pthread_mutex_destroy); |
| 3038 | TSAN_INTERCEPT(pthread_mutex_lock); |
| 3039 | TSAN_INTERCEPT(pthread_mutex_trylock); |
| 3040 | TSAN_INTERCEPT(pthread_mutex_timedlock); |
| 3041 | TSAN_INTERCEPT(pthread_mutex_unlock); |
| 3042 | #if SANITIZER_LINUX |
| 3043 | TSAN_INTERCEPT(pthread_mutex_clocklock); |
| 3044 | #endif |
| 3045 | #if SANITIZER_GLIBC |
| 3046 | # if !__GLIBC_PREREQ(2, 34) |
| 3047 | TSAN_INTERCEPT(__pthread_mutex_lock); |
| 3048 | TSAN_INTERCEPT(__pthread_mutex_unlock); |
| 3049 | # endif |
| 3050 | #endif |
| 3051 | |
| 3052 | TSAN_INTERCEPT(pthread_spin_init); |
| 3053 | TSAN_INTERCEPT(pthread_spin_destroy); |
| 3054 | TSAN_INTERCEPT(pthread_spin_lock); |
| 3055 | TSAN_INTERCEPT(pthread_spin_trylock); |
| 3056 | TSAN_INTERCEPT(pthread_spin_unlock); |
| 3057 | |
| 3058 | TSAN_INTERCEPT(pthread_rwlock_init); |
| 3059 | TSAN_INTERCEPT(pthread_rwlock_destroy); |
| 3060 | TSAN_INTERCEPT(pthread_rwlock_rdlock); |
| 3061 | TSAN_INTERCEPT(pthread_rwlock_tryrdlock); |
| 3062 | TSAN_INTERCEPT(pthread_rwlock_timedrdlock); |
| 3063 | TSAN_INTERCEPT(pthread_rwlock_wrlock); |
| 3064 | TSAN_INTERCEPT(pthread_rwlock_trywrlock); |
| 3065 | TSAN_INTERCEPT(pthread_rwlock_timedwrlock); |
| 3066 | TSAN_INTERCEPT(pthread_rwlock_unlock); |
| 3067 | |
| 3068 | TSAN_INTERCEPT(pthread_barrier_init); |
| 3069 | TSAN_INTERCEPT(pthread_barrier_destroy); |
| 3070 | TSAN_INTERCEPT(pthread_barrier_wait); |
| 3071 | |
| 3072 | TSAN_INTERCEPT(pthread_once); |
| 3073 | |
| 3074 | TSAN_MAYBE_INTERCEPT___FXSTAT; |
| 3075 | TSAN_MAYBE_INTERCEPT_FSTAT; |
| 3076 | TSAN_MAYBE_INTERCEPT_FSTAT64; |
| 3077 | TSAN_INTERCEPT(open); |
| 3078 | TSAN_MAYBE_INTERCEPT_OPEN64; |
| 3079 | TSAN_INTERCEPT(creat); |
| 3080 | TSAN_MAYBE_INTERCEPT_CREAT64; |
| 3081 | TSAN_INTERCEPT(dup); |
| 3082 | TSAN_INTERCEPT(dup2); |
| 3083 | TSAN_INTERCEPT(dup3); |
| 3084 | TSAN_MAYBE_INTERCEPT_EVENTFD; |
| 3085 | TSAN_MAYBE_INTERCEPT_SIGNALFD; |
| 3086 | TSAN_MAYBE_INTERCEPT_INOTIFY_INIT; |
| 3087 | TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1; |
| 3088 | TSAN_INTERCEPT(socket); |
| 3089 | TSAN_INTERCEPT(socketpair); |
| 3090 | TSAN_INTERCEPT(connect); |
| 3091 | TSAN_INTERCEPT(bind); |
| 3092 | TSAN_INTERCEPT(listen); |
| 3093 | TSAN_MAYBE_INTERCEPT_EPOLL; |
| 3094 | TSAN_INTERCEPT(close); |
| 3095 | TSAN_MAYBE_INTERCEPT___CLOSE; |
| 3096 | TSAN_MAYBE_INTERCEPT___RES_ICLOSE; |
| 3097 | TSAN_INTERCEPT(pipe); |
| 3098 | TSAN_INTERCEPT(pipe2); |
| 3099 | |
| 3100 | TSAN_INTERCEPT(unlink); |
| 3101 | TSAN_INTERCEPT(tmpfile); |
| 3102 | TSAN_MAYBE_INTERCEPT_TMPFILE64; |
| 3103 | TSAN_INTERCEPT(abort); |
| 3104 | TSAN_INTERCEPT(rmdir); |
| 3105 | TSAN_INTERCEPT(closedir); |
| 3106 | |
| 3107 | TSAN_INTERCEPT(sigsuspend); |
| 3108 | TSAN_INTERCEPT(sigblock); |
| 3109 | TSAN_INTERCEPT(sigsetmask); |
| 3110 | TSAN_INTERCEPT(pthread_sigmask); |
| 3111 | TSAN_INTERCEPT(raise); |
| 3112 | TSAN_INTERCEPT(kill); |
| 3113 | TSAN_INTERCEPT(pthread_kill); |
| 3114 | TSAN_INTERCEPT(sleep); |
| 3115 | TSAN_INTERCEPT(usleep); |
| 3116 | TSAN_INTERCEPT(nanosleep); |
| 3117 | TSAN_INTERCEPT(pause); |
| 3118 | TSAN_INTERCEPT(gettimeofday); |
| 3119 | TSAN_INTERCEPT(getaddrinfo); |
| 3120 | |
| 3121 | TSAN_INTERCEPT(fork); |
| 3122 | TSAN_INTERCEPT(vfork); |
| 3123 | #if SANITIZER_LINUX |
| 3124 | TSAN_INTERCEPT(clone); |
| 3125 | #endif |
| 3126 | #if !SANITIZER_ANDROID |
| 3127 | TSAN_INTERCEPT(dl_iterate_phdr); |
| 3128 | #endif |
| 3129 | |
| 3130 | // Symbolization indirectly calls dl_iterate_phdr |
| 3131 | ready_to_symbolize = true; |
| 3132 | |
| 3133 | TSAN_MAYBE_INTERCEPT_ON_EXIT; |
| 3134 | TSAN_INTERCEPT(__cxa_atexit); |
| 3135 | TSAN_INTERCEPT(_exit); |
| 3136 | |
| 3137 | TSAN_MAYBE_INTERCEPT__LWP_EXIT; |
| 3138 | TSAN_MAYBE_INTERCEPT_THR_EXIT; |
| 3139 | |
| 3140 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
| 3141 | // Need to setup it, because interceptors check that the function is resolved. |
| 3142 | // But atexit is emitted directly into the module, so can't be resolved. |
| 3143 | REAL(atexit) = (int(*)(void(*)()))unreachable; |
| 3144 | #endif |
| 3145 | |
| 3146 | if (REAL(__cxa_atexit)(&finalize, 0, 0)) { |
| 3147 | Printf(format: "ThreadSanitizer: failed to setup atexit callback\n" ); |
| 3148 | Die(); |
| 3149 | } |
| 3150 | if (pthread_atfork(prepare: atfork_prepare, parent: atfork_parent, child: atfork_child)) { |
| 3151 | Printf(format: "ThreadSanitizer: failed to setup atfork callbacks\n" ); |
| 3152 | Die(); |
| 3153 | } |
| 3154 | |
| 3155 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
| 3156 | if (pthread_key_create(key: &interceptor_ctx()->finalize_key, destructor: &thread_finalize)) { |
| 3157 | Printf(format: "ThreadSanitizer: failed to create thread key\n" ); |
| 3158 | Die(); |
| 3159 | } |
| 3160 | #endif |
| 3161 | |
| 3162 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init); |
| 3163 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy); |
| 3164 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal); |
| 3165 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast); |
| 3166 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait); |
| 3167 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init); |
| 3168 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy); |
| 3169 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock); |
| 3170 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock); |
| 3171 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock); |
| 3172 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init); |
| 3173 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy); |
| 3174 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock); |
| 3175 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock); |
| 3176 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock); |
| 3177 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock); |
| 3178 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock); |
| 3179 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once); |
| 3180 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask); |
| 3181 | |
| 3182 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init); |
| 3183 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal); |
| 3184 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast); |
| 3185 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait); |
| 3186 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy); |
| 3187 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init); |
| 3188 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy); |
| 3189 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock); |
| 3190 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock); |
| 3191 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock); |
| 3192 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init); |
| 3193 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy); |
| 3194 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock); |
| 3195 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock); |
| 3196 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock); |
| 3197 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock); |
| 3198 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock); |
| 3199 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once); |
| 3200 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask); |
| 3201 | |
| 3202 | FdInit(); |
| 3203 | } |
| 3204 | |
| 3205 | } // namespace __tsan |
| 3206 | |
| 3207 | // Invisible barrier for tests. |
| 3208 | // There were several unsuccessful iterations for this functionality: |
| 3209 | // 1. Initially it was implemented in user code using |
| 3210 | // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on |
| 3211 | // MacOS. Futexes are linux-specific for this matter. |
| 3212 | // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic |
| 3213 | // "as-if synchronized via sleep" messages in reports which failed some |
| 3214 | // output tests. |
| 3215 | // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan- |
| 3216 | // visible events, which lead to "failed to restore stack trace" failures. |
| 3217 | // Note that no_sanitize_thread attribute does not turn off atomic interception |
| 3218 | // so attaching it to the function defined in user code does not help. |
| 3219 | // That's why we now have what we have. |
| 3220 | constexpr u32 kBarrierThreadBits = 10; |
| 3221 | constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits; |
| 3222 | |
| 3223 | extern "C" { |
| 3224 | |
| 3225 | SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init( |
| 3226 | atomic_uint32_t *barrier, u32 num_threads) { |
| 3227 | if (num_threads >= kBarrierThreads) { |
| 3228 | Printf(format: "barrier_init: count is too large (%d)\n" , num_threads); |
| 3229 | Die(); |
| 3230 | } |
| 3231 | // kBarrierThreadBits lsb is thread count, |
| 3232 | // the remaining are count of entered threads. |
| 3233 | atomic_store(a: barrier, v: num_threads, mo: memory_order_relaxed); |
| 3234 | } |
| 3235 | |
| 3236 | static u32 barrier_epoch(u32 value) { |
| 3237 | return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1)); |
| 3238 | } |
| 3239 | |
| 3240 | SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait( |
| 3241 | atomic_uint32_t *barrier) { |
| 3242 | u32 old = atomic_fetch_add(a: barrier, v: kBarrierThreads, mo: memory_order_relaxed); |
| 3243 | u32 old_epoch = barrier_epoch(value: old); |
| 3244 | if (barrier_epoch(value: old + kBarrierThreads) != old_epoch) { |
| 3245 | FutexWake(p: barrier, count: (1 << 30)); |
| 3246 | return; |
| 3247 | } |
| 3248 | for (;;) { |
| 3249 | u32 cur = atomic_load(a: barrier, mo: memory_order_relaxed); |
| 3250 | if (barrier_epoch(value: cur) != old_epoch) |
| 3251 | return; |
| 3252 | FutexWait(p: barrier, cmp: cur); |
| 3253 | } |
| 3254 | } |
| 3255 | |
| 3256 | } // extern "C" |
| 3257 | |