| 1 | //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of ThreadSanitizer (TSan), a race detector. |
| 10 | // |
| 11 | // Main internal TSan header file. |
| 12 | // |
| 13 | // Ground rules: |
| 14 | // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static |
| 15 | // function-scope locals) |
| 16 | // - All functions/classes/etc reside in namespace __tsan, except for those |
| 17 | // declared in tsan_interface.h. |
| 18 | // - Platform-specific files should be used instead of ifdefs (*). |
| 19 | // - No system headers included in header files (*). |
| 20 | // - Platform specific headres included only into platform-specific files (*). |
| 21 | // |
| 22 | // (*) Except when inlining is critical for performance. |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #ifndef TSAN_RTL_H |
| 26 | #define TSAN_RTL_H |
| 27 | |
| 28 | #include "sanitizer_common/sanitizer_allocator.h" |
| 29 | #include "sanitizer_common/sanitizer_allocator_internal.h" |
| 30 | #include "sanitizer_common/sanitizer_asm.h" |
| 31 | #include "sanitizer_common/sanitizer_common.h" |
| 32 | #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" |
| 33 | #include "sanitizer_common/sanitizer_libignore.h" |
| 34 | #include "sanitizer_common/sanitizer_suppressions.h" |
| 35 | #include "sanitizer_common/sanitizer_thread_registry.h" |
| 36 | #include "sanitizer_common/sanitizer_vector.h" |
| 37 | #include "tsan_defs.h" |
| 38 | #include "tsan_flags.h" |
| 39 | #include "tsan_ignoreset.h" |
| 40 | #include "tsan_ilist.h" |
| 41 | #include "tsan_mman.h" |
| 42 | #include "tsan_mutexset.h" |
| 43 | #include "tsan_platform.h" |
| 44 | #include "tsan_report.h" |
| 45 | #include "tsan_shadow.h" |
| 46 | #include "tsan_stack_trace.h" |
| 47 | #include "tsan_sync.h" |
| 48 | #include "tsan_trace.h" |
| 49 | #include "tsan_vector_clock.h" |
| 50 | |
| 51 | #if SANITIZER_WORDSIZE != 64 |
| 52 | # error "ThreadSanitizer is supported only on 64-bit platforms" |
| 53 | #endif |
| 54 | |
| 55 | namespace __tsan { |
| 56 | |
| 57 | extern bool ready_to_symbolize; |
| 58 | |
| 59 | #if !SANITIZER_GO |
| 60 | struct MapUnmapCallback; |
| 61 | # if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \ |
| 62 | defined(__powerpc__) || SANITIZER_RISCV64 |
| 63 | |
| 64 | struct AP32 { |
| 65 | static const uptr kSpaceBeg = 0; |
| 66 | static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; |
| 67 | static const uptr kMetadataSize = 0; |
| 68 | typedef __sanitizer::CompactSizeClassMap SizeClassMap; |
| 69 | static const uptr kRegionSizeLog = 20; |
| 70 | using AddressSpaceView = LocalAddressSpaceView; |
| 71 | typedef __tsan::MapUnmapCallback MapUnmapCallback; |
| 72 | static const uptr kFlags = 0; |
| 73 | }; |
| 74 | typedef SizeClassAllocator32<AP32> PrimaryAllocator; |
| 75 | #else |
| 76 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| 77 | # if defined(__s390x__) |
| 78 | typedef MappingS390x Mapping; |
| 79 | # else |
| 80 | typedef Mapping48AddressSpace Mapping; |
| 81 | # endif |
| 82 | static const uptr kSpaceBeg = Mapping::kHeapMemBeg; |
| 83 | static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg; |
| 84 | static const uptr kMetadataSize = 0; |
| 85 | typedef DefaultSizeClassMap SizeClassMap; |
| 86 | typedef __tsan::MapUnmapCallback MapUnmapCallback; |
| 87 | static const uptr kFlags = 0; |
| 88 | using AddressSpaceView = LocalAddressSpaceView; |
| 89 | }; |
| 90 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
| 91 | #endif |
| 92 | typedef CombinedAllocator<PrimaryAllocator> Allocator; |
| 93 | typedef Allocator::AllocatorCache AllocatorCache; |
| 94 | Allocator *allocator(); |
| 95 | #endif |
| 96 | |
| 97 | struct ThreadSignalContext; |
| 98 | |
| 99 | struct JmpBuf { |
| 100 | uptr sp; |
| 101 | int int_signal_send; |
| 102 | bool in_blocking_func; |
| 103 | uptr oldset_stack_size; |
| 104 | uptr in_signal_handler; |
| 105 | uptr *shadow_stack_pos; |
| 106 | }; |
| 107 | |
| 108 | // A Processor represents a physical thread, or a P for Go. |
| 109 | // It is used to store internal resources like allocate cache, and does not |
| 110 | // participate in race-detection logic (invisible to end user). |
| 111 | // In C++ it is tied to an OS thread just like ThreadState, however ideally |
| 112 | // it should be tied to a CPU (this way we will have fewer allocator caches). |
| 113 | // In Go it is tied to a P, so there are significantly fewer Processor's than |
| 114 | // ThreadState's (which are tied to Gs). |
| 115 | // A ThreadState must be wired with a Processor to handle events. |
| 116 | struct Processor { |
| 117 | ThreadState *thr; // currently wired thread, or nullptr |
| 118 | #if !SANITIZER_GO |
| 119 | AllocatorCache alloc_cache; |
| 120 | InternalAllocatorCache internal_alloc_cache; |
| 121 | #endif |
| 122 | DenseSlabAllocCache block_cache; |
| 123 | DenseSlabAllocCache sync_cache; |
| 124 | DDPhysicalThread *dd_pt; |
| 125 | }; |
| 126 | |
| 127 | #if !SANITIZER_GO |
| 128 | // ScopedGlobalProcessor temporary setups a global processor for the current |
| 129 | // thread, if it does not have one. Intended for interceptors that can run |
| 130 | // at the very thread end, when we already destroyed the thread processor. |
| 131 | struct ScopedGlobalProcessor { |
| 132 | ScopedGlobalProcessor(); |
| 133 | ~ScopedGlobalProcessor(); |
| 134 | }; |
| 135 | #endif |
| 136 | |
| 137 | struct TidEpoch { |
| 138 | Tid tid; |
| 139 | Epoch epoch; |
| 140 | }; |
| 141 | |
| 142 | struct alignas(SANITIZER_CACHE_LINE_SIZE) TidSlot { |
| 143 | Mutex mtx; |
| 144 | Sid sid; |
| 145 | atomic_uint32_t raw_epoch; |
| 146 | ThreadState *thr; |
| 147 | Vector<TidEpoch> journal; |
| 148 | INode node; |
| 149 | |
| 150 | Epoch epoch() const { |
| 151 | return static_cast<Epoch>(atomic_load(a: &raw_epoch, mo: memory_order_relaxed)); |
| 152 | } |
| 153 | |
| 154 | void SetEpoch(Epoch v) { |
| 155 | atomic_store(a: &raw_epoch, v: static_cast<u32>(v), mo: memory_order_relaxed); |
| 156 | } |
| 157 | |
| 158 | TidSlot(); |
| 159 | }; |
| 160 | |
| 161 | // This struct is stored in TLS. |
| 162 | struct alignas(SANITIZER_CACHE_LINE_SIZE) ThreadState { |
| 163 | FastState fast_state; |
| 164 | int ignore_sync; |
| 165 | #if !SANITIZER_GO |
| 166 | int ignore_interceptors; |
| 167 | #endif |
| 168 | uptr *shadow_stack_pos; |
| 169 | |
| 170 | // Current position in tctx->trace.Back()->events (Event*). |
| 171 | atomic_uintptr_t trace_pos; |
| 172 | // PC of the last memory access, used to compute PC deltas in the trace. |
| 173 | uptr trace_prev_pc; |
| 174 | |
| 175 | // Technically `current` should be a separate THREADLOCAL variable; |
| 176 | // but it is placed here in order to share cache line with previous fields. |
| 177 | ThreadState* current; |
| 178 | |
| 179 | atomic_sint32_t pending_signals; |
| 180 | |
| 181 | VectorClock clock; |
| 182 | |
| 183 | // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. |
| 184 | // We do not distinguish beteween ignoring reads and writes |
| 185 | // for better performance. |
| 186 | int ignore_reads_and_writes; |
| 187 | int suppress_reports; |
| 188 | // Go does not support ignores. |
| 189 | #if !SANITIZER_GO |
| 190 | IgnoreSet mop_ignore_set; |
| 191 | IgnoreSet sync_ignore_set; |
| 192 | #endif |
| 193 | uptr *shadow_stack; |
| 194 | uptr *shadow_stack_end; |
| 195 | #if !SANITIZER_GO |
| 196 | Vector<JmpBuf> jmp_bufs; |
| 197 | int in_symbolizer; |
| 198 | atomic_uintptr_t in_blocking_func; |
| 199 | bool in_ignored_lib; |
| 200 | bool is_inited; |
| 201 | #endif |
| 202 | MutexSet mset; |
| 203 | bool is_dead; |
| 204 | const Tid tid; |
| 205 | uptr stk_addr; |
| 206 | uptr stk_size; |
| 207 | uptr tls_addr; |
| 208 | uptr tls_size; |
| 209 | ThreadContext *tctx; |
| 210 | |
| 211 | DDLogicalThread *dd_lt; |
| 212 | |
| 213 | TidSlot *slot; |
| 214 | uptr slot_epoch; |
| 215 | bool slot_locked; |
| 216 | |
| 217 | // Current wired Processor, or nullptr. Required to handle any events. |
| 218 | Processor *proc1; |
| 219 | #if !SANITIZER_GO |
| 220 | Processor *proc() { return proc1; } |
| 221 | #else |
| 222 | Processor *proc(); |
| 223 | #endif |
| 224 | |
| 225 | atomic_uintptr_t in_signal_handler; |
| 226 | atomic_uintptr_t signal_ctx; |
| 227 | |
| 228 | #if !SANITIZER_GO |
| 229 | StackID last_sleep_stack_id; |
| 230 | VectorClock last_sleep_clock; |
| 231 | #endif |
| 232 | |
| 233 | // Set in regions of runtime that must be signal-safe and fork-safe. |
| 234 | // If set, malloc must not be called. |
| 235 | int nomalloc; |
| 236 | |
| 237 | const ReportDesc *current_report; |
| 238 | |
| 239 | explicit ThreadState(Tid tid); |
| 240 | }; |
| 241 | |
| 242 | #if !SANITIZER_GO |
| 243 | #if SANITIZER_APPLE || SANITIZER_ANDROID |
| 244 | ThreadState *cur_thread(); |
| 245 | void set_cur_thread(ThreadState *thr); |
| 246 | void cur_thread_finalize(); |
| 247 | inline ThreadState *cur_thread_init() { return cur_thread(); } |
| 248 | # else |
| 249 | __attribute__((tls_model("initial-exec" ))) |
| 250 | extern THREADLOCAL char cur_thread_placeholder[]; |
| 251 | inline ThreadState *cur_thread() { |
| 252 | return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current; |
| 253 | } |
| 254 | inline ThreadState *cur_thread_init() { |
| 255 | ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder); |
| 256 | if (UNLIKELY(!thr->current)) |
| 257 | thr->current = thr; |
| 258 | return thr->current; |
| 259 | } |
| 260 | inline void set_cur_thread(ThreadState *thr) { |
| 261 | reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr; |
| 262 | } |
| 263 | inline void cur_thread_finalize() { } |
| 264 | # endif // SANITIZER_APPLE || SANITIZER_ANDROID |
| 265 | #endif // SANITIZER_GO |
| 266 | |
| 267 | class ThreadContext final : public ThreadContextBase { |
| 268 | public: |
| 269 | explicit ThreadContext(Tid tid); |
| 270 | ~ThreadContext(); |
| 271 | ThreadState *thr; |
| 272 | StackID creation_stack_id; |
| 273 | VectorClock *sync; |
| 274 | uptr sync_epoch; |
| 275 | Trace trace; |
| 276 | |
| 277 | // Override superclass callbacks. |
| 278 | void OnDead() override; |
| 279 | void OnJoined(void *arg) override; |
| 280 | void OnFinished() override; |
| 281 | void OnStarted(void *arg) override; |
| 282 | void OnCreated(void *arg) override; |
| 283 | void OnReset() override; |
| 284 | void OnDetached(void *arg) override; |
| 285 | }; |
| 286 | |
| 287 | struct RacyStacks { |
| 288 | MD5Hash hash[2]; |
| 289 | bool operator==(const RacyStacks &other) const; |
| 290 | }; |
| 291 | |
| 292 | struct RacyAddress { |
| 293 | uptr addr_min; |
| 294 | uptr addr_max; |
| 295 | }; |
| 296 | |
| 297 | struct FiredSuppression { |
| 298 | ReportType type; |
| 299 | uptr pc_or_addr; |
| 300 | Suppression *supp; |
| 301 | }; |
| 302 | |
| 303 | struct Context { |
| 304 | Context(); |
| 305 | |
| 306 | bool initialized; |
| 307 | #if !SANITIZER_GO |
| 308 | bool after_multithreaded_fork; |
| 309 | #endif |
| 310 | |
| 311 | MetaMap metamap; |
| 312 | |
| 313 | Mutex report_mtx; |
| 314 | int nreported; |
| 315 | atomic_uint64_t last_symbolize_time_ns; |
| 316 | |
| 317 | void *background_thread; |
| 318 | atomic_uint32_t stop_background_thread; |
| 319 | |
| 320 | ThreadRegistry thread_registry; |
| 321 | |
| 322 | // This is used to prevent a very unlikely but very pathological behavior. |
| 323 | // Since memory access handling is not synchronized with DoReset, |
| 324 | // a thread running concurrently with DoReset can leave a bogus shadow value |
| 325 | // that will be later falsely detected as a race. For such false races |
| 326 | // RestoreStack will return false and we will not report it. |
| 327 | // However, consider that a thread leaves a whole lot of such bogus values |
| 328 | // and these values are later read by a whole lot of threads. |
| 329 | // This will cause massive amounts of ReportRace calls and lots of |
| 330 | // serialization. In very pathological cases the resulting slowdown |
| 331 | // can be >100x. This is very unlikely, but it was presumably observed |
| 332 | // in practice: https://github.com/google/sanitizers/issues/1552 |
| 333 | // If this happens, previous access sid+epoch will be the same for all of |
| 334 | // these false races b/c if the thread will try to increment epoch, it will |
| 335 | // notice that DoReset has happened and will stop producing bogus shadow |
| 336 | // values. So, last_spurious_race is used to remember the last sid+epoch |
| 337 | // for which RestoreStack returned false. Then it is used to filter out |
| 338 | // races with the same sid+epoch very early and quickly. |
| 339 | // It is of course possible that multiple threads left multiple bogus shadow |
| 340 | // values and all of them are read by lots of threads at the same time. |
| 341 | // In such case last_spurious_race will only be able to deduplicate a few |
| 342 | // races from one thread, then few from another and so on. An alternative |
| 343 | // would be to hold an array of such sid+epoch, but we consider such scenario |
| 344 | // as even less likely. |
| 345 | // Note: this can lead to some rare false negatives as well: |
| 346 | // 1. When a legit access with the same sid+epoch participates in a race |
| 347 | // as the "previous" memory access, it will be wrongly filtered out. |
| 348 | // 2. When RestoreStack returns false for a legit memory access because it |
| 349 | // was already evicted from the thread trace, we will still remember it in |
| 350 | // last_spurious_race. Then if there is another racing memory access from |
| 351 | // the same thread that happened in the same epoch, but was stored in the |
| 352 | // next thread trace part (which is still preserved in the thread trace), |
| 353 | // we will also wrongly filter it out while RestoreStack would actually |
| 354 | // succeed for that second memory access. |
| 355 | RawShadow last_spurious_race; |
| 356 | |
| 357 | Mutex racy_mtx; |
| 358 | Vector<RacyStacks> racy_stacks; |
| 359 | // Number of fired suppressions may be large enough. |
| 360 | Mutex fired_suppressions_mtx; |
| 361 | InternalMmapVector<FiredSuppression> fired_suppressions; |
| 362 | DDetector *dd; |
| 363 | |
| 364 | Flags flags; |
| 365 | fd_t memprof_fd; |
| 366 | |
| 367 | // The last slot index (kFreeSid) is used to denote freed memory. |
| 368 | TidSlot slots[kThreadSlotCount - 1]; |
| 369 | |
| 370 | // Protects global_epoch, slot_queue, trace_part_recycle. |
| 371 | Mutex slot_mtx; |
| 372 | uptr global_epoch; // guarded by slot_mtx and by all slot mutexes |
| 373 | bool resetting; // global reset is in progress |
| 374 | IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx); |
| 375 | IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle |
| 376 | SANITIZER_GUARDED_BY(slot_mtx); |
| 377 | uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx); |
| 378 | uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx); |
| 379 | uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx); |
| 380 | #if SANITIZER_GO |
| 381 | uptr mapped_shadow_begin; |
| 382 | uptr mapped_shadow_end; |
| 383 | #endif |
| 384 | }; |
| 385 | |
| 386 | extern Context *ctx; // The one and the only global runtime context. |
| 387 | |
| 388 | ALWAYS_INLINE Flags *flags() { |
| 389 | return &ctx->flags; |
| 390 | } |
| 391 | |
| 392 | struct ScopedIgnoreInterceptors { |
| 393 | ScopedIgnoreInterceptors() { |
| 394 | #if !SANITIZER_GO |
| 395 | cur_thread()->ignore_interceptors++; |
| 396 | #endif |
| 397 | } |
| 398 | |
| 399 | ~ScopedIgnoreInterceptors() { |
| 400 | #if !SANITIZER_GO |
| 401 | cur_thread()->ignore_interceptors--; |
| 402 | #endif |
| 403 | } |
| 404 | }; |
| 405 | |
| 406 | const char *GetObjectTypeFromTag(uptr tag); |
| 407 | const char *(uptr tag); |
| 408 | uptr TagFromShadowStackFrame(uptr pc); |
| 409 | |
| 410 | class ScopedReportBase { |
| 411 | public: |
| 412 | void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid, |
| 413 | StackTrace stack, const MutexSet *mset); |
| 414 | void AddStack(StackTrace stack, bool suppressable = false); |
| 415 | void AddThread(const ThreadContext *tctx, bool suppressable = false); |
| 416 | void AddThread(Tid tid, bool suppressable = false); |
| 417 | void AddUniqueTid(Tid unique_tid); |
| 418 | int AddMutex(uptr addr, StackID creation_stack_id); |
| 419 | void AddLocation(uptr addr, uptr size); |
| 420 | void AddSleep(StackID stack_id); |
| 421 | void SetCount(int count); |
| 422 | void SetSigNum(int sig); |
| 423 | |
| 424 | const ReportDesc *GetReport() const; |
| 425 | |
| 426 | protected: |
| 427 | ScopedReportBase(ReportType typ, uptr tag); |
| 428 | ~ScopedReportBase(); |
| 429 | |
| 430 | private: |
| 431 | ReportDesc *rep_; |
| 432 | // Symbolizer makes lots of intercepted calls. If we try to process them, |
| 433 | // at best it will cause deadlocks on internal mutexes. |
| 434 | ScopedIgnoreInterceptors ignore_interceptors_; |
| 435 | |
| 436 | ScopedReportBase(const ScopedReportBase &) = delete; |
| 437 | void operator=(const ScopedReportBase &) = delete; |
| 438 | }; |
| 439 | |
| 440 | class ScopedReport : public ScopedReportBase { |
| 441 | public: |
| 442 | explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone); |
| 443 | ~ScopedReport(); |
| 444 | |
| 445 | private: |
| 446 | ScopedErrorReportLock lock_; |
| 447 | }; |
| 448 | |
| 449 | bool ShouldReport(ThreadState *thr, ReportType typ); |
| 450 | ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack); |
| 451 | |
| 452 | // The stack could look like: |
| 453 | // <start> | <main> | <foo> | tag | <bar> |
| 454 | // This will extract the tag and keep: |
| 455 | // <start> | <main> | <foo> | <bar> |
| 456 | template<typename StackTraceTy> |
| 457 | void (StackTraceTy *stack, uptr *tag = nullptr) { |
| 458 | if (stack->size < 2) return; |
| 459 | uptr possible_tag_pc = stack->trace[stack->size - 2]; |
| 460 | uptr possible_tag = TagFromShadowStackFrame(pc: possible_tag_pc); |
| 461 | if (possible_tag == kExternalTagNone) return; |
| 462 | stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1]; |
| 463 | stack->size -= 1; |
| 464 | if (tag) *tag = possible_tag; |
| 465 | } |
| 466 | |
| 467 | template<typename StackTraceTy> |
| 468 | void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack, |
| 469 | uptr *tag = nullptr) { |
| 470 | uptr size = thr->shadow_stack_pos - thr->shadow_stack; |
| 471 | uptr start = 0; |
| 472 | if (size + !!toppc > kStackTraceMax) { |
| 473 | start = size + !!toppc - kStackTraceMax; |
| 474 | size = kStackTraceMax - !!toppc; |
| 475 | } |
| 476 | stack->Init(&thr->shadow_stack[start], size, toppc); |
| 477 | ExtractTagFromStack(stack, tag); |
| 478 | } |
| 479 | |
| 480 | #define GET_STACK_TRACE_FATAL(thr, pc) \ |
| 481 | VarSizeStackTrace stack; \ |
| 482 | ObtainCurrentStack(thr, pc, &stack); \ |
| 483 | stack.ReverseOrder(); |
| 484 | |
| 485 | void MapShadow(uptr addr, uptr size); |
| 486 | void MapThreadTrace(uptr addr, uptr size, const char *name); |
| 487 | void DontNeedShadowFor(uptr addr, uptr size); |
| 488 | void UnmapShadow(ThreadState *thr, uptr addr, uptr size); |
| 489 | void InitializeShadowMemory(); |
| 490 | void DontDumpShadow(uptr addr, uptr size); |
| 491 | void InitializeInterceptors(); |
| 492 | void InitializeLibIgnore(); |
| 493 | void InitializeDynamicAnnotations(); |
| 494 | |
| 495 | void ForkBefore(ThreadState *thr, uptr pc); |
| 496 | void ForkParentAfter(ThreadState *thr, uptr pc); |
| 497 | void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread); |
| 498 | |
| 499 | void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old, |
| 500 | AccessType typ); |
| 501 | bool OutputReport(ThreadState *thr, const ScopedReport &srep); |
| 502 | bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); |
| 503 | bool IsExpectedReport(uptr addr, uptr size); |
| 504 | |
| 505 | #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 |
| 506 | # define DPrintf Printf |
| 507 | #else |
| 508 | # define DPrintf(...) |
| 509 | #endif |
| 510 | |
| 511 | #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 |
| 512 | # define DPrintf2 Printf |
| 513 | #else |
| 514 | # define DPrintf2(...) |
| 515 | #endif |
| 516 | |
| 517 | StackID CurrentStackId(ThreadState *thr, uptr pc); |
| 518 | ReportStack *SymbolizeStackId(StackID stack_id); |
| 519 | void PrintCurrentStack(ThreadState *thr, uptr pc); |
| 520 | void PrintCurrentStack(uptr pc, bool fast); // may uses libunwind |
| 521 | MBlock *JavaHeapBlock(uptr addr, uptr *start); |
| 522 | |
| 523 | void Initialize(ThreadState *thr); |
| 524 | void MaybeSpawnBackgroundThread(); |
| 525 | int Finalize(ThreadState *thr); |
| 526 | |
| 527 | void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); |
| 528 | void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); |
| 529 | |
| 530 | void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| 531 | AccessType typ); |
| 532 | void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| 533 | AccessType typ); |
| 534 | // This creates 2 non-inlined specialized versions of MemoryAccessRange. |
| 535 | template <bool is_read> |
| 536 | void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| 537 | |
| 538 | ALWAYS_INLINE |
| 539 | void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| 540 | bool is_write) { |
| 541 | if (size == 0) |
| 542 | return; |
| 543 | if (is_write) |
| 544 | MemoryAccessRangeT<false>(thr, pc, addr, size); |
| 545 | else |
| 546 | MemoryAccessRangeT<true>(thr, pc, addr, size); |
| 547 | } |
| 548 | |
| 549 | void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v); |
| 550 | void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| 551 | void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| 552 | void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| 553 | void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, |
| 554 | uptr size); |
| 555 | |
| 556 | void ThreadIgnoreBegin(ThreadState *thr, uptr pc); |
| 557 | void ThreadIgnoreEnd(ThreadState *thr); |
| 558 | void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); |
| 559 | void ThreadIgnoreSyncEnd(ThreadState *thr); |
| 560 | |
| 561 | Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); |
| 562 | void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id, |
| 563 | ThreadType thread_type); |
| 564 | void ThreadFinish(ThreadState *thr); |
| 565 | Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid); |
| 566 | void ThreadJoin(ThreadState *thr, uptr pc, Tid tid); |
| 567 | void ThreadDetach(ThreadState *thr, uptr pc, Tid tid); |
| 568 | void ThreadFinalize(ThreadState *thr); |
| 569 | void ThreadSetName(ThreadState *thr, const char *name); |
| 570 | int ThreadCount(ThreadState *thr); |
| 571 | void ProcessPendingSignalsImpl(ThreadState *thr); |
| 572 | void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid); |
| 573 | |
| 574 | Processor *ProcCreate(); |
| 575 | void ProcDestroy(Processor *proc); |
| 576 | void ProcWire(Processor *proc, ThreadState *thr); |
| 577 | void ProcUnwire(Processor *proc, ThreadState *thr); |
| 578 | |
| 579 | // Note: the parameter is called flagz, because flags is already taken |
| 580 | // by the global function that returns flags. |
| 581 | void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| 582 | void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| 583 | void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| 584 | void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0, |
| 585 | int rec = 1); |
| 586 | int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| 587 | void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| 588 | void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| 589 | void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); |
| 590 | void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); |
| 591 | void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD |
| 592 | void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr); |
| 593 | |
| 594 | void Acquire(ThreadState *thr, uptr pc, uptr addr); |
| 595 | // AcquireGlobal synchronizes the current thread with all other threads. |
| 596 | // In terms of happens-before relation, it draws a HB edge from all threads |
| 597 | // (where they happen to execute right now) to the current thread. We use it to |
| 598 | // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal |
| 599 | // right before executing finalizers. This provides a coarse, but simple |
| 600 | // approximation of the actual required synchronization. |
| 601 | void AcquireGlobal(ThreadState *thr); |
| 602 | void Release(ThreadState *thr, uptr pc, uptr addr); |
| 603 | void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr); |
| 604 | void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); |
| 605 | void AfterSleep(ThreadState *thr, uptr pc); |
| 606 | void IncrementEpoch(ThreadState *thr); |
| 607 | |
| 608 | #if !SANITIZER_GO |
| 609 | uptr ALWAYS_INLINE HeapEnd() { |
| 610 | return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx); |
| 615 | void SlotDetach(ThreadState *thr); |
| 616 | void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx); |
| 617 | void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx); |
| 618 | void DoReset(ThreadState *thr, uptr epoch); |
| 619 | void FlushShadowMemory(); |
| 620 | |
| 621 | ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags); |
| 622 | void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber); |
| 623 | void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags); |
| 624 | |
| 625 | // These need to match __tsan_switch_to_fiber_* flags defined in |
| 626 | // tsan_interface.h. See documentation there as well. |
| 627 | enum FiberSwitchFlags { |
| 628 | FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync |
| 629 | }; |
| 630 | |
| 631 | class SlotLocker { |
| 632 | public: |
| 633 | ALWAYS_INLINE |
| 634 | SlotLocker(ThreadState *thr, bool recursive = false) |
| 635 | : thr_(thr), locked_(recursive ? thr->slot_locked : false) { |
| 636 | #if !SANITIZER_GO |
| 637 | // We are in trouble if we are here with in_blocking_func set. |
| 638 | // If in_blocking_func is set, all signals will be delivered synchronously, |
| 639 | // which means we can't lock slots since the signal handler will try |
| 640 | // to lock it recursively and deadlock. |
| 641 | DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed)); |
| 642 | #endif |
| 643 | if (!locked_) |
| 644 | SlotLock(thr: thr_); |
| 645 | } |
| 646 | |
| 647 | ALWAYS_INLINE |
| 648 | ~SlotLocker() { |
| 649 | if (!locked_) |
| 650 | SlotUnlock(thr: thr_); |
| 651 | } |
| 652 | |
| 653 | private: |
| 654 | ThreadState *thr_; |
| 655 | bool locked_; |
| 656 | }; |
| 657 | |
| 658 | class SlotUnlocker { |
| 659 | public: |
| 660 | SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) { |
| 661 | if (locked_) |
| 662 | SlotUnlock(thr: thr_); |
| 663 | } |
| 664 | |
| 665 | ~SlotUnlocker() { |
| 666 | if (locked_) |
| 667 | SlotLock(thr: thr_); |
| 668 | } |
| 669 | |
| 670 | private: |
| 671 | ThreadState *thr_; |
| 672 | bool locked_; |
| 673 | }; |
| 674 | |
| 675 | ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) { |
| 676 | if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals))) |
| 677 | ProcessPendingSignalsImpl(thr); |
| 678 | } |
| 679 | |
| 680 | extern bool is_initialized; |
| 681 | |
| 682 | ALWAYS_INLINE |
| 683 | void LazyInitialize(ThreadState *thr) { |
| 684 | // If we can use .preinit_array, assume that __tsan_init |
| 685 | // called from .preinit_array initializes runtime before |
| 686 | // any instrumented code except when tsan is used as a |
| 687 | // shared library. |
| 688 | #if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED)) |
| 689 | if (UNLIKELY(!is_initialized)) |
| 690 | Initialize(thr); |
| 691 | #endif |
| 692 | } |
| 693 | |
| 694 | void TraceResetForTesting(); |
| 695 | void TraceSwitchPart(ThreadState *thr); |
| 696 | void TraceSwitchPartImpl(ThreadState *thr); |
| 697 | bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size, |
| 698 | AccessType typ, Tid *ptid, VarSizeStackTrace *pstk, |
| 699 | MutexSet *pmset, uptr *ptag); |
| 700 | |
| 701 | template <typename EventT> |
| 702 | ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr, |
| 703 | EventT **ev) { |
| 704 | // TraceSwitchPart accesses shadow_stack, but it's called infrequently, |
| 705 | // so we check it here proactively. |
| 706 | DCHECK(thr->shadow_stack); |
| 707 | Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(a: &thr->trace_pos)); |
| 708 | #if SANITIZER_DEBUG |
| 709 | // TraceSwitch acquires these mutexes, |
| 710 | // so we lock them here to detect deadlocks more reliably. |
| 711 | { Lock lock(&ctx->slot_mtx); } |
| 712 | { Lock lock(&thr->tctx->trace.mtx); } |
| 713 | TracePart *current = thr->tctx->trace.parts.Back(); |
| 714 | if (current) { |
| 715 | DCHECK_GE(pos, ¤t->events[0]); |
| 716 | DCHECK_LE(pos, ¤t->events[TracePart::kSize]); |
| 717 | } else { |
| 718 | DCHECK_EQ(pos, nullptr); |
| 719 | } |
| 720 | #endif |
| 721 | // TracePart is allocated with mmap and is at least 4K aligned. |
| 722 | // So the following check is a faster way to check for part end. |
| 723 | // It may have false positives in the middle of the trace, |
| 724 | // they are filtered out in TraceSwitch. |
| 725 | if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0)) |
| 726 | return false; |
| 727 | *ev = reinterpret_cast<EventT *>(pos); |
| 728 | return true; |
| 729 | } |
| 730 | |
| 731 | template <typename EventT> |
| 732 | ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) { |
| 733 | DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]); |
| 734 | atomic_store_relaxed(a: &thr->trace_pos, v: (uptr)(evp + 1)); |
| 735 | } |
| 736 | |
| 737 | template <typename EventT> |
| 738 | void TraceEvent(ThreadState *thr, EventT ev) { |
| 739 | EventT *evp; |
| 740 | if (!TraceAcquire(thr, &evp)) { |
| 741 | TraceSwitchPart(thr); |
| 742 | UNUSED bool res = TraceAcquire(thr, &evp); |
| 743 | DCHECK(res); |
| 744 | } |
| 745 | *evp = ev; |
| 746 | TraceRelease(thr, evp); |
| 747 | } |
| 748 | |
| 749 | ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr, |
| 750 | uptr pc = 0) { |
| 751 | if (!kCollectHistory) |
| 752 | return true; |
| 753 | EventFunc *ev; |
| 754 | if (UNLIKELY(!TraceAcquire(thr, &ev))) |
| 755 | return false; |
| 756 | ev->is_access = 0; |
| 757 | ev->is_func = 1; |
| 758 | ev->pc = pc; |
| 759 | TraceRelease(thr, evp: ev); |
| 760 | return true; |
| 761 | } |
| 762 | |
| 763 | WARN_UNUSED_RESULT |
| 764 | bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| 765 | AccessType typ); |
| 766 | WARN_UNUSED_RESULT |
| 767 | bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| 768 | AccessType typ); |
| 769 | void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| 770 | AccessType typ); |
| 771 | void TraceFunc(ThreadState *thr, uptr pc = 0); |
| 772 | void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr, |
| 773 | StackID stk); |
| 774 | void TraceMutexUnlock(ThreadState *thr, uptr addr); |
| 775 | void TraceTime(ThreadState *thr); |
| 776 | |
| 777 | void TraceRestartFuncExit(ThreadState *thr); |
| 778 | void TraceRestartFuncEntry(ThreadState *thr, uptr pc); |
| 779 | |
| 780 | void GrowShadowStack(ThreadState *thr); |
| 781 | |
| 782 | ALWAYS_INLINE |
| 783 | void FuncEntry(ThreadState *thr, uptr pc) { |
| 784 | DPrintf2("#%d: FuncEntry %p\n" , (int)thr->fast_state.sid(), (void *)pc); |
| 785 | if (UNLIKELY(!TryTraceFunc(thr, pc))) |
| 786 | return TraceRestartFuncEntry(thr, pc); |
| 787 | DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); |
| 788 | #if !SANITIZER_GO |
| 789 | DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| 790 | #else |
| 791 | if (thr->shadow_stack_pos == thr->shadow_stack_end) |
| 792 | GrowShadowStack(thr); |
| 793 | #endif |
| 794 | thr->shadow_stack_pos[0] = pc; |
| 795 | thr->shadow_stack_pos++; |
| 796 | } |
| 797 | |
| 798 | ALWAYS_INLINE |
| 799 | void FuncExit(ThreadState *thr) { |
| 800 | DPrintf2("#%d: FuncExit\n" , (int)thr->fast_state.sid()); |
| 801 | if (UNLIKELY(!TryTraceFunc(thr, 0))) |
| 802 | return TraceRestartFuncExit(thr); |
| 803 | DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); |
| 804 | #if !SANITIZER_GO |
| 805 | DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| 806 | #endif |
| 807 | thr->shadow_stack_pos--; |
| 808 | } |
| 809 | |
| 810 | #if !SANITIZER_GO |
| 811 | extern void (*on_initialize)(void); |
| 812 | extern int (*on_finalize)(int); |
| 813 | #endif |
| 814 | } // namespace __tsan |
| 815 | |
| 816 | #endif // TSAN_RTL_H |
| 817 | |