| 1 | //===- CallGraphSort.cpp --------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// This is based on the ELF port, see ELF/CallGraphSort.cpp for the details |
| 10 | /// about the algorithm. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "CallGraphSort.h" |
| 15 | #include "COFFLinkerContext.h" |
| 16 | #include "InputFiles.h" |
| 17 | #include "SymbolTable.h" |
| 18 | #include "Symbols.h" |
| 19 | |
| 20 | #include <numeric> |
| 21 | |
| 22 | using namespace llvm; |
| 23 | using namespace lld; |
| 24 | using namespace lld::coff; |
| 25 | |
| 26 | namespace { |
| 27 | struct Edge { |
| 28 | int from; |
| 29 | uint64_t weight; |
| 30 | }; |
| 31 | |
| 32 | struct Cluster { |
| 33 | Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {} |
| 34 | |
| 35 | double getDensity() const { |
| 36 | if (size == 0) |
| 37 | return 0; |
| 38 | return double(weight) / double(size); |
| 39 | } |
| 40 | |
| 41 | int next; |
| 42 | int prev; |
| 43 | uint64_t size; |
| 44 | uint64_t weight = 0; |
| 45 | uint64_t initialWeight = 0; |
| 46 | Edge bestPred = {.from: -1, .weight: 0}; |
| 47 | }; |
| 48 | |
| 49 | class CallGraphSort { |
| 50 | public: |
| 51 | CallGraphSort(COFFLinkerContext &ctx); |
| 52 | |
| 53 | DenseMap<const SectionChunk *, int> run(); |
| 54 | |
| 55 | private: |
| 56 | std::vector<Cluster> clusters; |
| 57 | std::vector<const SectionChunk *> sections; |
| 58 | |
| 59 | COFFLinkerContext &ctx; |
| 60 | }; |
| 61 | |
| 62 | // Maximum amount the combined cluster density can be worse than the original |
| 63 | // cluster to consider merging. |
| 64 | constexpr int MAX_DENSITY_DEGRADATION = 8; |
| 65 | |
| 66 | // Maximum cluster size in bytes. |
| 67 | constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; |
| 68 | } // end anonymous namespace |
| 69 | |
| 70 | using SectionPair = std::pair<const SectionChunk *, const SectionChunk *>; |
| 71 | |
| 72 | // Take the edge list in Config->CallGraphProfile, resolve symbol names to |
| 73 | // Symbols, and generate a graph between InputSections with the provided |
| 74 | // weights. |
| 75 | CallGraphSort::CallGraphSort(COFFLinkerContext &ctx) : ctx(ctx) { |
| 76 | const MapVector<SectionPair, uint64_t> &profile = ctx.config.callGraphProfile; |
| 77 | DenseMap<const SectionChunk *, int> secToCluster; |
| 78 | |
| 79 | auto getOrCreateNode = [&](const SectionChunk *isec) -> int { |
| 80 | auto res = secToCluster.try_emplace(Key: isec, Args: clusters.size()); |
| 81 | if (res.second) { |
| 82 | sections.push_back(x: isec); |
| 83 | clusters.emplace_back(args: clusters.size(), args: isec->getSize()); |
| 84 | } |
| 85 | return res.first->second; |
| 86 | }; |
| 87 | |
| 88 | // Create the graph. |
| 89 | for (const std::pair<SectionPair, uint64_t> &c : profile) { |
| 90 | const auto *fromSec = cast<SectionChunk>(Val: c.first.first->repl); |
| 91 | const auto *toSec = cast<SectionChunk>(Val: c.first.second->repl); |
| 92 | uint64_t weight = c.second; |
| 93 | |
| 94 | // Ignore edges between input sections belonging to different output |
| 95 | // sections. This is done because otherwise we would end up with clusters |
| 96 | // containing input sections that can't actually be placed adjacently in the |
| 97 | // output. This messes with the cluster size and density calculations. We |
| 98 | // would also end up moving input sections in other output sections without |
| 99 | // moving them closer to what calls them. |
| 100 | if (ctx.getOutputSection(c: fromSec) != ctx.getOutputSection(c: toSec)) |
| 101 | continue; |
| 102 | |
| 103 | int from = getOrCreateNode(fromSec); |
| 104 | int to = getOrCreateNode(toSec); |
| 105 | |
| 106 | clusters[to].weight += weight; |
| 107 | |
| 108 | if (from == to) |
| 109 | continue; |
| 110 | |
| 111 | // Remember the best edge. |
| 112 | Cluster &toC = clusters[to]; |
| 113 | if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { |
| 114 | toC.bestPred.from = from; |
| 115 | toC.bestPred.weight = weight; |
| 116 | } |
| 117 | } |
| 118 | for (Cluster &c : clusters) |
| 119 | c.initialWeight = c.weight; |
| 120 | } |
| 121 | |
| 122 | // It's bad to merge clusters which would degrade the density too much. |
| 123 | static bool isNewDensityBad(Cluster &a, Cluster &b) { |
| 124 | double newDensity = double(a.weight + b.weight) / double(a.size + b.size); |
| 125 | return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; |
| 126 | } |
| 127 | |
| 128 | // Find the leader of V's belonged cluster (represented as an equivalence |
| 129 | // class). We apply union-find path-halving technique (simple to implement) in |
| 130 | // the meantime as it decreases depths and the time complexity. |
| 131 | static int getLeader(std::vector<int> &leaders, int v) { |
| 132 | while (leaders[v] != v) { |
| 133 | leaders[v] = leaders[leaders[v]]; |
| 134 | v = leaders[v]; |
| 135 | } |
| 136 | return v; |
| 137 | } |
| 138 | |
| 139 | static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx, |
| 140 | Cluster &from, int fromIdx) { |
| 141 | int tail1 = into.prev, tail2 = from.prev; |
| 142 | into.prev = tail2; |
| 143 | cs[tail2].next = intoIdx; |
| 144 | from.prev = tail1; |
| 145 | cs[tail1].next = fromIdx; |
| 146 | into.size += from.size; |
| 147 | into.weight += from.weight; |
| 148 | from.size = 0; |
| 149 | from.weight = 0; |
| 150 | } |
| 151 | |
| 152 | // Group InputSections into clusters using the Call-Chain Clustering heuristic |
| 153 | // then sort the clusters by density. |
| 154 | DenseMap<const SectionChunk *, int> CallGraphSort::run() { |
| 155 | std::vector<int> sorted(clusters.size()); |
| 156 | std::vector<int> leaders(clusters.size()); |
| 157 | |
| 158 | std::iota(first: leaders.begin(), last: leaders.end(), value: 0); |
| 159 | std::iota(first: sorted.begin(), last: sorted.end(), value: 0); |
| 160 | llvm::stable_sort(Range&: sorted, C: [&](int a, int b) { |
| 161 | return clusters[a].getDensity() > clusters[b].getDensity(); |
| 162 | }); |
| 163 | |
| 164 | for (int l : sorted) { |
| 165 | // The cluster index is the same as the index of its leader here because |
| 166 | // clusters[L] has not been merged into another cluster yet. |
| 167 | Cluster &c = clusters[l]; |
| 168 | |
| 169 | // Don't consider merging if the edge is unlikely. |
| 170 | if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) |
| 171 | continue; |
| 172 | |
| 173 | int predL = getLeader(leaders, v: c.bestPred.from); |
| 174 | if (l == predL) |
| 175 | continue; |
| 176 | |
| 177 | Cluster *predC = &clusters[predL]; |
| 178 | if (c.size + predC->size > MAX_CLUSTER_SIZE) |
| 179 | continue; |
| 180 | |
| 181 | if (isNewDensityBad(a&: *predC, b&: c)) |
| 182 | continue; |
| 183 | |
| 184 | leaders[l] = predL; |
| 185 | mergeClusters(cs&: clusters, into&: *predC, intoIdx: predL, from&: c, fromIdx: l); |
| 186 | } |
| 187 | |
| 188 | // Sort remaining non-empty clusters by density. |
| 189 | sorted.clear(); |
| 190 | for (int i = 0, e = (int)clusters.size(); i != e; ++i) |
| 191 | if (clusters[i].size > 0) |
| 192 | sorted.push_back(x: i); |
| 193 | llvm::stable_sort(Range&: sorted, C: [&](int a, int b) { |
| 194 | return clusters[a].getDensity() > clusters[b].getDensity(); |
| 195 | }); |
| 196 | |
| 197 | DenseMap<const SectionChunk *, int> orderMap; |
| 198 | // Sections will be sorted by increasing order. Absent sections will have |
| 199 | // priority 0 and be placed at the end of sections. |
| 200 | int curOrder = INT_MIN; |
| 201 | for (int leader : sorted) { |
| 202 | for (int i = leader;;) { |
| 203 | orderMap[sections[i]] = curOrder++; |
| 204 | i = clusters[i].next; |
| 205 | if (i == leader) |
| 206 | break; |
| 207 | } |
| 208 | } |
| 209 | if (!ctx.config.printSymbolOrder.empty()) { |
| 210 | std::error_code ec; |
| 211 | raw_fd_ostream os(ctx.config.printSymbolOrder, ec, sys::fs::OF_None); |
| 212 | if (ec) { |
| 213 | Err(ctx) << "cannot open " << ctx.config.printSymbolOrder << ": " |
| 214 | << ec.message(); |
| 215 | return orderMap; |
| 216 | } |
| 217 | // Print the symbols ordered by C3, in the order of increasing curOrder |
| 218 | // Instead of sorting all the orderMap, just repeat the loops above. |
| 219 | for (int leader : sorted) |
| 220 | for (int i = leader;;) { |
| 221 | const SectionChunk *sc = sections[i]; |
| 222 | |
| 223 | // Search all the symbols in the file of the section |
| 224 | // and find out a DefinedCOFF symbol with name that is within the |
| 225 | // section. |
| 226 | for (Symbol *sym : sc->file->getSymbols()) |
| 227 | if (auto *d = dyn_cast_or_null<DefinedCOFF>(Val: sym)) |
| 228 | // Filter out non-COMDAT symbols and section symbols. |
| 229 | if (d->isCOMDAT && !d->getCOFFSymbol().isSection() && |
| 230 | sc == d->getChunk()) |
| 231 | os << sym->getName() << "\n" ; |
| 232 | i = clusters[i].next; |
| 233 | if (i == leader) |
| 234 | break; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | return orderMap; |
| 239 | } |
| 240 | |
| 241 | // Sort sections by the profile data provided by /call-graph-ordering-file |
| 242 | // |
| 243 | // This first builds a call graph based on the profile data then merges sections |
| 244 | // according to the C³ heuristic. All clusters are then sorted by a density |
| 245 | // metric to further improve locality. |
| 246 | DenseMap<const SectionChunk *, int> |
| 247 | coff::computeCallGraphProfileOrder(COFFLinkerContext &ctx) { |
| 248 | return CallGraphSort(ctx).run(); |
| 249 | } |
| 250 | |