| 1 | //===- X86.cpp ------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "OutputSections.h" |
| 10 | #include "Symbols.h" |
| 11 | #include "SyntheticSections.h" |
| 12 | #include "Target.h" |
| 13 | #include "llvm/Support/Endian.h" |
| 14 | |
| 15 | using namespace llvm; |
| 16 | using namespace llvm::support::endian; |
| 17 | using namespace llvm::ELF; |
| 18 | using namespace lld; |
| 19 | using namespace lld::elf; |
| 20 | |
| 21 | namespace { |
| 22 | class X86 : public TargetInfo { |
| 23 | public: |
| 24 | X86(Ctx &); |
| 25 | int getTlsGdRelaxSkip(RelType type) const override; |
| 26 | RelExpr getRelExpr(RelType type, const Symbol &s, |
| 27 | const uint8_t *loc) const override; |
| 28 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| 29 | void writeGotPltHeader(uint8_t *buf) const override; |
| 30 | RelType getDynRel(RelType type) const override; |
| 31 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 32 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| 33 | void writePltHeader(uint8_t *buf) const override; |
| 34 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 35 | uint64_t pltEntryAddr) const override; |
| 36 | void relocate(uint8_t *loc, const Relocation &rel, |
| 37 | uint64_t val) const override; |
| 38 | |
| 39 | RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; |
| 40 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| 41 | |
| 42 | private: |
| 43 | void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 44 | void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 45 | void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 46 | void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 47 | }; |
| 48 | } // namespace |
| 49 | |
| 50 | X86::X86(Ctx &ctx) : TargetInfo(ctx) { |
| 51 | copyRel = R_386_COPY; |
| 52 | gotRel = R_386_GLOB_DAT; |
| 53 | pltRel = R_386_JUMP_SLOT; |
| 54 | iRelativeRel = R_386_IRELATIVE; |
| 55 | relativeRel = R_386_RELATIVE; |
| 56 | symbolicRel = R_386_32; |
| 57 | tlsDescRel = R_386_TLS_DESC; |
| 58 | tlsGotRel = R_386_TLS_TPOFF; |
| 59 | tlsModuleIndexRel = R_386_TLS_DTPMOD32; |
| 60 | tlsOffsetRel = R_386_TLS_DTPOFF32; |
| 61 | gotBaseSymInGotPlt = true; |
| 62 | pltHeaderSize = 16; |
| 63 | pltEntrySize = 16; |
| 64 | ipltEntrySize = 16; |
| 65 | trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 |
| 66 | |
| 67 | // Align to the non-PAE large page size (known as a superpage or huge page). |
| 68 | // FreeBSD automatically promotes large, superpage-aligned allocations. |
| 69 | defaultImageBase = 0x400000; |
| 70 | } |
| 71 | |
| 72 | int X86::getTlsGdRelaxSkip(RelType type) const { |
| 73 | // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. |
| 74 | return type == R_386_TLS_GOTDESC || type == R_386_TLS_DESC_CALL ? 1 : 2; |
| 75 | } |
| 76 | |
| 77 | RelExpr X86::getRelExpr(RelType type, const Symbol &s, |
| 78 | const uint8_t *loc) const { |
| 79 | switch (type) { |
| 80 | case R_386_8: |
| 81 | case R_386_16: |
| 82 | case R_386_32: |
| 83 | return R_ABS; |
| 84 | case R_386_TLS_LDO_32: |
| 85 | return R_DTPREL; |
| 86 | case R_386_TLS_GD: |
| 87 | return R_TLSGD_GOTPLT; |
| 88 | case R_386_TLS_LDM: |
| 89 | return R_TLSLD_GOTPLT; |
| 90 | case R_386_PLT32: |
| 91 | return R_PLT_PC; |
| 92 | case R_386_PC8: |
| 93 | case R_386_PC16: |
| 94 | case R_386_PC32: |
| 95 | return R_PC; |
| 96 | case R_386_GOTPC: |
| 97 | return R_GOTPLTONLY_PC; |
| 98 | case R_386_TLS_IE: |
| 99 | return R_GOT; |
| 100 | case R_386_GOT32: |
| 101 | case R_386_GOT32X: |
| 102 | // These relocations are arguably mis-designed because their calculations |
| 103 | // depend on the instructions they are applied to. This is bad because we |
| 104 | // usually don't care about whether the target section contains valid |
| 105 | // machine instructions or not. But this is part of the documented ABI, so |
| 106 | // we had to implement as the standard requires. |
| 107 | // |
| 108 | // x86 does not support PC-relative data access. Therefore, in order to |
| 109 | // access GOT contents, a GOT address needs to be known at link-time |
| 110 | // (which means non-PIC) or compilers have to emit code to get a GOT |
| 111 | // address at runtime (which means code is position-independent but |
| 112 | // compilers need to emit extra code for each GOT access.) This decision |
| 113 | // is made at compile-time. In the latter case, compilers emit code to |
| 114 | // load a GOT address to a register, which is usually %ebx. |
| 115 | // |
| 116 | // So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or |
| 117 | // foo@GOT(%ebx). |
| 118 | // |
| 119 | // foo@GOT is not usable in PIC. If we are creating a PIC output and if we |
| 120 | // find such relocation, we should report an error. foo@GOT is resolved to |
| 121 | // an *absolute* address of foo's GOT entry, because both GOT address and |
| 122 | // foo's offset are known. In other words, it's G + A. |
| 123 | // |
| 124 | // foo@GOT(%ebx) needs to be resolved to a *relative* offset from a GOT to |
| 125 | // foo's GOT entry in the table, because GOT address is not known but foo's |
| 126 | // offset in the table is known. It's G + A - GOT. |
| 127 | // |
| 128 | // It's unfortunate that compilers emit the same relocation for these |
| 129 | // different use cases. In order to distinguish them, we have to read a |
| 130 | // machine instruction. |
| 131 | // |
| 132 | // The following code implements it. We assume that Loc[0] is the first byte |
| 133 | // of a displacement or an immediate field of a valid machine |
| 134 | // instruction. That means a ModRM byte is at Loc[-1]. By taking a look at |
| 135 | // the byte, we can determine whether the instruction uses the operand as an |
| 136 | // absolute address (R_GOT) or a register-relative address (R_GOTPLT). |
| 137 | return (loc[-1] & 0xc7) == 0x5 ? R_GOT : R_GOTPLT; |
| 138 | case R_386_TLS_GOTDESC: |
| 139 | return R_TLSDESC_GOTPLT; |
| 140 | case R_386_TLS_DESC_CALL: |
| 141 | return R_TLSDESC_CALL; |
| 142 | case R_386_TLS_GOTIE: |
| 143 | return R_GOTPLT; |
| 144 | case R_386_GOTOFF: |
| 145 | return R_GOTPLTREL; |
| 146 | case R_386_TLS_LE: |
| 147 | return R_TPREL; |
| 148 | case R_386_TLS_LE_32: |
| 149 | return R_TPREL_NEG; |
| 150 | case R_386_NONE: |
| 151 | return R_NONE; |
| 152 | default: |
| 153 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
| 154 | << ") against symbol " << &s; |
| 155 | return R_NONE; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | RelExpr X86::adjustTlsExpr(RelType type, RelExpr expr) const { |
| 160 | switch (expr) { |
| 161 | default: |
| 162 | return expr; |
| 163 | case R_RELAX_TLS_GD_TO_IE: |
| 164 | return R_RELAX_TLS_GD_TO_IE_GOTPLT; |
| 165 | case R_RELAX_TLS_GD_TO_LE: |
| 166 | return type == R_386_TLS_GD ? R_RELAX_TLS_GD_TO_LE_NEG |
| 167 | : R_RELAX_TLS_GD_TO_LE; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | void X86::(uint8_t *buf) const { |
| 172 | write32le(P: buf, V: ctx.mainPart->dynamic->getVA()); |
| 173 | } |
| 174 | |
| 175 | void X86::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 176 | // Entries in .got.plt initially points back to the corresponding |
| 177 | // PLT entries with a fixed offset to skip the first instruction. |
| 178 | write32le(P: buf, V: s.getPltVA(ctx) + 6); |
| 179 | } |
| 180 | |
| 181 | void X86::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| 182 | // An x86 entry is the address of the ifunc resolver function. |
| 183 | write32le(P: buf, V: s.getVA(ctx)); |
| 184 | } |
| 185 | |
| 186 | RelType X86::getDynRel(RelType type) const { |
| 187 | if (type == R_386_TLS_LE) |
| 188 | return R_386_TLS_TPOFF; |
| 189 | if (type == R_386_TLS_LE_32) |
| 190 | return R_386_TLS_TPOFF32; |
| 191 | return type; |
| 192 | } |
| 193 | |
| 194 | void X86::(uint8_t *buf) const { |
| 195 | if (ctx.arg.isPic) { |
| 196 | const uint8_t v[] = { |
| 197 | 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) |
| 198 | 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx) |
| 199 | 0x90, 0x90, 0x90, 0x90 // nop |
| 200 | }; |
| 201 | memcpy(dest: buf, src: v, n: sizeof(v)); |
| 202 | return; |
| 203 | } |
| 204 | |
| 205 | const uint8_t pltData[] = { |
| 206 | 0xff, 0x35, 0, 0, 0, 0, // pushl (GOTPLT+4) |
| 207 | 0xff, 0x25, 0, 0, 0, 0, // jmp *(GOTPLT+8) |
| 208 | 0x90, 0x90, 0x90, 0x90, // nop |
| 209 | }; |
| 210 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
| 211 | uint32_t gotPlt = ctx.in.gotPlt->getVA(); |
| 212 | write32le(P: buf + 2, V: gotPlt + 4); |
| 213 | write32le(P: buf + 8, V: gotPlt + 8); |
| 214 | } |
| 215 | |
| 216 | void X86::writePlt(uint8_t *buf, const Symbol &sym, |
| 217 | uint64_t pltEntryAddr) const { |
| 218 | unsigned relOff = ctx.in.relaPlt->entsize * sym.getPltIdx(ctx); |
| 219 | if (ctx.arg.isPic) { |
| 220 | const uint8_t inst[] = { |
| 221 | 0xff, 0xa3, 0, 0, 0, 0, // jmp *foo@GOT(%ebx) |
| 222 | 0x68, 0, 0, 0, 0, // pushl $reloc_offset |
| 223 | 0xe9, 0, 0, 0, 0, // jmp .PLT0@PC |
| 224 | }; |
| 225 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 226 | write32le(P: buf + 2, V: sym.getGotPltVA(ctx) - ctx.in.gotPlt->getVA()); |
| 227 | } else { |
| 228 | const uint8_t inst[] = { |
| 229 | 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT |
| 230 | 0x68, 0, 0, 0, 0, // pushl $reloc_offset |
| 231 | 0xe9, 0, 0, 0, 0, // jmp .PLT0@PC |
| 232 | }; |
| 233 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 234 | write32le(P: buf + 2, V: sym.getGotPltVA(ctx)); |
| 235 | } |
| 236 | |
| 237 | write32le(P: buf + 7, V: relOff); |
| 238 | write32le(P: buf + 12, V: ctx.in.plt->getVA() - pltEntryAddr - 16); |
| 239 | } |
| 240 | |
| 241 | int64_t X86::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| 242 | switch (type) { |
| 243 | case R_386_8: |
| 244 | case R_386_PC8: |
| 245 | return SignExtend64<8>(x: *buf); |
| 246 | case R_386_16: |
| 247 | case R_386_PC16: |
| 248 | return SignExtend64<16>(x: read16le(P: buf)); |
| 249 | case R_386_32: |
| 250 | case R_386_GLOB_DAT: |
| 251 | case R_386_GOT32: |
| 252 | case R_386_GOT32X: |
| 253 | case R_386_GOTOFF: |
| 254 | case R_386_GOTPC: |
| 255 | case R_386_IRELATIVE: |
| 256 | case R_386_PC32: |
| 257 | case R_386_PLT32: |
| 258 | case R_386_RELATIVE: |
| 259 | case R_386_TLS_GOTDESC: |
| 260 | case R_386_TLS_DESC_CALL: |
| 261 | case R_386_TLS_DTPMOD32: |
| 262 | case R_386_TLS_DTPOFF32: |
| 263 | case R_386_TLS_LDO_32: |
| 264 | case R_386_TLS_LDM: |
| 265 | case R_386_TLS_IE: |
| 266 | case R_386_TLS_IE_32: |
| 267 | case R_386_TLS_LE: |
| 268 | case R_386_TLS_LE_32: |
| 269 | case R_386_TLS_GD: |
| 270 | case R_386_TLS_GD_32: |
| 271 | case R_386_TLS_GOTIE: |
| 272 | case R_386_TLS_TPOFF: |
| 273 | case R_386_TLS_TPOFF32: |
| 274 | return SignExtend64<32>(x: read32le(P: buf)); |
| 275 | case R_386_TLS_DESC: |
| 276 | return SignExtend64<32>(x: read32le(P: buf + 4)); |
| 277 | case R_386_NONE: |
| 278 | case R_386_JUMP_SLOT: |
| 279 | // These relocations are defined as not having an implicit addend. |
| 280 | return 0; |
| 281 | default: |
| 282 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
| 283 | return 0; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | void X86::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| 288 | switch (rel.type) { |
| 289 | case R_386_8: |
| 290 | // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are |
| 291 | // being used for some 16-bit programs such as boot loaders, so |
| 292 | // we want to support them. |
| 293 | checkIntUInt(ctx, loc, v: val, n: 8, rel); |
| 294 | *loc = val; |
| 295 | break; |
| 296 | case R_386_PC8: |
| 297 | checkInt(ctx, loc, v: val, n: 8, rel); |
| 298 | *loc = val; |
| 299 | break; |
| 300 | case R_386_16: |
| 301 | checkIntUInt(ctx, loc, v: val, n: 16, rel); |
| 302 | write16le(P: loc, V: val); |
| 303 | break; |
| 304 | case R_386_PC16: |
| 305 | // R_386_PC16 is normally used with 16 bit code. In that situation |
| 306 | // the PC is 16 bits, just like the addend. This means that it can |
| 307 | // point from any 16 bit address to any other if the possibility |
| 308 | // of wrapping is included. |
| 309 | // The only restriction we have to check then is that the destination |
| 310 | // address fits in 16 bits. That is impossible to do here. The problem is |
| 311 | // that we are passed the final value, which already had the |
| 312 | // current location subtracted from it. |
| 313 | // We just check that Val fits in 17 bits. This misses some cases, but |
| 314 | // should have no false positives. |
| 315 | checkInt(ctx, loc, v: val, n: 17, rel); |
| 316 | write16le(P: loc, V: val); |
| 317 | break; |
| 318 | case R_386_32: |
| 319 | case R_386_GOT32: |
| 320 | case R_386_GOT32X: |
| 321 | case R_386_GOTOFF: |
| 322 | case R_386_GOTPC: |
| 323 | case R_386_PC32: |
| 324 | case R_386_PLT32: |
| 325 | case R_386_RELATIVE: |
| 326 | case R_386_TLS_GOTDESC: |
| 327 | case R_386_TLS_DESC_CALL: |
| 328 | case R_386_TLS_DTPMOD32: |
| 329 | case R_386_TLS_DTPOFF32: |
| 330 | case R_386_TLS_GD: |
| 331 | case R_386_TLS_GOTIE: |
| 332 | case R_386_TLS_IE: |
| 333 | case R_386_TLS_LDM: |
| 334 | case R_386_TLS_LDO_32: |
| 335 | case R_386_TLS_LE: |
| 336 | case R_386_TLS_LE_32: |
| 337 | case R_386_TLS_TPOFF: |
| 338 | case R_386_TLS_TPOFF32: |
| 339 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 340 | write32le(P: loc, V: val); |
| 341 | break; |
| 342 | case R_386_TLS_DESC: |
| 343 | // The addend is stored in the second 32-bit word. |
| 344 | write32le(P: loc + 4, V: val); |
| 345 | break; |
| 346 | default: |
| 347 | llvm_unreachable("unknown relocation" ); |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | void X86::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| 352 | uint64_t val) const { |
| 353 | if (rel.type == R_386_TLS_GD) { |
| 354 | // Convert (loc[-2] == 0x04) |
| 355 | // leal x@tlsgd(, %ebx, 1), %eax |
| 356 | // call ___tls_get_addr@plt |
| 357 | // or |
| 358 | // leal x@tlsgd(%reg), %eax |
| 359 | // call *___tls_get_addr@got(%reg) |
| 360 | // to |
| 361 | const uint8_t inst[] = { |
| 362 | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax |
| 363 | 0x81, 0xe8, 0, 0, 0, 0, // subl x@ntpoff(%ebx), %eax |
| 364 | }; |
| 365 | uint8_t *w = loc[-2] == 0x04 ? loc - 3 : loc - 2; |
| 366 | memcpy(dest: w, src: inst, n: sizeof(inst)); |
| 367 | write32le(P: w + 8, V: val); |
| 368 | } else if (rel.type == R_386_TLS_GOTDESC) { |
| 369 | // Convert leal x@tlsdesc(%ebx), %eax to leal x@ntpoff, %eax. |
| 370 | // |
| 371 | // Note: call *x@tlsdesc(%eax) may not immediately follow this instruction. |
| 372 | if (memcmp(s1: loc - 2, s2: "\x8d\x83" , n: 2)) { |
| 373 | ErrAlways(ctx) |
| 374 | << getErrorLoc(ctx, loc: loc - 2) |
| 375 | << "R_386_TLS_GOTDESC must be used in leal x@tlsdesc(%ebx), %eax" ; |
| 376 | return; |
| 377 | } |
| 378 | loc[-1] = 0x05; |
| 379 | write32le(P: loc, V: val); |
| 380 | } else { |
| 381 | // Convert call *x@tlsdesc(%eax) to xchg ax, ax. |
| 382 | assert(rel.type == R_386_TLS_DESC_CALL); |
| 383 | loc[0] = 0x66; |
| 384 | loc[1] = 0x90; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | void X86::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| 389 | uint64_t val) const { |
| 390 | if (rel.type == R_386_TLS_GD) { |
| 391 | // Convert (loc[-2] == 0x04) |
| 392 | // leal x@tlsgd(, %ebx, 1), %eax |
| 393 | // call ___tls_get_addr@plt |
| 394 | // or |
| 395 | // leal x@tlsgd(%reg), %eax |
| 396 | // call *___tls_get_addr@got(%reg) |
| 397 | const uint8_t inst[] = { |
| 398 | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax |
| 399 | 0x03, 0x83, 0, 0, 0, 0, // addl x@gottpoff(%ebx), %eax |
| 400 | }; |
| 401 | uint8_t *w = loc[-2] == 0x04 ? loc - 3 : loc - 2; |
| 402 | memcpy(dest: w, src: inst, n: sizeof(inst)); |
| 403 | write32le(P: w + 8, V: val); |
| 404 | } else if (rel.type == R_386_TLS_GOTDESC) { |
| 405 | // Convert leal x@tlsdesc(%ebx), %eax to movl x@gotntpoff(%ebx), %eax. |
| 406 | if (memcmp(s1: loc - 2, s2: "\x8d\x83" , n: 2)) { |
| 407 | ErrAlways(ctx) |
| 408 | << getErrorLoc(ctx, loc: loc - 2) |
| 409 | << "R_386_TLS_GOTDESC must be used in leal x@tlsdesc(%ebx), %eax" ; |
| 410 | return; |
| 411 | } |
| 412 | loc[-2] = 0x8b; |
| 413 | write32le(P: loc, V: val); |
| 414 | } else { |
| 415 | // Convert call *x@tlsdesc(%eax) to xchg ax, ax. |
| 416 | assert(rel.type == R_386_TLS_DESC_CALL); |
| 417 | loc[0] = 0x66; |
| 418 | loc[1] = 0x90; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // In some conditions, relocations can be optimized to avoid using GOT. |
| 423 | // This function does that for Initial Exec to Local Exec case. |
| 424 | void X86::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
| 425 | uint64_t val) const { |
| 426 | // Ulrich's document section 6.2 says that @gotntpoff can |
| 427 | // be used with MOVL or ADDL instructions. |
| 428 | // @indntpoff is similar to @gotntpoff, but for use in |
| 429 | // position dependent code. |
| 430 | uint8_t reg = (loc[-1] >> 3) & 7; |
| 431 | |
| 432 | if (rel.type == R_386_TLS_IE) { |
| 433 | if (loc[-1] == 0xa1) { |
| 434 | // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" |
| 435 | // This case is different from the generic case below because |
| 436 | // this is a 5 byte instruction while below is 6 bytes. |
| 437 | loc[-1] = 0xb8; |
| 438 | } else if (loc[-2] == 0x8b) { |
| 439 | // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" |
| 440 | loc[-2] = 0xc7; |
| 441 | loc[-1] = 0xc0 | reg; |
| 442 | } else { |
| 443 | // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" |
| 444 | loc[-2] = 0x81; |
| 445 | loc[-1] = 0xc0 | reg; |
| 446 | } |
| 447 | } else { |
| 448 | assert(rel.type == R_386_TLS_GOTIE); |
| 449 | if (loc[-2] == 0x8b) { |
| 450 | // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" |
| 451 | loc[-2] = 0xc7; |
| 452 | loc[-1] = 0xc0 | reg; |
| 453 | } else { |
| 454 | // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" |
| 455 | loc[-2] = 0x8d; |
| 456 | loc[-1] = 0x80 | (reg << 3) | reg; |
| 457 | } |
| 458 | } |
| 459 | write32le(P: loc, V: val); |
| 460 | } |
| 461 | |
| 462 | void X86::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, |
| 463 | uint64_t val) const { |
| 464 | if (rel.type == R_386_TLS_LDO_32) { |
| 465 | write32le(P: loc, V: val); |
| 466 | return; |
| 467 | } |
| 468 | |
| 469 | if (loc[4] == 0xe8) { |
| 470 | // Convert |
| 471 | // leal x(%reg),%eax |
| 472 | // call ___tls_get_addr@plt |
| 473 | // to |
| 474 | const uint8_t inst[] = { |
| 475 | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax |
| 476 | 0x90, // nop |
| 477 | 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi |
| 478 | }; |
| 479 | memcpy(dest: loc - 2, src: inst, n: sizeof(inst)); |
| 480 | return; |
| 481 | } |
| 482 | |
| 483 | // Convert |
| 484 | // leal x(%reg),%eax |
| 485 | // call *___tls_get_addr@got(%reg) |
| 486 | // to |
| 487 | const uint8_t inst[] = { |
| 488 | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax |
| 489 | 0x8d, 0xb6, 0x00, 0x00, 0x00, 0x00, // leal (%esi),%esi |
| 490 | }; |
| 491 | memcpy(dest: loc - 2, src: inst, n: sizeof(inst)); |
| 492 | } |
| 493 | |
| 494 | void X86::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| 495 | uint64_t secAddr = sec.getOutputSection()->addr; |
| 496 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
| 497 | secAddr += s->outSecOff; |
| 498 | for (const Relocation &rel : sec.relocs()) { |
| 499 | uint8_t *loc = buf + rel.offset; |
| 500 | const uint64_t val = |
| 501 | SignExtend64(X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), B: 32); |
| 502 | switch (rel.expr) { |
| 503 | case R_RELAX_TLS_GD_TO_IE_GOTPLT: |
| 504 | relaxTlsGdToIe(loc, rel, val); |
| 505 | continue; |
| 506 | case R_RELAX_TLS_GD_TO_LE: |
| 507 | case R_RELAX_TLS_GD_TO_LE_NEG: |
| 508 | relaxTlsGdToLe(loc, rel, val); |
| 509 | continue; |
| 510 | case R_RELAX_TLS_LD_TO_LE: |
| 511 | relaxTlsLdToLe(loc, rel, val); |
| 512 | break; |
| 513 | case R_RELAX_TLS_IE_TO_LE: |
| 514 | relaxTlsIeToLe(loc, rel, val); |
| 515 | continue; |
| 516 | default: |
| 517 | relocate(loc, rel, val); |
| 518 | break; |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT |
| 524 | // entries containing endbr32 instructions. A PLT entry will be split into two |
| 525 | // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). |
| 526 | namespace { |
| 527 | class IntelIBT : public X86 { |
| 528 | public: |
| 529 | IntelIBT(Ctx &ctx) : X86(ctx) { pltHeaderSize = 0; } |
| 530 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 531 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 532 | uint64_t pltEntryAddr) const override; |
| 533 | void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; |
| 534 | |
| 535 | static const unsigned = 16; |
| 536 | }; |
| 537 | } // namespace |
| 538 | |
| 539 | void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 540 | uint64_t va = ctx.in.ibtPlt->getVA() + IBTPltHeaderSize + |
| 541 | s.getPltIdx(ctx) * pltEntrySize; |
| 542 | write32le(P: buf, V: va); |
| 543 | } |
| 544 | |
| 545 | void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, |
| 546 | uint64_t /*pltEntryAddr*/) const { |
| 547 | if (ctx.arg.isPic) { |
| 548 | const uint8_t inst[] = { |
| 549 | 0xf3, 0x0f, 0x1e, 0xfb, // endbr32 |
| 550 | 0xff, 0xa3, 0, 0, 0, 0, // jmp *name@GOT(%ebx) |
| 551 | 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop |
| 552 | }; |
| 553 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 554 | write32le(P: buf + 6, V: sym.getGotPltVA(ctx) - ctx.in.gotPlt->getVA()); |
| 555 | return; |
| 556 | } |
| 557 | |
| 558 | const uint8_t inst[] = { |
| 559 | 0xf3, 0x0f, 0x1e, 0xfb, // endbr32 |
| 560 | 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT |
| 561 | 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop |
| 562 | }; |
| 563 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 564 | write32le(P: buf + 6, V: sym.getGotPltVA(ctx)); |
| 565 | } |
| 566 | |
| 567 | void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { |
| 568 | writePltHeader(buf); |
| 569 | buf += IBTPltHeaderSize; |
| 570 | |
| 571 | const uint8_t inst[] = { |
| 572 | 0xf3, 0x0f, 0x1e, 0xfb, // endbr32 |
| 573 | 0x68, 0, 0, 0, 0, // pushl $reloc_offset |
| 574 | 0xe9, 0, 0, 0, 0, // jmpq .PLT0@PC |
| 575 | 0x66, 0x90, // nop |
| 576 | }; |
| 577 | |
| 578 | for (size_t i = 0; i < numEntries; ++i) { |
| 579 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 580 | write32le(P: buf + 5, V: i * sizeof(object::ELF32LE::Rel)); |
| 581 | write32le(P: buf + 10, V: -pltHeaderSize - sizeof(inst) * i - 30); |
| 582 | buf += sizeof(inst); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | namespace { |
| 587 | class RetpolinePic : public X86 { |
| 588 | public: |
| 589 | RetpolinePic(Ctx &); |
| 590 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 591 | void writePltHeader(uint8_t *buf) const override; |
| 592 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 593 | uint64_t pltEntryAddr) const override; |
| 594 | }; |
| 595 | |
| 596 | class RetpolineNoPic : public X86 { |
| 597 | public: |
| 598 | RetpolineNoPic(Ctx &); |
| 599 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 600 | void writePltHeader(uint8_t *buf) const override; |
| 601 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 602 | uint64_t pltEntryAddr) const override; |
| 603 | }; |
| 604 | } // namespace |
| 605 | |
| 606 | RetpolinePic::RetpolinePic(Ctx &ctx) : X86(ctx) { |
| 607 | pltHeaderSize = 48; |
| 608 | pltEntrySize = 32; |
| 609 | ipltEntrySize = 32; |
| 610 | } |
| 611 | |
| 612 | void RetpolinePic::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 613 | write32le(P: buf, V: s.getPltVA(ctx) + 17); |
| 614 | } |
| 615 | |
| 616 | void RetpolinePic::(uint8_t *buf) const { |
| 617 | const uint8_t insn[] = { |
| 618 | 0xff, 0xb3, 4, 0, 0, 0, // 0: pushl 4(%ebx) |
| 619 | 0x50, // 6: pushl %eax |
| 620 | 0x8b, 0x83, 8, 0, 0, 0, // 7: mov 8(%ebx), %eax |
| 621 | 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: call next |
| 622 | 0xf3, 0x90, // 12: loop: pause |
| 623 | 0x0f, 0xae, 0xe8, // 14: lfence |
| 624 | 0xeb, 0xf9, // 17: jmp loop |
| 625 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 |
| 626 | 0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp) |
| 627 | 0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx |
| 628 | 0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp) |
| 629 | 0x89, 0xc8, // 2b: mov %ecx, %eax |
| 630 | 0x59, // 2d: pop %ecx |
| 631 | 0xc3, // 2e: ret |
| 632 | 0xcc, // 2f: int3; padding |
| 633 | }; |
| 634 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 635 | } |
| 636 | |
| 637 | void RetpolinePic::writePlt(uint8_t *buf, const Symbol &sym, |
| 638 | uint64_t pltEntryAddr) const { |
| 639 | unsigned relOff = ctx.in.relaPlt->entsize * sym.getPltIdx(ctx); |
| 640 | const uint8_t insn[] = { |
| 641 | 0x50, // pushl %eax |
| 642 | 0x8b, 0x83, 0, 0, 0, 0, // mov foo@GOT(%ebx), %eax |
| 643 | 0xe8, 0, 0, 0, 0, // call plt+0x20 |
| 644 | 0xe9, 0, 0, 0, 0, // jmp plt+0x12 |
| 645 | 0x68, 0, 0, 0, 0, // pushl $reloc_offset |
| 646 | 0xe9, 0, 0, 0, 0, // jmp plt+0 |
| 647 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding |
| 648 | }; |
| 649 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 650 | |
| 651 | uint32_t ebx = ctx.in.gotPlt->getVA(); |
| 652 | unsigned off = pltEntryAddr - ctx.in.plt->getVA(); |
| 653 | write32le(P: buf + 3, V: sym.getGotPltVA(ctx) - ebx); |
| 654 | write32le(P: buf + 8, V: -off - 12 + 32); |
| 655 | write32le(P: buf + 13, V: -off - 17 + 18); |
| 656 | write32le(P: buf + 18, V: relOff); |
| 657 | write32le(P: buf + 23, V: -off - 27); |
| 658 | } |
| 659 | |
| 660 | RetpolineNoPic::RetpolineNoPic(Ctx &ctx) : X86(ctx) { |
| 661 | pltHeaderSize = 48; |
| 662 | pltEntrySize = 32; |
| 663 | ipltEntrySize = 32; |
| 664 | } |
| 665 | |
| 666 | void RetpolineNoPic::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 667 | write32le(P: buf, V: s.getPltVA(ctx) + 16); |
| 668 | } |
| 669 | |
| 670 | void RetpolineNoPic::(uint8_t *buf) const { |
| 671 | const uint8_t insn[] = { |
| 672 | 0xff, 0x35, 0, 0, 0, 0, // 0: pushl GOTPLT+4 |
| 673 | 0x50, // 6: pushl %eax |
| 674 | 0xa1, 0, 0, 0, 0, // 7: mov GOTPLT+8, %eax |
| 675 | 0xe8, 0x0f, 0x00, 0x00, 0x00, // c: call next |
| 676 | 0xf3, 0x90, // 11: loop: pause |
| 677 | 0x0f, 0xae, 0xe8, // 13: lfence |
| 678 | 0xeb, 0xf9, // 16: jmp loop |
| 679 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 18: int3 |
| 680 | 0xcc, 0xcc, 0xcc, // 1f: int3; .align 16 |
| 681 | 0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp) |
| 682 | 0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx |
| 683 | 0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp) |
| 684 | 0x89, 0xc8, // 2b: mov %ecx, %eax |
| 685 | 0x59, // 2d: pop %ecx |
| 686 | 0xc3, // 2e: ret |
| 687 | 0xcc, // 2f: int3; padding |
| 688 | }; |
| 689 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 690 | |
| 691 | uint32_t gotPlt = ctx.in.gotPlt->getVA(); |
| 692 | write32le(P: buf + 2, V: gotPlt + 4); |
| 693 | write32le(P: buf + 8, V: gotPlt + 8); |
| 694 | } |
| 695 | |
| 696 | void RetpolineNoPic::writePlt(uint8_t *buf, const Symbol &sym, |
| 697 | uint64_t pltEntryAddr) const { |
| 698 | unsigned relOff = ctx.in.relaPlt->entsize * sym.getPltIdx(ctx); |
| 699 | const uint8_t insn[] = { |
| 700 | 0x50, // 0: pushl %eax |
| 701 | 0xa1, 0, 0, 0, 0, // 1: mov foo_in_GOT, %eax |
| 702 | 0xe8, 0, 0, 0, 0, // 6: call plt+0x20 |
| 703 | 0xe9, 0, 0, 0, 0, // b: jmp plt+0x11 |
| 704 | 0x68, 0, 0, 0, 0, // 10: pushl $reloc_offset |
| 705 | 0xe9, 0, 0, 0, 0, // 15: jmp plt+0 |
| 706 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding |
| 707 | 0xcc, // 1f: int3; padding |
| 708 | }; |
| 709 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 710 | |
| 711 | unsigned off = pltEntryAddr - ctx.in.plt->getVA(); |
| 712 | write32le(P: buf + 2, V: sym.getGotPltVA(ctx)); |
| 713 | write32le(P: buf + 7, V: -off - 11 + 32); |
| 714 | write32le(P: buf + 12, V: -off - 16 + 17); |
| 715 | write32le(P: buf + 17, V: relOff); |
| 716 | write32le(P: buf + 22, V: -off - 26); |
| 717 | } |
| 718 | |
| 719 | void elf::setX86TargetInfo(Ctx &ctx) { |
| 720 | if (ctx.arg.zRetpolineplt) { |
| 721 | if (ctx.arg.isPic) |
| 722 | ctx.target.reset(p: new RetpolinePic(ctx)); |
| 723 | else |
| 724 | ctx.target.reset(p: new RetpolineNoPic(ctx)); |
| 725 | return; |
| 726 | } |
| 727 | |
| 728 | if (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) |
| 729 | ctx.target.reset(p: new IntelIBT(ctx)); |
| 730 | else |
| 731 | ctx.target.reset(p: new X86(ctx)); |
| 732 | } |
| 733 | |