1 | //===- Symbols.h ------------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines various types of Symbols. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLD_ELF_SYMBOLS_H |
14 | #define LLD_ELF_SYMBOLS_H |
15 | |
16 | #include "Config.h" |
17 | #include "lld/Common/LLVM.h" |
18 | #include "lld/Common/Memory.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/Object/ELF.h" |
21 | #include "llvm/Support/Compiler.h" |
22 | #include <tuple> |
23 | |
24 | namespace lld::elf { |
25 | class CommonSymbol; |
26 | class Defined; |
27 | class OutputSection; |
28 | class SectionBase; |
29 | class InputSectionBase; |
30 | class SharedSymbol; |
31 | class Symbol; |
32 | class Undefined; |
33 | class LazySymbol; |
34 | class InputFile; |
35 | |
36 | // Returns a string representation for a symbol for diagnostics. |
37 | std::string toStr(Ctx &, const Symbol &); |
38 | const ELFSyncStream &operator<<(const ELFSyncStream &, const Symbol *); |
39 | |
40 | void printTraceSymbol(const Symbol &sym, StringRef name); |
41 | |
42 | enum { |
43 | NEEDS_GOT = 1 << 0, |
44 | NEEDS_PLT = 1 << 1, |
45 | HAS_DIRECT_RELOC = 1 << 2, |
46 | // True if this symbol needs a canonical PLT entry, or (during |
47 | // postScanRelocations) a copy relocation. |
48 | NEEDS_COPY = 1 << 3, |
49 | NEEDS_TLSDESC = 1 << 4, |
50 | NEEDS_TLSGD = 1 << 5, |
51 | NEEDS_TLSGD_TO_IE = 1 << 6, |
52 | NEEDS_GOT_DTPREL = 1 << 7, |
53 | NEEDS_TLSIE = 1 << 8, |
54 | NEEDS_GOT_AUTH = 1 << 9, |
55 | NEEDS_GOT_NONAUTH = 1 << 10, |
56 | NEEDS_TLSDESC_AUTH = 1 << 11, |
57 | NEEDS_TLSDESC_NONAUTH = 1 << 12, |
58 | }; |
59 | |
60 | // The base class for real symbol classes. |
61 | class Symbol { |
62 | public: |
63 | enum Kind { |
64 | PlaceholderKind, |
65 | DefinedKind, |
66 | CommonKind, |
67 | SharedKind, |
68 | UndefinedKind, |
69 | LazyKind, |
70 | }; |
71 | |
72 | Kind kind() const { return static_cast<Kind>(symbolKind); } |
73 | |
74 | // The file from which this symbol was created. |
75 | InputFile *file; |
76 | |
77 | // The default copy constructor is deleted due to atomic flags. Define one for |
78 | // places where no atomic is needed. |
79 | Symbol(const Symbol &o) { memcpy(dest: static_cast<void *>(this), src: &o, n: sizeof(o)); } |
80 | |
81 | protected: |
82 | const char *nameData; |
83 | // 32-bit size saves space. |
84 | uint32_t nameSize; |
85 | |
86 | public: |
87 | // The next three fields have the same meaning as the ELF symbol attributes. |
88 | // type and binding are placed in this order to optimize generating st_info, |
89 | // which is defined as (binding << 4) + (type & 0xf), on a little-endian |
90 | // system. |
91 | uint8_t type : 4; // symbol type |
92 | |
93 | // Symbol binding. This is not overwritten by replace() to track |
94 | // changes during resolution. In particular: |
95 | // - An undefined weak is still weak when it resolves to a shared library. |
96 | // - An undefined weak will not extract archive members, but we have to |
97 | // remember it is weak. |
98 | uint8_t binding : 4; |
99 | |
100 | uint8_t stOther; // st_other field value |
101 | |
102 | uint8_t symbolKind; |
103 | |
104 | // The partition whose dynamic symbol table contains this symbol's definition. |
105 | uint8_t partition; |
106 | |
107 | // True if this symbol is preemptible at load time. |
108 | // |
109 | // Primarily set in two locations, (a) parseVersionAndComputeIsPreemptible and |
110 | // (b) demoteSymbolsAndComputeIsPreemptible. |
111 | LLVM_PREFERRED_TYPE(bool) |
112 | uint8_t isPreemptible : 1; |
113 | |
114 | // True if the symbol was used for linking and thus need to be added to the |
115 | // output file's symbol table. This is true for all symbols except for |
116 | // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that |
117 | // are unreferenced except by other bitcode objects. |
118 | LLVM_PREFERRED_TYPE(bool) |
119 | uint8_t isUsedInRegularObj : 1; |
120 | |
121 | // True if an undefined or shared symbol is used from a live section. |
122 | // |
123 | // NOTE: In Writer.cpp the field is used to mark local defined symbols |
124 | // which are referenced by relocations when -r or --emit-relocs is given. |
125 | LLVM_PREFERRED_TYPE(bool) |
126 | uint8_t used : 1; |
127 | |
128 | // Used by a Defined symbol with protected or default visibility, to record |
129 | // whether it is required to be exported into .dynsym. This is set when any of |
130 | // the following conditions hold: |
131 | // |
132 | // - If there is an interposable symbol from a DSO. Note: We also do this for |
133 | // STV_PROTECTED symbols which can't be interposed (to match BFD behavior). |
134 | // - If -shared or --export-dynamic is specified, any symbol in an object |
135 | // file/bitcode sets this property, unless suppressed by LTO |
136 | // canBeOmittedFromSymbolTable(). |
137 | LLVM_PREFERRED_TYPE(bool) |
138 | uint8_t isExported : 1; |
139 | |
140 | LLVM_PREFERRED_TYPE(bool) |
141 | uint8_t ltoCanOmit : 1; |
142 | |
143 | // True if this symbol is specified by --trace-symbol option. |
144 | LLVM_PREFERRED_TYPE(bool) |
145 | uint8_t traced : 1; |
146 | |
147 | // True if the name contains '@'. |
148 | LLVM_PREFERRED_TYPE(bool) |
149 | uint8_t hasVersionSuffix : 1; |
150 | |
151 | // Symbol visibility. This is the computed minimum visibility of all |
152 | // observed non-DSO symbols. |
153 | uint8_t visibility() const { return stOther & 3; } |
154 | void setVisibility(uint8_t visibility) { |
155 | stOther = (stOther & ~3) | visibility; |
156 | } |
157 | |
158 | uint8_t computeBinding(Ctx &) const; |
159 | bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; } |
160 | bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } |
161 | |
162 | bool isUndefined() const { return symbolKind == UndefinedKind; } |
163 | bool isCommon() const { return symbolKind == CommonKind; } |
164 | bool isDefined() const { return symbolKind == DefinedKind; } |
165 | bool isShared() const { return symbolKind == SharedKind; } |
166 | bool isPlaceholder() const { return symbolKind == PlaceholderKind; } |
167 | |
168 | bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } |
169 | |
170 | bool isLazy() const { return symbolKind == LazyKind; } |
171 | |
172 | // True if this is an undefined weak symbol. This only works once |
173 | // all input files have been added. |
174 | bool isUndefWeak() const { return isWeak() && isUndefined(); } |
175 | |
176 | StringRef getName() const { return {nameData, nameSize}; } |
177 | |
178 | void setName(StringRef s) { |
179 | nameData = s.data(); |
180 | nameSize = s.size(); |
181 | } |
182 | |
183 | void parseSymbolVersion(Ctx &); |
184 | |
185 | // Get the NUL-terminated version suffix ("", "@...", or "@@..."). |
186 | // |
187 | // For @@, the name has been truncated by insert(). For @, the name has been |
188 | // truncated by Symbol::parseSymbolVersion(ctx). |
189 | const char *getVersionSuffix() const { return nameData + nameSize; } |
190 | |
191 | uint32_t getGotIdx(Ctx &ctx) const { return ctx.symAux[auxIdx].gotIdx; } |
192 | uint32_t getPltIdx(Ctx &ctx) const { return ctx.symAux[auxIdx].pltIdx; } |
193 | uint32_t getTlsDescIdx(Ctx &ctx) const { |
194 | return ctx.symAux[auxIdx].tlsDescIdx; |
195 | } |
196 | uint32_t getTlsGdIdx(Ctx &ctx) const { return ctx.symAux[auxIdx].tlsGdIdx; } |
197 | |
198 | bool isInGot(Ctx &ctx) const { return getGotIdx(ctx) != uint32_t(-1); } |
199 | bool isInPlt(Ctx &ctx) const { return getPltIdx(ctx) != uint32_t(-1); } |
200 | |
201 | uint64_t getVA(Ctx &, int64_t addend = 0) const; |
202 | |
203 | uint64_t getGotOffset(Ctx &) const; |
204 | uint64_t getGotVA(Ctx &) const; |
205 | uint64_t getGotPltOffset(Ctx &) const; |
206 | uint64_t getGotPltVA(Ctx &) const; |
207 | uint64_t getPltVA(Ctx &) const; |
208 | uint64_t getSize() const; |
209 | OutputSection *getOutputSection() const; |
210 | |
211 | // The following two functions are used for symbol resolution. |
212 | // |
213 | // You are expected to call mergeProperties for all symbols in input |
214 | // files so that attributes that are attached to names rather than |
215 | // indivisual symbol (such as visibility) are merged together. |
216 | // |
217 | // Every time you read a new symbol from an input, you are supposed |
218 | // to call resolve() with the new symbol. That function replaces |
219 | // "this" object as a result of name resolution if the new symbol is |
220 | // more appropriate to be included in the output. |
221 | // |
222 | // For example, if "this" is an undefined symbol and a new symbol is |
223 | // a defined symbol, "this" is replaced with the new symbol. |
224 | void mergeProperties(const Symbol &other); |
225 | void resolve(Ctx &, const Undefined &other); |
226 | void resolve(Ctx &, const CommonSymbol &other); |
227 | void resolve(Ctx &, const Defined &other); |
228 | void resolve(Ctx &, const LazySymbol &other); |
229 | void resolve(Ctx &, const SharedSymbol &other); |
230 | |
231 | // If this is a lazy symbol, extract an input file and add the symbol |
232 | // in the file to the symbol table. Calling this function on |
233 | // non-lazy object causes a runtime error. |
234 | void (Ctx &) const; |
235 | |
236 | void checkDuplicate(Ctx &, const Defined &other) const; |
237 | |
238 | private: |
239 | bool shouldReplace(Ctx &, const Defined &other) const; |
240 | |
241 | protected: |
242 | Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding, |
243 | uint8_t stOther, uint8_t type) |
244 | : file(file), nameData(name.data()), nameSize(name.size()), type(type), |
245 | binding(binding), stOther(stOther), symbolKind(k), ltoCanOmit(false), |
246 | archSpecificBit(false) {} |
247 | |
248 | void overwrite(Symbol &sym, Kind k) const { |
249 | if (sym.traced) |
250 | printTraceSymbol(sym: *this, name: sym.getName()); |
251 | sym.file = file; |
252 | sym.type = type; |
253 | sym.binding = binding; |
254 | sym.stOther = (stOther & ~3) | sym.visibility(); |
255 | sym.symbolKind = k; |
256 | } |
257 | |
258 | public: |
259 | // True if this symbol is in the Iplt sub-section of the Plt and the Igot |
260 | // sub-section of the .got.plt or .got. |
261 | LLVM_PREFERRED_TYPE(bool) |
262 | uint8_t isInIplt : 1; |
263 | |
264 | // True if this symbol needs a GOT entry and its GOT entry is actually in |
265 | // Igot. This will be true only for certain non-preemptible ifuncs. |
266 | LLVM_PREFERRED_TYPE(bool) |
267 | uint8_t gotInIgot : 1; |
268 | |
269 | // True if defined relative to a section discarded by ICF. |
270 | LLVM_PREFERRED_TYPE(bool) |
271 | uint8_t folded : 1; |
272 | |
273 | // Allow reuse of a bit between architecture-exclusive symbol flags. |
274 | // - needsTocRestore(): On PPC64, true if a call to this symbol needs to be |
275 | // followed by a restore of the toc pointer. |
276 | // - isTagged(): On AArch64, true if the symbol needs special relocation and |
277 | // metadata semantics because it's tagged, under the AArch64 MemtagABI. |
278 | LLVM_PREFERRED_TYPE(bool) |
279 | uint8_t archSpecificBit : 1; |
280 | bool needsTocRestore() const { return archSpecificBit; } |
281 | bool isTagged() const { return archSpecificBit; } |
282 | void setNeedsTocRestore(bool v) { archSpecificBit = v; } |
283 | void setIsTagged(bool v) { |
284 | archSpecificBit = v; |
285 | } |
286 | |
287 | // True if this symbol is defined by a symbol assignment or wrapped by --wrap. |
288 | // |
289 | // LTO shouldn't inline the symbol because it doesn't know the final content |
290 | // of the symbol. |
291 | LLVM_PREFERRED_TYPE(bool) |
292 | uint8_t scriptDefined : 1; |
293 | |
294 | // True if defined in a DSO. There may also be a definition in a relocatable |
295 | // object file. |
296 | LLVM_PREFERRED_TYPE(bool) |
297 | uint8_t dsoDefined : 1; |
298 | |
299 | // True if defined in a DSO as protected visibility. |
300 | LLVM_PREFERRED_TYPE(bool) |
301 | uint8_t dsoProtected : 1; |
302 | |
303 | // Temporary flags used to communicate which symbol entries need PLT and GOT |
304 | // entries during postScanRelocations(); |
305 | std::atomic<uint16_t> flags; |
306 | |
307 | // A ctx.symAux index used to access GOT/PLT entry indexes. This is allocated |
308 | // in postScanRelocations(). |
309 | uint32_t auxIdx; |
310 | uint32_t dynsymIndex; |
311 | |
312 | // If `file` is SharedFile (for SharedSymbol or copy-relocated Defined), this |
313 | // represents the Verdef index within the input DSO, which will be converted |
314 | // to a Verneed index in the output. Otherwise, this represents the Verdef |
315 | // index (VER_NDX_LOCAL, VER_NDX_GLOBAL, or a named version). |
316 | uint16_t versionId; |
317 | LLVM_PREFERRED_TYPE(bool) |
318 | uint8_t versionScriptAssigned : 1; |
319 | |
320 | // True if targeted by a range extension thunk. |
321 | LLVM_PREFERRED_TYPE(bool) |
322 | uint8_t thunkAccessed : 1; |
323 | |
324 | // True if the symbol is in the --dynamic-list file. A Defined symbol with |
325 | // protected or default visibility with this property is required to be |
326 | // exported into .dynsym. |
327 | LLVM_PREFERRED_TYPE(bool) |
328 | uint8_t inDynamicList : 1; |
329 | |
330 | // Used to track if there has been at least one undefined reference to the |
331 | // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK |
332 | // if the first undefined reference from a non-shared object is weak. |
333 | LLVM_PREFERRED_TYPE(bool) |
334 | uint8_t referenced : 1; |
335 | |
336 | // Used to track if this symbol will be referenced after wrapping is performed |
337 | // (i.e. this will be true for foo if __real_foo is referenced, and will be |
338 | // true for __wrap_foo if foo is referenced). |
339 | LLVM_PREFERRED_TYPE(bool) |
340 | uint8_t referencedAfterWrap : 1; |
341 | |
342 | void setFlags(uint16_t bits) { |
343 | flags.fetch_or(i: bits, m: std::memory_order_relaxed); |
344 | } |
345 | bool hasFlag(uint16_t bit) const { |
346 | assert(llvm::has_single_bit(bit) && "bit must be a power of 2" ); |
347 | return flags.load(m: std::memory_order_relaxed) & bit; |
348 | } |
349 | |
350 | bool needsDynReloc() const { |
351 | return flags.load(m: std::memory_order_relaxed) & |
352 | (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD | |
353 | NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE); |
354 | } |
355 | void allocateAux(Ctx &ctx) { |
356 | assert(auxIdx == 0); |
357 | auxIdx = ctx.symAux.size(); |
358 | ctx.symAux.emplace_back(); |
359 | } |
360 | |
361 | bool isSection() const { return type == llvm::ELF::STT_SECTION; } |
362 | bool isTls() const { return type == llvm::ELF::STT_TLS; } |
363 | bool isFunc() const { return type == llvm::ELF::STT_FUNC; } |
364 | bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } |
365 | bool isObject() const { return type == llvm::ELF::STT_OBJECT; } |
366 | bool isFile() const { return type == llvm::ELF::STT_FILE; } |
367 | }; |
368 | |
369 | // Represents a symbol that is defined in the current output file. |
370 | class Defined : public Symbol { |
371 | public: |
372 | Defined(Ctx &ctx, InputFile *file, StringRef name, uint8_t binding, |
373 | uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, |
374 | SectionBase *section) |
375 | : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), |
376 | size(size), section(section) { |
377 | } |
378 | void overwrite(Symbol &sym) const; |
379 | |
380 | static bool classof(const Symbol *s) { return s->isDefined(); } |
381 | |
382 | uint64_t value; |
383 | uint64_t size; |
384 | SectionBase *section; |
385 | }; |
386 | |
387 | // Represents a common symbol. |
388 | // |
389 | // On Unix, it is traditionally allowed to write variable definitions |
390 | // without initialization expressions (such as "int foo;") to header |
391 | // files. Such definition is called "tentative definition". |
392 | // |
393 | // Using tentative definition is usually considered a bad practice |
394 | // because you should write only declarations (such as "extern int |
395 | // foo;") to header files. Nevertheless, the linker and the compiler |
396 | // have to do something to support bad code by allowing duplicate |
397 | // definitions for this particular case. |
398 | // |
399 | // Common symbols represent variable definitions without initializations. |
400 | // The compiler creates common symbols when it sees variable definitions |
401 | // without initialization (you can suppress this behavior and let the |
402 | // compiler create a regular defined symbol by -fno-common). |
403 | // |
404 | // The linker allows common symbols to be replaced by regular defined |
405 | // symbols. If there are remaining common symbols after name resolution is |
406 | // complete, they are converted to regular defined symbols in a .bss |
407 | // section. (Therefore, the later passes don't see any CommonSymbols.) |
408 | class CommonSymbol : public Symbol { |
409 | public: |
410 | CommonSymbol(Ctx &ctx, InputFile *file, StringRef name, uint8_t binding, |
411 | uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) |
412 | : Symbol(CommonKind, file, name, binding, stOther, type), |
413 | alignment(alignment), size(size) { |
414 | } |
415 | void overwrite(Symbol &sym) const { |
416 | Symbol::overwrite(sym, k: CommonKind); |
417 | auto &s = static_cast<CommonSymbol &>(sym); |
418 | s.alignment = alignment; |
419 | s.size = size; |
420 | } |
421 | |
422 | static bool classof(const Symbol *s) { return s->isCommon(); } |
423 | |
424 | uint32_t alignment; |
425 | uint64_t size; |
426 | }; |
427 | |
428 | class Undefined : public Symbol { |
429 | public: |
430 | Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, |
431 | uint8_t type, uint32_t discardedSecIdx = 0) |
432 | : Symbol(UndefinedKind, file, name, binding, stOther, type), |
433 | discardedSecIdx(discardedSecIdx) {} |
434 | void overwrite(Symbol &sym) const { |
435 | Symbol::overwrite(sym, k: UndefinedKind); |
436 | auto &s = static_cast<Undefined &>(sym); |
437 | s.discardedSecIdx = discardedSecIdx; |
438 | s.nonPrevailing = nonPrevailing; |
439 | } |
440 | |
441 | static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } |
442 | |
443 | // The section index if in a discarded section, 0 otherwise. |
444 | uint32_t discardedSecIdx; |
445 | bool nonPrevailing = false; |
446 | }; |
447 | |
448 | class SharedSymbol : public Symbol { |
449 | public: |
450 | static bool classof(const Symbol *s) { return s->kind() == SharedKind; } |
451 | |
452 | SharedSymbol(InputFile &file, StringRef name, uint8_t binding, |
453 | uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, |
454 | uint32_t alignment) |
455 | : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), |
456 | size(size), alignment(alignment) { |
457 | dsoProtected = visibility() == llvm::ELF::STV_PROTECTED; |
458 | // GNU ifunc is a mechanism to allow user-supplied functions to |
459 | // resolve PLT slot values at load-time. This is contrary to the |
460 | // regular symbol resolution scheme in which symbols are resolved just |
461 | // by name. Using this hook, you can program how symbols are solved |
462 | // for you program. For example, you can make "memcpy" to be resolved |
463 | // to a SSE-enabled version of memcpy only when a machine running the |
464 | // program supports the SSE instruction set. |
465 | // |
466 | // Naturally, such symbols should always be called through their PLT |
467 | // slots. What GNU ifunc symbols point to are resolver functions, and |
468 | // calling them directly doesn't make sense (unless you are writing a |
469 | // loader). |
470 | // |
471 | // For DSO symbols, we always call them through PLT slots anyway. |
472 | // So there's no difference between GNU ifunc and regular function |
473 | // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. |
474 | if (this->type == llvm::ELF::STT_GNU_IFUNC) |
475 | this->type = llvm::ELF::STT_FUNC; |
476 | } |
477 | void overwrite(Symbol &sym) const { |
478 | Symbol::overwrite(sym, k: SharedKind); |
479 | auto &s = static_cast<SharedSymbol &>(sym); |
480 | s.dsoProtected = dsoProtected; |
481 | s.value = value; |
482 | s.size = size; |
483 | s.alignment = alignment; |
484 | } |
485 | |
486 | uint64_t value; // st_value |
487 | uint64_t size; // st_size |
488 | uint32_t alignment; |
489 | }; |
490 | |
491 | // LazySymbol symbols represent symbols in object files between --start-lib and |
492 | // --end-lib options. LLD also handles traditional archives as if all the files |
493 | // in the archive are surrounded by --start-lib and --end-lib. |
494 | // |
495 | // A special complication is the handling of weak undefined symbols. They should |
496 | // not load a file, but we have to remember we have seen both the weak undefined |
497 | // and the lazy. We represent that with a lazy symbol with a weak binding. This |
498 | // means that code looking for undefined symbols normally also has to take lazy |
499 | // symbols into consideration. |
500 | class LazySymbol : public Symbol { |
501 | public: |
502 | LazySymbol(InputFile &file) |
503 | : Symbol(LazyKind, &file, {}, llvm::ELF::STB_GLOBAL, |
504 | llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} |
505 | void overwrite(Symbol &sym) const { Symbol::overwrite(sym, k: LazyKind); } |
506 | |
507 | static bool classof(const Symbol *s) { return s->kind() == LazyKind; } |
508 | }; |
509 | |
510 | // A buffer class that is large enough to hold any Symbol-derived |
511 | // object. We allocate memory using this class and instantiate a symbol |
512 | // using the placement new. |
513 | |
514 | // It is important to keep the size of SymbolUnion small for performance and |
515 | // memory usage reasons. 64 bytes is a soft limit based on the size of Defined |
516 | // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp. |
517 | union SymbolUnion { |
518 | alignas(Defined) char a[sizeof(Defined)]; |
519 | alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; |
520 | alignas(Undefined) char c[sizeof(Undefined)]; |
521 | alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; |
522 | alignas(LazySymbol) char e[sizeof(LazySymbol)]; |
523 | }; |
524 | |
525 | template <typename... T> Defined *makeDefined(T &&...args) { |
526 | auto *sym = getSpecificAllocSingleton<SymbolUnion>().Allocate(); |
527 | memset(s: sym, c: 0, n: sizeof(Symbol)); |
528 | auto &s = *new (reinterpret_cast<Defined *>(sym)) Defined(std::forward<T>(args)...); |
529 | return &s; |
530 | } |
531 | |
532 | void reportDuplicate(Ctx &, const Symbol &sym, const InputFile *newFile, |
533 | InputSectionBase *errSec, uint64_t errOffset); |
534 | void maybeWarnUnorderableSymbol(Ctx &, const Symbol *sym); |
535 | bool computeIsPreemptible(Ctx &, const Symbol &sym); |
536 | void parseVersionAndComputeIsPreemptible(Ctx &); |
537 | |
538 | } // namespace lld::elf |
539 | |
540 | #endif |
541 | |