| 1 | //===- llvm/CodeGen/MachineRegisterInfo.h -----------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the MachineRegisterInfo class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H |
| 14 | #define LLVM_CODEGEN_MACHINEREGISTERINFO_H |
| 15 | |
| 16 | #include "llvm/ADT/ArrayRef.h" |
| 17 | #include "llvm/ADT/BitVector.h" |
| 18 | #include "llvm/ADT/IndexedMap.h" |
| 19 | #include "llvm/ADT/PointerUnion.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/StringSet.h" |
| 23 | #include "llvm/ADT/iterator_range.h" |
| 24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 25 | #include "llvm/CodeGen/MachineFunction.h" |
| 26 | #include "llvm/CodeGen/MachineInstr.h" |
| 27 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 28 | #include "llvm/CodeGen/MachineOperand.h" |
| 29 | #include "llvm/CodeGen/RegisterBank.h" |
| 30 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 31 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 32 | #include "llvm/MC/LaneBitmask.h" |
| 33 | #include "llvm/Support/Compiler.h" |
| 34 | #include <cassert> |
| 35 | #include <cstddef> |
| 36 | #include <cstdint> |
| 37 | #include <iterator> |
| 38 | #include <memory> |
| 39 | #include <utility> |
| 40 | #include <vector> |
| 41 | |
| 42 | namespace llvm { |
| 43 | |
| 44 | class PSetIterator; |
| 45 | |
| 46 | /// Convenient type to represent either a register class or a register bank. |
| 47 | using RegClassOrRegBank = |
| 48 | PointerUnion<const TargetRegisterClass *, const RegisterBank *>; |
| 49 | |
| 50 | /// MachineRegisterInfo - Keep track of information for virtual and physical |
| 51 | /// registers, including vreg register classes, use/def chains for registers, |
| 52 | /// etc. |
| 53 | class MachineRegisterInfo { |
| 54 | public: |
| 55 | class LLVM_ABI Delegate { |
| 56 | virtual void anchor(); |
| 57 | |
| 58 | public: |
| 59 | virtual ~Delegate() = default; |
| 60 | |
| 61 | virtual void MRI_NoteNewVirtualRegister(Register Reg) = 0; |
| 62 | virtual void MRI_NoteCloneVirtualRegister(Register NewReg, |
| 63 | Register SrcReg) { |
| 64 | MRI_NoteNewVirtualRegister(Reg: NewReg); |
| 65 | } |
| 66 | }; |
| 67 | |
| 68 | private: |
| 69 | MachineFunction *MF; |
| 70 | SmallPtrSet<Delegate *, 1> TheDelegates; |
| 71 | |
| 72 | /// True if subregister liveness is tracked. |
| 73 | const bool TracksSubRegLiveness; |
| 74 | |
| 75 | /// VRegInfo - Information we keep for each virtual register. |
| 76 | /// |
| 77 | /// Each element in this list contains the register class of the vreg and the |
| 78 | /// start of the use/def list for the register. |
| 79 | IndexedMap<std::pair<RegClassOrRegBank, MachineOperand *>, |
| 80 | VirtReg2IndexFunctor> |
| 81 | VRegInfo; |
| 82 | |
| 83 | /// Map for recovering vreg name from vreg number. |
| 84 | /// This map is used by the MIR Printer. |
| 85 | IndexedMap<std::string, VirtReg2IndexFunctor> VReg2Name; |
| 86 | |
| 87 | /// StringSet that is used to unique vreg names. |
| 88 | StringSet<> VRegNames; |
| 89 | |
| 90 | /// The flag is true upon \p UpdatedCSRs initialization |
| 91 | /// and false otherwise. |
| 92 | bool IsUpdatedCSRsInitialized = false; |
| 93 | |
| 94 | /// Contains the updated callee saved register list. |
| 95 | /// As opposed to the static list defined in register info, |
| 96 | /// all registers that were disabled are removed from the list. |
| 97 | SmallVector<MCPhysReg, 16> UpdatedCSRs; |
| 98 | |
| 99 | /// RegAllocHints - This vector records register allocation hints for |
| 100 | /// virtual registers. For each virtual register, it keeps a pair of hint |
| 101 | /// type and hints vector making up the allocation hints. Only the first |
| 102 | /// hint may be target specific, and in that case this is reflected by the |
| 103 | /// first member of the pair being non-zero. If the hinted register is |
| 104 | /// virtual, it means the allocator should prefer the physical register |
| 105 | /// allocated to it if any. |
| 106 | IndexedMap<std::pair<unsigned, SmallVector<Register, 4>>, |
| 107 | VirtReg2IndexFunctor> |
| 108 | RegAllocHints; |
| 109 | |
| 110 | /// PhysRegUseDefLists - This is an array of the head of the use/def list for |
| 111 | /// physical registers. |
| 112 | std::unique_ptr<MachineOperand *[]> PhysRegUseDefLists; |
| 113 | |
| 114 | /// getRegUseDefListHead - Return the head pointer for the register use/def |
| 115 | /// list for the specified virtual or physical register. |
| 116 | MachineOperand *&getRegUseDefListHead(Register RegNo) { |
| 117 | if (RegNo.isVirtual()) |
| 118 | return VRegInfo[RegNo.id()].second; |
| 119 | return PhysRegUseDefLists[RegNo.id()]; |
| 120 | } |
| 121 | |
| 122 | MachineOperand *getRegUseDefListHead(Register RegNo) const { |
| 123 | if (RegNo.isVirtual()) |
| 124 | return VRegInfo[RegNo.id()].second; |
| 125 | return PhysRegUseDefLists[RegNo.id()]; |
| 126 | } |
| 127 | |
| 128 | /// Get the next element in the use-def chain. |
| 129 | static MachineOperand *getNextOperandForReg(const MachineOperand *MO) { |
| 130 | assert(MO && MO->isReg() && "This is not a register operand!" ); |
| 131 | return MO->Contents.Reg.Next; |
| 132 | } |
| 133 | |
| 134 | /// UsedPhysRegMask - Additional used physregs including aliases. |
| 135 | /// This bit vector represents all the registers clobbered by function calls. |
| 136 | BitVector UsedPhysRegMask; |
| 137 | |
| 138 | /// ReservedRegs - This is a bit vector of reserved registers. The target |
| 139 | /// may change its mind about which registers should be reserved. This |
| 140 | /// vector is the frozen set of reserved registers when register allocation |
| 141 | /// started. |
| 142 | BitVector ReservedRegs; |
| 143 | |
| 144 | using VRegToTypeMap = IndexedMap<LLT, VirtReg2IndexFunctor>; |
| 145 | /// Map generic virtual registers to their low-level type. |
| 146 | VRegToTypeMap VRegToType; |
| 147 | |
| 148 | /// Keep track of the physical registers that are live in to the function. |
| 149 | /// Live in values are typically arguments in registers. LiveIn values are |
| 150 | /// allowed to have virtual registers associated with them, stored in the |
| 151 | /// second element. |
| 152 | std::vector<std::pair<MCRegister, Register>> LiveIns; |
| 153 | |
| 154 | public: |
| 155 | LLVM_ABI explicit MachineRegisterInfo(MachineFunction *MF); |
| 156 | MachineRegisterInfo(const MachineRegisterInfo &) = delete; |
| 157 | MachineRegisterInfo &operator=(const MachineRegisterInfo &) = delete; |
| 158 | |
| 159 | const TargetRegisterInfo *getTargetRegisterInfo() const { |
| 160 | return MF->getSubtarget().getRegisterInfo(); |
| 161 | } |
| 162 | |
| 163 | void resetDelegate(Delegate *delegate) { |
| 164 | // Ensure another delegate does not take over unless the current |
| 165 | // delegate first unattaches itself. |
| 166 | assert(TheDelegates.count(delegate) && |
| 167 | "Only an existing delegate can perform reset!" ); |
| 168 | TheDelegates.erase(Ptr: delegate); |
| 169 | } |
| 170 | |
| 171 | void addDelegate(Delegate *delegate) { |
| 172 | assert(delegate && !TheDelegates.count(delegate) && |
| 173 | "Attempted to add null delegate, or to change it without " |
| 174 | "first resetting it!" ); |
| 175 | |
| 176 | TheDelegates.insert(Ptr: delegate); |
| 177 | } |
| 178 | |
| 179 | void noteNewVirtualRegister(Register Reg) { |
| 180 | for (auto *TheDelegate : TheDelegates) |
| 181 | TheDelegate->MRI_NoteNewVirtualRegister(Reg); |
| 182 | } |
| 183 | |
| 184 | void noteCloneVirtualRegister(Register NewReg, Register SrcReg) { |
| 185 | for (auto *TheDelegate : TheDelegates) |
| 186 | TheDelegate->MRI_NoteCloneVirtualRegister(NewReg, SrcReg); |
| 187 | } |
| 188 | |
| 189 | const MachineFunction &getMF() const { return *MF; } |
| 190 | |
| 191 | //===--------------------------------------------------------------------===// |
| 192 | // Function State |
| 193 | //===--------------------------------------------------------------------===// |
| 194 | |
| 195 | // isSSA - Returns true when the machine function is in SSA form. Early |
| 196 | // passes require the machine function to be in SSA form where every virtual |
| 197 | // register has a single defining instruction. |
| 198 | // |
| 199 | // The TwoAddressInstructionPass and PHIElimination passes take the machine |
| 200 | // function out of SSA form when they introduce multiple defs per virtual |
| 201 | // register. |
| 202 | bool isSSA() const { return MF->getProperties().hasIsSSA(); } |
| 203 | |
| 204 | // leaveSSA - Indicates that the machine function is no longer in SSA form. |
| 205 | void leaveSSA() { MF->getProperties().resetIsSSA(); } |
| 206 | |
| 207 | /// tracksLiveness - Returns true when tracking register liveness accurately. |
| 208 | /// (see MachineFUnctionProperties::Property description for details) |
| 209 | bool tracksLiveness() const { |
| 210 | return MF->getProperties().hasTracksLiveness(); |
| 211 | } |
| 212 | |
| 213 | /// invalidateLiveness - Indicates that register liveness is no longer being |
| 214 | /// tracked accurately. |
| 215 | /// |
| 216 | /// This should be called by late passes that invalidate the liveness |
| 217 | /// information. |
| 218 | void invalidateLiveness() { MF->getProperties().resetTracksLiveness(); } |
| 219 | |
| 220 | /// Returns true if liveness for register class @p RC should be tracked at |
| 221 | /// the subregister level. |
| 222 | bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const { |
| 223 | return subRegLivenessEnabled() && RC.HasDisjunctSubRegs; |
| 224 | } |
| 225 | bool shouldTrackSubRegLiveness(Register VReg) const { |
| 226 | assert(VReg.isVirtual() && "Must pass a VReg" ); |
| 227 | const TargetRegisterClass *RC = getRegClassOrNull(Reg: VReg); |
| 228 | return LLVM_LIKELY(RC) ? shouldTrackSubRegLiveness(RC: *RC) : false; |
| 229 | } |
| 230 | bool subRegLivenessEnabled() const { |
| 231 | return TracksSubRegLiveness; |
| 232 | } |
| 233 | |
| 234 | //===--------------------------------------------------------------------===// |
| 235 | // Register Info |
| 236 | //===--------------------------------------------------------------------===// |
| 237 | |
| 238 | /// Returns true if the updated CSR list was initialized and false otherwise. |
| 239 | bool isUpdatedCSRsInitialized() const { return IsUpdatedCSRsInitialized; } |
| 240 | |
| 241 | /// Disables the register from the list of CSRs. |
| 242 | /// I.e. the register will not appear as part of the CSR mask. |
| 243 | /// \see UpdatedCalleeSavedRegs. |
| 244 | LLVM_ABI void disableCalleeSavedRegister(MCRegister Reg); |
| 245 | |
| 246 | /// Returns list of callee saved registers. |
| 247 | /// The function returns the updated CSR list (after taking into account |
| 248 | /// registers that are disabled from the CSR list). |
| 249 | LLVM_ABI const MCPhysReg *getCalleeSavedRegs() const; |
| 250 | |
| 251 | /// Sets the updated Callee Saved Registers list. |
| 252 | /// Notice that it will override ant previously disabled/saved CSRs. |
| 253 | LLVM_ABI void setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs); |
| 254 | |
| 255 | // Strictly for use by MachineInstr.cpp. |
| 256 | LLVM_ABI void addRegOperandToUseList(MachineOperand *MO); |
| 257 | |
| 258 | // Strictly for use by MachineInstr.cpp. |
| 259 | LLVM_ABI void removeRegOperandFromUseList(MachineOperand *MO); |
| 260 | |
| 261 | // Strictly for use by MachineInstr.cpp. |
| 262 | LLVM_ABI void moveOperands(MachineOperand *Dst, MachineOperand *Src, |
| 263 | unsigned NumOps); |
| 264 | |
| 265 | /// Verify the sanity of the use list for Reg. |
| 266 | LLVM_ABI void verifyUseList(Register Reg) const; |
| 267 | |
| 268 | /// Verify the use list of all registers. |
| 269 | LLVM_ABI void verifyUseLists() const; |
| 270 | |
| 271 | /// reg_begin/reg_end - Provide iteration support to walk over all definitions |
| 272 | /// and uses of a register within the MachineFunction that corresponds to this |
| 273 | /// MachineRegisterInfo object. |
| 274 | template <bool Uses, bool Defs, bool SkipDebug, bool ByOperand, bool ByInstr> |
| 275 | class defusechain_iterator; |
| 276 | template <bool Uses, bool Defs, bool SkipDebug, bool ByInstr> |
| 277 | class defusechain_instr_iterator; |
| 278 | |
| 279 | // Make it a friend so it can access getNextOperandForReg(). |
| 280 | template <bool, bool, bool, bool, bool> friend class defusechain_iterator; |
| 281 | template <bool, bool, bool, bool> friend class defusechain_instr_iterator; |
| 282 | |
| 283 | /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified |
| 284 | /// register. |
| 285 | using reg_iterator = defusechain_iterator<true, true, false, true, false>; |
| 286 | reg_iterator reg_begin(Register RegNo) const { |
| 287 | return reg_iterator(getRegUseDefListHead(RegNo)); |
| 288 | } |
| 289 | static reg_iterator reg_end() { return reg_iterator(nullptr); } |
| 290 | |
| 291 | inline iterator_range<reg_iterator> reg_operands(Register Reg) const { |
| 292 | return make_range(x: reg_begin(RegNo: Reg), y: reg_end()); |
| 293 | } |
| 294 | |
| 295 | /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses |
| 296 | /// of the specified register, stepping by MachineInstr. |
| 297 | using reg_instr_iterator = |
| 298 | defusechain_instr_iterator<true, true, false, /*ByInstr=*/true>; |
| 299 | reg_instr_iterator reg_instr_begin(Register RegNo) const { |
| 300 | return reg_instr_iterator(getRegUseDefListHead(RegNo)); |
| 301 | } |
| 302 | static reg_instr_iterator reg_instr_end() { |
| 303 | return reg_instr_iterator(nullptr); |
| 304 | } |
| 305 | |
| 306 | inline iterator_range<reg_instr_iterator> |
| 307 | reg_instructions(Register Reg) const { |
| 308 | return make_range(x: reg_instr_begin(RegNo: Reg), y: reg_instr_end()); |
| 309 | } |
| 310 | |
| 311 | /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses |
| 312 | /// of the specified register, stepping by bundle. |
| 313 | using reg_bundle_iterator = |
| 314 | defusechain_instr_iterator<true, true, false, /*ByInstr=*/false>; |
| 315 | reg_bundle_iterator reg_bundle_begin(Register RegNo) const { |
| 316 | return reg_bundle_iterator(getRegUseDefListHead(RegNo)); |
| 317 | } |
| 318 | static reg_bundle_iterator reg_bundle_end() { |
| 319 | return reg_bundle_iterator(nullptr); |
| 320 | } |
| 321 | |
| 322 | inline iterator_range<reg_bundle_iterator> reg_bundles(Register Reg) const { |
| 323 | return make_range(x: reg_bundle_begin(RegNo: Reg), y: reg_bundle_end()); |
| 324 | } |
| 325 | |
| 326 | /// reg_empty - Return true if there are no instructions using or defining the |
| 327 | /// specified register (it may be live-in). |
| 328 | bool reg_empty(Register RegNo) const { return reg_begin(RegNo) == reg_end(); } |
| 329 | |
| 330 | /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses |
| 331 | /// of the specified register, skipping those marked as Debug. |
| 332 | using reg_nodbg_iterator = |
| 333 | defusechain_iterator<true, true, true, true, false>; |
| 334 | reg_nodbg_iterator reg_nodbg_begin(Register RegNo) const { |
| 335 | return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); |
| 336 | } |
| 337 | static reg_nodbg_iterator reg_nodbg_end() { |
| 338 | return reg_nodbg_iterator(nullptr); |
| 339 | } |
| 340 | |
| 341 | inline iterator_range<reg_nodbg_iterator> |
| 342 | reg_nodbg_operands(Register Reg) const { |
| 343 | return make_range(x: reg_nodbg_begin(RegNo: Reg), y: reg_nodbg_end()); |
| 344 | } |
| 345 | |
| 346 | /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk |
| 347 | /// all defs and uses of the specified register, stepping by MachineInstr, |
| 348 | /// skipping those marked as Debug. |
| 349 | using reg_instr_nodbg_iterator = |
| 350 | defusechain_instr_iterator<true, true, true, /*ByInstr=*/true>; |
| 351 | reg_instr_nodbg_iterator reg_instr_nodbg_begin(Register RegNo) const { |
| 352 | return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo)); |
| 353 | } |
| 354 | static reg_instr_nodbg_iterator reg_instr_nodbg_end() { |
| 355 | return reg_instr_nodbg_iterator(nullptr); |
| 356 | } |
| 357 | |
| 358 | inline iterator_range<reg_instr_nodbg_iterator> |
| 359 | reg_nodbg_instructions(Register Reg) const { |
| 360 | return make_range(x: reg_instr_nodbg_begin(RegNo: Reg), y: reg_instr_nodbg_end()); |
| 361 | } |
| 362 | |
| 363 | /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk |
| 364 | /// all defs and uses of the specified register, stepping by bundle, |
| 365 | /// skipping those marked as Debug. |
| 366 | using reg_bundle_nodbg_iterator = |
| 367 | defusechain_instr_iterator<true, true, true, /*ByInstr=*/false>; |
| 368 | reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(Register RegNo) const { |
| 369 | return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo)); |
| 370 | } |
| 371 | static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() { |
| 372 | return reg_bundle_nodbg_iterator(nullptr); |
| 373 | } |
| 374 | |
| 375 | inline iterator_range<reg_bundle_nodbg_iterator> |
| 376 | reg_nodbg_bundles(Register Reg) const { |
| 377 | return make_range(x: reg_bundle_nodbg_begin(RegNo: Reg), y: reg_bundle_nodbg_end()); |
| 378 | } |
| 379 | |
| 380 | /// reg_nodbg_empty - Return true if the only instructions using or defining |
| 381 | /// Reg are Debug instructions. |
| 382 | bool reg_nodbg_empty(Register RegNo) const { |
| 383 | return reg_nodbg_begin(RegNo) == reg_nodbg_end(); |
| 384 | } |
| 385 | |
| 386 | /// def_iterator/def_begin/def_end - Walk all defs of the specified register. |
| 387 | using def_iterator = defusechain_iterator<false, true, false, true, false>; |
| 388 | def_iterator def_begin(Register RegNo) const { |
| 389 | return def_iterator(getRegUseDefListHead(RegNo)); |
| 390 | } |
| 391 | static def_iterator def_end() { return def_iterator(nullptr); } |
| 392 | |
| 393 | inline iterator_range<def_iterator> def_operands(Register Reg) const { |
| 394 | return make_range(x: def_begin(RegNo: Reg), y: def_end()); |
| 395 | } |
| 396 | |
| 397 | /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the |
| 398 | /// specified register, stepping by MachineInst. |
| 399 | using def_instr_iterator = |
| 400 | defusechain_instr_iterator<false, true, false, /*ByInstr=*/true>; |
| 401 | def_instr_iterator def_instr_begin(Register RegNo) const { |
| 402 | return def_instr_iterator(getRegUseDefListHead(RegNo)); |
| 403 | } |
| 404 | static def_instr_iterator def_instr_end() { |
| 405 | return def_instr_iterator(nullptr); |
| 406 | } |
| 407 | |
| 408 | inline iterator_range<def_instr_iterator> |
| 409 | def_instructions(Register Reg) const { |
| 410 | return make_range(x: def_instr_begin(RegNo: Reg), y: def_instr_end()); |
| 411 | } |
| 412 | |
| 413 | /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the |
| 414 | /// specified register, stepping by bundle. |
| 415 | using def_bundle_iterator = |
| 416 | defusechain_instr_iterator<false, true, false, /*ByInstr=*/false>; |
| 417 | def_bundle_iterator def_bundle_begin(Register RegNo) const { |
| 418 | return def_bundle_iterator(getRegUseDefListHead(RegNo)); |
| 419 | } |
| 420 | static def_bundle_iterator def_bundle_end() { |
| 421 | return def_bundle_iterator(nullptr); |
| 422 | } |
| 423 | |
| 424 | inline iterator_range<def_bundle_iterator> def_bundles(Register Reg) const { |
| 425 | return make_range(x: def_bundle_begin(RegNo: Reg), y: def_bundle_end()); |
| 426 | } |
| 427 | |
| 428 | /// def_empty - Return true if there are no instructions defining the |
| 429 | /// specified register (it may be live-in). |
| 430 | bool def_empty(Register RegNo) const { return def_begin(RegNo) == def_end(); } |
| 431 | |
| 432 | StringRef getVRegName(Register Reg) const { |
| 433 | return VReg2Name.inBounds(n: Reg) ? StringRef(VReg2Name[Reg]) : "" ; |
| 434 | } |
| 435 | |
| 436 | void insertVRegByName(StringRef Name, Register Reg) { |
| 437 | assert((Name.empty() || !VRegNames.contains(Name)) && |
| 438 | "Named VRegs Must be Unique." ); |
| 439 | if (!Name.empty()) { |
| 440 | VRegNames.insert(key: Name); |
| 441 | VReg2Name.grow(n: Reg); |
| 442 | VReg2Name[Reg] = Name.str(); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | /// Return true if there is exactly one operand defining the specified |
| 447 | /// register. |
| 448 | bool hasOneDef(Register RegNo) const { |
| 449 | return hasSingleElement(C: def_operands(Reg: RegNo)); |
| 450 | } |
| 451 | |
| 452 | /// Returns the defining operand if there is exactly one operand defining the |
| 453 | /// specified register, otherwise nullptr. |
| 454 | MachineOperand *getOneDef(Register Reg) const { |
| 455 | def_iterator DI = def_begin(RegNo: Reg); |
| 456 | if (DI == def_end()) // No defs. |
| 457 | return nullptr; |
| 458 | |
| 459 | def_iterator OneDef = DI; |
| 460 | if (++DI == def_end()) |
| 461 | return &*OneDef; |
| 462 | return nullptr; // Multiple defs. |
| 463 | } |
| 464 | |
| 465 | /// use_iterator/use_begin/use_end - Walk all uses of the specified register. |
| 466 | using use_iterator = defusechain_iterator<true, false, false, true, false>; |
| 467 | use_iterator use_begin(Register RegNo) const { |
| 468 | return use_iterator(getRegUseDefListHead(RegNo)); |
| 469 | } |
| 470 | static use_iterator use_end() { return use_iterator(nullptr); } |
| 471 | |
| 472 | inline iterator_range<use_iterator> use_operands(Register Reg) const { |
| 473 | return make_range(x: use_begin(RegNo: Reg), y: use_end()); |
| 474 | } |
| 475 | |
| 476 | /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the |
| 477 | /// specified register, stepping by MachineInstr. |
| 478 | using use_instr_iterator = |
| 479 | defusechain_instr_iterator<true, false, false, /*ByInstr=*/true>; |
| 480 | use_instr_iterator use_instr_begin(Register RegNo) const { |
| 481 | return use_instr_iterator(getRegUseDefListHead(RegNo)); |
| 482 | } |
| 483 | static use_instr_iterator use_instr_end() { |
| 484 | return use_instr_iterator(nullptr); |
| 485 | } |
| 486 | |
| 487 | inline iterator_range<use_instr_iterator> |
| 488 | use_instructions(Register Reg) const { |
| 489 | return make_range(x: use_instr_begin(RegNo: Reg), y: use_instr_end()); |
| 490 | } |
| 491 | |
| 492 | /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the |
| 493 | /// specified register, stepping by bundle. |
| 494 | using use_bundle_iterator = |
| 495 | defusechain_instr_iterator<true, false, false, /*ByInstr=*/false>; |
| 496 | use_bundle_iterator use_bundle_begin(Register RegNo) const { |
| 497 | return use_bundle_iterator(getRegUseDefListHead(RegNo)); |
| 498 | } |
| 499 | static use_bundle_iterator use_bundle_end() { |
| 500 | return use_bundle_iterator(nullptr); |
| 501 | } |
| 502 | |
| 503 | inline iterator_range<use_bundle_iterator> use_bundles(Register Reg) const { |
| 504 | return make_range(x: use_bundle_begin(RegNo: Reg), y: use_bundle_end()); |
| 505 | } |
| 506 | |
| 507 | /// use_empty - Return true if there are no instructions using the specified |
| 508 | /// register. |
| 509 | bool use_empty(Register RegNo) const { return use_begin(RegNo) == use_end(); } |
| 510 | |
| 511 | /// hasOneUse - Return true if there is exactly one instruction using the |
| 512 | /// specified register. |
| 513 | bool hasOneUse(Register RegNo) const { |
| 514 | return hasSingleElement(C: use_operands(Reg: RegNo)); |
| 515 | } |
| 516 | |
| 517 | /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the |
| 518 | /// specified register, skipping those marked as Debug. |
| 519 | using use_nodbg_iterator = |
| 520 | defusechain_iterator<true, false, true, true, false>; |
| 521 | use_nodbg_iterator use_nodbg_begin(Register RegNo) const { |
| 522 | return use_nodbg_iterator(getRegUseDefListHead(RegNo)); |
| 523 | } |
| 524 | static use_nodbg_iterator use_nodbg_end() { |
| 525 | return use_nodbg_iterator(nullptr); |
| 526 | } |
| 527 | |
| 528 | inline iterator_range<use_nodbg_iterator> |
| 529 | use_nodbg_operands(Register Reg) const { |
| 530 | return make_range(x: use_nodbg_begin(RegNo: Reg), y: use_nodbg_end()); |
| 531 | } |
| 532 | |
| 533 | /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk |
| 534 | /// all uses of the specified register, stepping by MachineInstr, skipping |
| 535 | /// those marked as Debug. |
| 536 | using use_instr_nodbg_iterator = |
| 537 | defusechain_instr_iterator<true, false, true, /*ByInstr=*/true>; |
| 538 | use_instr_nodbg_iterator use_instr_nodbg_begin(Register RegNo) const { |
| 539 | return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo)); |
| 540 | } |
| 541 | static use_instr_nodbg_iterator use_instr_nodbg_end() { |
| 542 | return use_instr_nodbg_iterator(nullptr); |
| 543 | } |
| 544 | |
| 545 | inline iterator_range<use_instr_nodbg_iterator> |
| 546 | use_nodbg_instructions(Register Reg) const { |
| 547 | return make_range(x: use_instr_nodbg_begin(RegNo: Reg), y: use_instr_nodbg_end()); |
| 548 | } |
| 549 | |
| 550 | /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk |
| 551 | /// all uses of the specified register, stepping by bundle, skipping |
| 552 | /// those marked as Debug. |
| 553 | using use_bundle_nodbg_iterator = |
| 554 | defusechain_instr_iterator<true, false, true, /*ByInstr=*/false>; |
| 555 | use_bundle_nodbg_iterator use_bundle_nodbg_begin(Register RegNo) const { |
| 556 | return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo)); |
| 557 | } |
| 558 | static use_bundle_nodbg_iterator use_bundle_nodbg_end() { |
| 559 | return use_bundle_nodbg_iterator(nullptr); |
| 560 | } |
| 561 | |
| 562 | inline iterator_range<use_bundle_nodbg_iterator> |
| 563 | use_nodbg_bundles(Register Reg) const { |
| 564 | return make_range(x: use_bundle_nodbg_begin(RegNo: Reg), y: use_bundle_nodbg_end()); |
| 565 | } |
| 566 | |
| 567 | /// use_nodbg_empty - Return true if there are no non-Debug instructions |
| 568 | /// using the specified register. |
| 569 | bool use_nodbg_empty(Register RegNo) const { |
| 570 | return use_nodbg_begin(RegNo) == use_nodbg_end(); |
| 571 | } |
| 572 | |
| 573 | /// hasOneNonDBGUse - Return true if there is exactly one non-Debug |
| 574 | /// use of the specified register. |
| 575 | LLVM_ABI bool hasOneNonDBGUse(Register RegNo) const; |
| 576 | |
| 577 | /// hasOneNonDBGUse - Return true if there is exactly one non-Debug |
| 578 | /// instruction using the specified register. Said instruction may have |
| 579 | /// multiple uses. |
| 580 | LLVM_ABI bool hasOneNonDBGUser(Register RegNo) const; |
| 581 | |
| 582 | /// If the register has a single non-Debug instruction using the specified |
| 583 | /// register, returns it; otherwise returns nullptr. |
| 584 | LLVM_ABI MachineInstr *getOneNonDBGUser(Register RegNo) const; |
| 585 | |
| 586 | /// hasAtMostUses - Return true if the given register has at most \p MaxUsers |
| 587 | /// non-debug user instructions. |
| 588 | LLVM_ABI bool hasAtMostUserInstrs(Register Reg, unsigned MaxUsers) const; |
| 589 | |
| 590 | /// replaceRegWith - Replace all instances of FromReg with ToReg in the |
| 591 | /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), |
| 592 | /// except that it also changes any definitions of the register as well. |
| 593 | /// |
| 594 | /// Note that it is usually necessary to first constrain ToReg's register |
| 595 | /// class and register bank to match the FromReg constraints using one of the |
| 596 | /// methods: |
| 597 | /// |
| 598 | /// constrainRegClass(ToReg, getRegClass(FromReg)) |
| 599 | /// constrainRegAttrs(ToReg, FromReg) |
| 600 | /// RegisterBankInfo::constrainGenericRegister(ToReg, |
| 601 | /// *MRI.getRegClass(FromReg), MRI) |
| 602 | /// |
| 603 | /// These functions will return a falsy result if the virtual registers have |
| 604 | /// incompatible constraints. |
| 605 | /// |
| 606 | /// Note that if ToReg is a physical register the function will replace and |
| 607 | /// apply sub registers to ToReg in order to obtain a final/proper physical |
| 608 | /// register. |
| 609 | LLVM_ABI void replaceRegWith(Register FromReg, Register ToReg); |
| 610 | |
| 611 | /// getVRegDef - Return the machine instr that defines the specified virtual |
| 612 | /// register or null if none is found. This assumes that the code is in SSA |
| 613 | /// form, so there should only be one definition. |
| 614 | LLVM_ABI MachineInstr *getVRegDef(Register Reg) const; |
| 615 | |
| 616 | /// getUniqueVRegDef - Return the unique machine instr that defines the |
| 617 | /// specified virtual register or null if none is found. If there are |
| 618 | /// multiple definitions or no definition, return null. |
| 619 | LLVM_ABI MachineInstr *getUniqueVRegDef(Register Reg) const; |
| 620 | |
| 621 | /// clearKillFlags - Iterate over all the uses of the given register and |
| 622 | /// clear the kill flag from the MachineOperand. This function is used by |
| 623 | /// optimization passes which extend register lifetimes and need only |
| 624 | /// preserve conservative kill flag information. |
| 625 | LLVM_ABI void clearKillFlags(Register Reg) const; |
| 626 | |
| 627 | LLVM_ABI void dumpUses(Register RegNo) const; |
| 628 | |
| 629 | /// Returns true if PhysReg is unallocatable and constant throughout the |
| 630 | /// function. Writing to a constant register has no effect. |
| 631 | LLVM_ABI bool isConstantPhysReg(MCRegister PhysReg) const; |
| 632 | |
| 633 | /// Get an iterator over the pressure sets affected by the given physical or |
| 634 | /// virtual register. If RegUnit is physical, it must be a register unit (from |
| 635 | /// MCRegUnitIterator). |
| 636 | PSetIterator getPressureSets(Register RegUnit) const; |
| 637 | |
| 638 | //===--------------------------------------------------------------------===// |
| 639 | // Virtual Register Info |
| 640 | //===--------------------------------------------------------------------===// |
| 641 | |
| 642 | /// Return the register class of the specified virtual register. |
| 643 | /// This shouldn't be used directly unless \p Reg has a register class. |
| 644 | /// \see getRegClassOrNull when this might happen. |
| 645 | const TargetRegisterClass *getRegClass(Register Reg) const { |
| 646 | assert(isa<const TargetRegisterClass *>(VRegInfo[Reg.id()].first) && |
| 647 | "Register class not set, wrong accessor" ); |
| 648 | return cast<const TargetRegisterClass *>(Val: VRegInfo[Reg.id()].first); |
| 649 | } |
| 650 | |
| 651 | /// Return the register class of \p Reg, or null if Reg has not been assigned |
| 652 | /// a register class yet. |
| 653 | /// |
| 654 | /// \note A null register class can only happen when these two |
| 655 | /// conditions are met: |
| 656 | /// 1. Generic virtual registers are created. |
| 657 | /// 2. The machine function has not completely been through the |
| 658 | /// instruction selection process. |
| 659 | /// None of this condition is possible without GlobalISel for now. |
| 660 | /// In other words, if GlobalISel is not used or if the query happens after |
| 661 | /// the select pass, using getRegClass is safe. |
| 662 | const TargetRegisterClass *getRegClassOrNull(Register Reg) const { |
| 663 | const RegClassOrRegBank &Val = VRegInfo[Reg].first; |
| 664 | return dyn_cast_if_present<const TargetRegisterClass *>(Val); |
| 665 | } |
| 666 | |
| 667 | /// Return the register bank of \p Reg. |
| 668 | /// This shouldn't be used directly unless \p Reg has a register bank. |
| 669 | const RegisterBank *getRegBank(Register Reg) const { |
| 670 | return cast<const RegisterBank *>(Val: VRegInfo[Reg.id()].first); |
| 671 | } |
| 672 | |
| 673 | /// Return the register bank of \p Reg, or null if Reg has not been assigned |
| 674 | /// a register bank or has been assigned a register class. |
| 675 | /// \note It is possible to get the register bank from the register class via |
| 676 | /// RegisterBankInfo::getRegBankFromRegClass. |
| 677 | const RegisterBank *getRegBankOrNull(Register Reg) const { |
| 678 | const RegClassOrRegBank &Val = VRegInfo[Reg].first; |
| 679 | return dyn_cast_if_present<const RegisterBank *>(Val); |
| 680 | } |
| 681 | |
| 682 | /// Return the register bank or register class of \p Reg. |
| 683 | /// \note Before the register bank gets assigned (i.e., before the |
| 684 | /// RegBankSelect pass) \p Reg may not have either. |
| 685 | const RegClassOrRegBank &getRegClassOrRegBank(Register Reg) const { |
| 686 | return VRegInfo[Reg].first; |
| 687 | } |
| 688 | |
| 689 | /// setRegClass - Set the register class of the specified virtual register. |
| 690 | LLVM_ABI void setRegClass(Register Reg, const TargetRegisterClass *RC); |
| 691 | |
| 692 | /// Set the register bank to \p RegBank for \p Reg. |
| 693 | LLVM_ABI void setRegBank(Register Reg, const RegisterBank &RegBank); |
| 694 | |
| 695 | void setRegClassOrRegBank(Register Reg, |
| 696 | const RegClassOrRegBank &RCOrRB){ |
| 697 | VRegInfo[Reg].first = RCOrRB; |
| 698 | } |
| 699 | |
| 700 | /// constrainRegClass - Constrain the register class of the specified virtual |
| 701 | /// register to be a common subclass of RC and the current register class, |
| 702 | /// but only if the new class has at least MinNumRegs registers. Return the |
| 703 | /// new register class, or NULL if no such class exists. |
| 704 | /// This should only be used when the constraint is known to be trivial, like |
| 705 | /// GR32 -> GR32_NOSP. Beware of increasing register pressure. |
| 706 | /// |
| 707 | /// \note Assumes that the register has a register class assigned. |
| 708 | /// Use RegisterBankInfo::constrainGenericRegister in GlobalISel's |
| 709 | /// InstructionSelect pass and constrainRegAttrs in every other pass, |
| 710 | /// including non-select passes of GlobalISel, instead. |
| 711 | LLVM_ABI const TargetRegisterClass * |
| 712 | constrainRegClass(Register Reg, const TargetRegisterClass *RC, |
| 713 | unsigned MinNumRegs = 0); |
| 714 | |
| 715 | /// Constrain the register class or the register bank of the virtual register |
| 716 | /// \p Reg (and low-level type) to be a common subclass or a common bank of |
| 717 | /// both registers provided respectively (and a common low-level type). Do |
| 718 | /// nothing if any of the attributes (classes, banks, or low-level types) of |
| 719 | /// the registers are deemed incompatible, or if the resulting register will |
| 720 | /// have a class smaller than before and of size less than \p MinNumRegs. |
| 721 | /// Return true if such register attributes exist, false otherwise. |
| 722 | /// |
| 723 | /// \note Use this method instead of constrainRegClass and |
| 724 | /// RegisterBankInfo::constrainGenericRegister everywhere but SelectionDAG |
| 725 | /// ISel / FastISel and GlobalISel's InstructionSelect pass respectively. |
| 726 | LLVM_ABI bool constrainRegAttrs(Register Reg, Register ConstrainingReg, |
| 727 | unsigned MinNumRegs = 0); |
| 728 | |
| 729 | /// recomputeRegClass - Try to find a legal super-class of Reg's register |
| 730 | /// class that still satisfies the constraints from the instructions using |
| 731 | /// Reg. Returns true if Reg was upgraded. |
| 732 | /// |
| 733 | /// This method can be used after constraints have been removed from a |
| 734 | /// virtual register, for example after removing instructions or splitting |
| 735 | /// the live range. |
| 736 | LLVM_ABI bool recomputeRegClass(Register Reg); |
| 737 | |
| 738 | /// createVirtualRegister - Create and return a new virtual register in the |
| 739 | /// function with the specified register class. |
| 740 | LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, |
| 741 | StringRef Name = "" ); |
| 742 | |
| 743 | /// All attributes(register class or bank and low-level type) a virtual |
| 744 | /// register can have. |
| 745 | struct VRegAttrs { |
| 746 | RegClassOrRegBank RCOrRB; |
| 747 | LLT Ty; |
| 748 | }; |
| 749 | |
| 750 | /// Returns register class or bank and low level type of \p Reg. Always safe |
| 751 | /// to use. Special values are returned when \p Reg does not have some of the |
| 752 | /// attributes. |
| 753 | VRegAttrs getVRegAttrs(Register Reg) const { |
| 754 | return {.RCOrRB: getRegClassOrRegBank(Reg), .Ty: getType(Reg)}; |
| 755 | } |
| 756 | |
| 757 | /// Create and return a new virtual register in the function with the |
| 758 | /// specified register attributes(register class or bank and low level type). |
| 759 | LLVM_ABI Register createVirtualRegister(VRegAttrs RegAttr, |
| 760 | StringRef Name = "" ); |
| 761 | |
| 762 | /// Create and return a new virtual register in the function with the same |
| 763 | /// attributes as the given register. |
| 764 | LLVM_ABI Register cloneVirtualRegister(Register VReg, StringRef Name = "" ); |
| 765 | |
| 766 | /// Get the low-level type of \p Reg or LLT{} if Reg is not a generic |
| 767 | /// (target independent) virtual register. |
| 768 | LLT getType(Register Reg) const { |
| 769 | if (Reg.isVirtual() && VRegToType.inBounds(n: Reg)) |
| 770 | return VRegToType[Reg]; |
| 771 | return LLT{}; |
| 772 | } |
| 773 | |
| 774 | /// Set the low-level type of \p VReg to \p Ty. |
| 775 | LLVM_ABI void setType(Register VReg, LLT Ty); |
| 776 | |
| 777 | /// Create and return a new generic virtual register with low-level |
| 778 | /// type \p Ty. |
| 779 | LLVM_ABI Register createGenericVirtualRegister(LLT Ty, StringRef Name = "" ); |
| 780 | |
| 781 | /// Remove all types associated to virtual registers (after instruction |
| 782 | /// selection and constraining of all generic virtual registers). |
| 783 | LLVM_ABI void clearVirtRegTypes(); |
| 784 | |
| 785 | /// Creates a new virtual register that has no register class, register bank |
| 786 | /// or size assigned yet. This is only allowed to be used |
| 787 | /// temporarily while constructing machine instructions. Most operations are |
| 788 | /// undefined on an incomplete register until one of setRegClass(), |
| 789 | /// setRegBank() or setSize() has been called on it. |
| 790 | LLVM_ABI Register createIncompleteVirtualRegister(StringRef Name = "" ); |
| 791 | |
| 792 | /// getNumVirtRegs - Return the number of virtual registers created. |
| 793 | unsigned getNumVirtRegs() const { return VRegInfo.size(); } |
| 794 | |
| 795 | /// clearVirtRegs - Remove all virtual registers (after physreg assignment). |
| 796 | LLVM_ABI void clearVirtRegs(); |
| 797 | |
| 798 | /// setRegAllocationHint - Specify a register allocation hint for the |
| 799 | /// specified virtual register. This is typically used by target, and in case |
| 800 | /// of an earlier hint it will be overwritten. |
| 801 | void setRegAllocationHint(Register VReg, unsigned Type, Register PrefReg) { |
| 802 | assert(VReg.isVirtual()); |
| 803 | RegAllocHints.grow(n: Register::index2VirtReg(Index: getNumVirtRegs())); |
| 804 | auto &Hint = RegAllocHints[VReg]; |
| 805 | Hint.first = Type; |
| 806 | Hint.second.clear(); |
| 807 | Hint.second.push_back(Elt: PrefReg); |
| 808 | } |
| 809 | |
| 810 | /// addRegAllocationHint - Add a register allocation hint to the hints |
| 811 | /// vector for VReg. |
| 812 | void addRegAllocationHint(Register VReg, Register PrefReg) { |
| 813 | assert(VReg.isVirtual()); |
| 814 | RegAllocHints.grow(n: Register::index2VirtReg(Index: getNumVirtRegs())); |
| 815 | RegAllocHints[VReg].second.push_back(Elt: PrefReg); |
| 816 | } |
| 817 | |
| 818 | /// Specify the preferred (target independent) register allocation hint for |
| 819 | /// the specified virtual register. |
| 820 | void setSimpleHint(Register VReg, Register PrefReg) { |
| 821 | setRegAllocationHint(VReg, /*Type=*/Type: 0, PrefReg); |
| 822 | } |
| 823 | |
| 824 | void clearSimpleHint(Register VReg) { |
| 825 | assert (!RegAllocHints[VReg].first && |
| 826 | "Expected to clear a non-target hint!" ); |
| 827 | if (RegAllocHints.inBounds(n: VReg)) |
| 828 | RegAllocHints[VReg].second.clear(); |
| 829 | } |
| 830 | |
| 831 | /// getRegAllocationHint - Return the register allocation hint for the |
| 832 | /// specified virtual register. If there are many hints, this returns the |
| 833 | /// one with the greatest weight. |
| 834 | std::pair<unsigned, Register> getRegAllocationHint(Register VReg) const { |
| 835 | assert(VReg.isVirtual()); |
| 836 | if (!RegAllocHints.inBounds(n: VReg)) |
| 837 | return {0, Register()}; |
| 838 | auto &Hint = RegAllocHints[VReg.id()]; |
| 839 | Register BestHint = (Hint.second.size() ? Hint.second[0] : Register()); |
| 840 | return {Hint.first, BestHint}; |
| 841 | } |
| 842 | |
| 843 | /// getSimpleHint - same as getRegAllocationHint except it will only return |
| 844 | /// a target independent hint. |
| 845 | Register getSimpleHint(Register VReg) const { |
| 846 | assert(VReg.isVirtual()); |
| 847 | std::pair<unsigned, Register> Hint = getRegAllocationHint(VReg); |
| 848 | return Hint.first ? Register() : Hint.second; |
| 849 | } |
| 850 | |
| 851 | /// getRegAllocationHints - Return a reference to the vector of all |
| 852 | /// register allocation hints for VReg. |
| 853 | const std::pair<unsigned, SmallVector<Register, 4>> * |
| 854 | getRegAllocationHints(Register VReg) const { |
| 855 | assert(VReg.isVirtual()); |
| 856 | return RegAllocHints.inBounds(n: VReg) ? &RegAllocHints[VReg] : nullptr; |
| 857 | } |
| 858 | |
| 859 | /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the |
| 860 | /// specified register as undefined which causes the DBG_VALUE to be |
| 861 | /// deleted during LiveDebugVariables analysis. |
| 862 | LLVM_ABI void markUsesInDebugValueAsUndef(Register Reg) const; |
| 863 | |
| 864 | /// updateDbgUsersToReg - Update a collection of debug instructions |
| 865 | /// to refer to the designated register. |
| 866 | void updateDbgUsersToReg(MCRegister OldReg, MCRegister NewReg, |
| 867 | ArrayRef<MachineInstr *> Users) const { |
| 868 | // If this operand is a register, check whether it overlaps with OldReg. |
| 869 | // If it does, replace with NewReg. |
| 870 | auto UpdateOp = [this, &NewReg, &OldReg](MachineOperand &Op) { |
| 871 | if (Op.isReg() && |
| 872 | getTargetRegisterInfo()->regsOverlap(RegA: Op.getReg(), RegB: OldReg)) |
| 873 | Op.setReg(NewReg); |
| 874 | }; |
| 875 | |
| 876 | // Iterate through (possibly several) operands to DBG_VALUEs and update |
| 877 | // each. For DBG_PHIs, only one operand will be present. |
| 878 | for (MachineInstr *MI : Users) { |
| 879 | if (MI->isDebugValue()) { |
| 880 | for (auto &Op : MI->debug_operands()) |
| 881 | UpdateOp(Op); |
| 882 | assert(MI->hasDebugOperandForReg(NewReg) && |
| 883 | "Expected debug value to have some overlap with OldReg" ); |
| 884 | } else if (MI->isDebugPHI()) { |
| 885 | UpdateOp(MI->getOperand(i: 0)); |
| 886 | } else { |
| 887 | llvm_unreachable("Non-DBG_VALUE, Non-DBG_PHI debug instr updated" ); |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /// Return true if the specified register is modified in this function. |
| 893 | /// This checks that no defining machine operands exist for the register or |
| 894 | /// any of its aliases. Definitions found on functions marked noreturn are |
| 895 | /// ignored, to consider them pass 'true' for optional parameter |
| 896 | /// SkipNoReturnDef. The register is also considered modified when it is set |
| 897 | /// in the UsedPhysRegMask. |
| 898 | LLVM_ABI bool isPhysRegModified(MCRegister PhysReg, |
| 899 | bool SkipNoReturnDef = false) const; |
| 900 | |
| 901 | /// Return true if the specified register is modified or read in this |
| 902 | /// function. This checks that no machine operands exist for the register or |
| 903 | /// any of its aliases. If SkipRegMaskTest is false, the register is |
| 904 | /// considered used when it is set in the UsedPhysRegMask. |
| 905 | LLVM_ABI bool isPhysRegUsed(MCRegister PhysReg, |
| 906 | bool SkipRegMaskTest = false) const; |
| 907 | |
| 908 | /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. |
| 909 | /// This corresponds to the bit mask attached to register mask operands. |
| 910 | void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { |
| 911 | UsedPhysRegMask.setBitsNotInMask(Mask: RegMask); |
| 912 | } |
| 913 | |
| 914 | const BitVector &getUsedPhysRegsMask() const { return UsedPhysRegMask; } |
| 915 | |
| 916 | //===--------------------------------------------------------------------===// |
| 917 | // Reserved Register Info |
| 918 | //===--------------------------------------------------------------------===// |
| 919 | // |
| 920 | // The set of reserved registers must be invariant during register |
| 921 | // allocation. For example, the target cannot suddenly decide it needs a |
| 922 | // frame pointer when the register allocator has already used the frame |
| 923 | // pointer register for something else. |
| 924 | // |
| 925 | // These methods can be used by target hooks like hasFP() to avoid changing |
| 926 | // the reserved register set during register allocation. |
| 927 | |
| 928 | /// freezeReservedRegs - Called by the register allocator to freeze the set |
| 929 | /// of reserved registers before allocation begins. |
| 930 | LLVM_ABI void freezeReservedRegs(); |
| 931 | |
| 932 | /// reserveReg -- Mark a register as reserved so checks like isAllocatable |
| 933 | /// will not suggest using it. This should not be used during the middle |
| 934 | /// of a function walk, or when liveness info is available. |
| 935 | void reserveReg(MCRegister PhysReg, const TargetRegisterInfo *TRI) { |
| 936 | assert(reservedRegsFrozen() && |
| 937 | "Reserved registers haven't been frozen yet. " ); |
| 938 | MCRegAliasIterator R(PhysReg, TRI, true); |
| 939 | |
| 940 | for (; R.isValid(); ++R) |
| 941 | ReservedRegs.set((*R).id()); |
| 942 | } |
| 943 | |
| 944 | /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called |
| 945 | /// to ensure the set of reserved registers stays constant. |
| 946 | bool reservedRegsFrozen() const { |
| 947 | return !ReservedRegs.empty(); |
| 948 | } |
| 949 | |
| 950 | /// canReserveReg - Returns true if PhysReg can be used as a reserved |
| 951 | /// register. Any register can be reserved before freezeReservedRegs() is |
| 952 | /// called. |
| 953 | bool canReserveReg(MCRegister PhysReg) const { |
| 954 | return !reservedRegsFrozen() || ReservedRegs.test(Idx: PhysReg.id()); |
| 955 | } |
| 956 | |
| 957 | /// getReservedRegs - Returns a reference to the frozen set of reserved |
| 958 | /// registers. This method should always be preferred to calling |
| 959 | /// TRI::getReservedRegs() when possible. |
| 960 | const BitVector &getReservedRegs() const { |
| 961 | assert(reservedRegsFrozen() && |
| 962 | "Reserved registers haven't been frozen yet. " |
| 963 | "Use TRI::getReservedRegs()." ); |
| 964 | return ReservedRegs; |
| 965 | } |
| 966 | |
| 967 | /// isReserved - Returns true when PhysReg is a reserved register. |
| 968 | /// |
| 969 | /// Reserved registers may belong to an allocatable register class, but the |
| 970 | /// target has explicitly requested that they are not used. |
| 971 | bool isReserved(MCRegister PhysReg) const { |
| 972 | return getReservedRegs().test(Idx: PhysReg.id()); |
| 973 | } |
| 974 | |
| 975 | /// Returns true when the given register unit is considered reserved. |
| 976 | /// |
| 977 | /// Register units are considered reserved when for at least one of their |
| 978 | /// root registers, the root register and all super registers are reserved. |
| 979 | /// This currently iterates the register hierarchy and may be slower than |
| 980 | /// expected. |
| 981 | LLVM_ABI bool isReservedRegUnit(unsigned Unit) const; |
| 982 | |
| 983 | /// isAllocatable - Returns true when PhysReg belongs to an allocatable |
| 984 | /// register class and it hasn't been reserved. |
| 985 | /// |
| 986 | /// Allocatable registers may show up in the allocation order of some virtual |
| 987 | /// register, so a register allocator needs to track its liveness and |
| 988 | /// availability. |
| 989 | bool isAllocatable(MCRegister PhysReg) const { |
| 990 | return getTargetRegisterInfo()->isInAllocatableClass(RegNo: PhysReg) && |
| 991 | !isReserved(PhysReg); |
| 992 | } |
| 993 | |
| 994 | //===--------------------------------------------------------------------===// |
| 995 | // LiveIn Management |
| 996 | //===--------------------------------------------------------------------===// |
| 997 | |
| 998 | /// addLiveIn - Add the specified register as a live-in. Note that it |
| 999 | /// is an error to add the same register to the same set more than once. |
| 1000 | void addLiveIn(MCRegister Reg, Register vreg = Register()) { |
| 1001 | LiveIns.push_back(x: std::make_pair(x&: Reg, y&: vreg)); |
| 1002 | } |
| 1003 | |
| 1004 | // Iteration support for the live-ins set. It's kept in sorted order |
| 1005 | // by register number. |
| 1006 | using livein_iterator = |
| 1007 | std::vector<std::pair<MCRegister,Register>>::const_iterator; |
| 1008 | livein_iterator livein_begin() const { return LiveIns.begin(); } |
| 1009 | livein_iterator livein_end() const { return LiveIns.end(); } |
| 1010 | bool livein_empty() const { return LiveIns.empty(); } |
| 1011 | |
| 1012 | ArrayRef<std::pair<MCRegister, Register>> liveins() const { |
| 1013 | return LiveIns; |
| 1014 | } |
| 1015 | |
| 1016 | LLVM_ABI bool isLiveIn(Register Reg) const; |
| 1017 | |
| 1018 | /// getLiveInPhysReg - If VReg is a live-in virtual register, return the |
| 1019 | /// corresponding live-in physical register. |
| 1020 | LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const; |
| 1021 | |
| 1022 | /// getLiveInVirtReg - If PReg is a live-in physical register, return the |
| 1023 | /// corresponding live-in virtual register. |
| 1024 | LLVM_ABI Register getLiveInVirtReg(MCRegister PReg) const; |
| 1025 | |
| 1026 | /// EmitLiveInCopies - Emit copies to initialize livein virtual registers |
| 1027 | /// into the given entry block. |
| 1028 | LLVM_ABI void EmitLiveInCopies(MachineBasicBlock *EntryMBB, |
| 1029 | const TargetRegisterInfo &TRI, |
| 1030 | const TargetInstrInfo &TII); |
| 1031 | |
| 1032 | /// Returns a mask covering all bits that can appear in lane masks of |
| 1033 | /// subregisters of the virtual register @p Reg. |
| 1034 | LLVM_ABI LaneBitmask getMaxLaneMaskForVReg(Register Reg) const; |
| 1035 | |
| 1036 | /// defusechain_iterator - This class provides iterator support for machine |
| 1037 | /// operands in the function that use or define a specific register. If |
| 1038 | /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it |
| 1039 | /// returns defs. If neither are true then you are silly and it always |
| 1040 | /// returns end(). If SkipDebug is true it skips uses marked Debug |
| 1041 | /// when incrementing. |
| 1042 | template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand, |
| 1043 | bool ByInstr> |
| 1044 | class defusechain_iterator { |
| 1045 | friend class MachineRegisterInfo; |
| 1046 | static_assert(!ByOperand || !ByInstr, |
| 1047 | "ByOperand and ByInstr are mutually exclusive" ); |
| 1048 | |
| 1049 | public: |
| 1050 | using iterator_category = std::forward_iterator_tag; |
| 1051 | using value_type = MachineOperand; |
| 1052 | using difference_type = std::ptrdiff_t; |
| 1053 | using pointer = value_type *; |
| 1054 | using reference = value_type &; |
| 1055 | |
| 1056 | private: |
| 1057 | MachineOperand *Op = nullptr; |
| 1058 | |
| 1059 | explicit defusechain_iterator(MachineOperand *op) : Op(op) { |
| 1060 | // If the first node isn't one we're interested in, advance to one that |
| 1061 | // we are interested in. |
| 1062 | if (op) { |
| 1063 | if ((!ReturnUses && op->isUse()) || |
| 1064 | (!ReturnDefs && op->isDef()) || |
| 1065 | (SkipDebug && op->isDebug())) |
| 1066 | advance(); |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | void advance() { |
| 1071 | assert(Op && "Cannot increment end iterator!" ); |
| 1072 | Op = getNextOperandForReg(MO: Op); |
| 1073 | |
| 1074 | // All defs come before the uses, so stop def_iterator early. |
| 1075 | if (!ReturnUses) { |
| 1076 | if (Op) { |
| 1077 | if (Op->isUse()) |
| 1078 | Op = nullptr; |
| 1079 | else |
| 1080 | assert(!Op->isDebug() && "Can't have debug defs" ); |
| 1081 | } |
| 1082 | } else { |
| 1083 | // If this is an operand we don't care about, skip it. |
| 1084 | while (Op && ((!ReturnDefs && Op->isDef()) || |
| 1085 | (SkipDebug && Op->isDebug()))) |
| 1086 | Op = getNextOperandForReg(MO: Op); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | public: |
| 1091 | defusechain_iterator() = default; |
| 1092 | |
| 1093 | bool operator==(const defusechain_iterator &x) const { |
| 1094 | return Op == x.Op; |
| 1095 | } |
| 1096 | bool operator!=(const defusechain_iterator &x) const { |
| 1097 | return !operator==(x); |
| 1098 | } |
| 1099 | |
| 1100 | // Iterator traversal: forward iteration only |
| 1101 | defusechain_iterator &operator++() { // Preincrement |
| 1102 | assert(Op && "Cannot increment end iterator!" ); |
| 1103 | if (ByOperand) |
| 1104 | advance(); |
| 1105 | else if (ByInstr) { |
| 1106 | MachineInstr *P = Op->getParent(); |
| 1107 | do { |
| 1108 | advance(); |
| 1109 | } while (Op && Op->getParent() == P); |
| 1110 | } else { |
| 1111 | MachineBasicBlock::instr_iterator P = |
| 1112 | getBundleStart(I: Op->getParent()->getIterator()); |
| 1113 | do { |
| 1114 | advance(); |
| 1115 | } while (Op && getBundleStart(I: Op->getParent()->getIterator()) == P); |
| 1116 | } |
| 1117 | |
| 1118 | return *this; |
| 1119 | } |
| 1120 | defusechain_iterator operator++(int) { // Postincrement |
| 1121 | defusechain_iterator tmp = *this; ++*this; return tmp; |
| 1122 | } |
| 1123 | |
| 1124 | /// getOperandNo - Return the operand # of this MachineOperand in its |
| 1125 | /// MachineInstr. |
| 1126 | unsigned getOperandNo() const { |
| 1127 | assert(Op && "Cannot dereference end iterator!" ); |
| 1128 | return Op - &Op->getParent()->getOperand(i: 0); |
| 1129 | } |
| 1130 | |
| 1131 | // Retrieve a reference to the current operand. |
| 1132 | MachineOperand &operator*() const { |
| 1133 | assert(Op && "Cannot dereference end iterator!" ); |
| 1134 | return *Op; |
| 1135 | } |
| 1136 | |
| 1137 | MachineOperand *operator->() const { |
| 1138 | assert(Op && "Cannot dereference end iterator!" ); |
| 1139 | return Op; |
| 1140 | } |
| 1141 | }; |
| 1142 | |
| 1143 | /// defusechain_iterator - This class provides iterator support for machine |
| 1144 | /// operands in the function that use or define a specific register. If |
| 1145 | /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it |
| 1146 | /// returns defs. If neither are true then you are silly and it always |
| 1147 | /// returns end(). If SkipDebug is true it skips uses marked Debug |
| 1148 | /// when incrementing. |
| 1149 | template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByInstr> |
| 1150 | class defusechain_instr_iterator { |
| 1151 | friend class MachineRegisterInfo; |
| 1152 | |
| 1153 | public: |
| 1154 | using iterator_category = std::forward_iterator_tag; |
| 1155 | using value_type = MachineInstr; |
| 1156 | using difference_type = std::ptrdiff_t; |
| 1157 | using pointer = value_type *; |
| 1158 | using reference = value_type &; |
| 1159 | |
| 1160 | private: |
| 1161 | MachineOperand *Op = nullptr; |
| 1162 | |
| 1163 | explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) { |
| 1164 | // If the first node isn't one we're interested in, advance to one that |
| 1165 | // we are interested in. |
| 1166 | if (op) { |
| 1167 | if ((!ReturnUses && op->isUse()) || |
| 1168 | (!ReturnDefs && op->isDef()) || |
| 1169 | (SkipDebug && op->isDebug())) |
| 1170 | advance(); |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | void advance() { |
| 1175 | assert(Op && "Cannot increment end iterator!" ); |
| 1176 | Op = getNextOperandForReg(MO: Op); |
| 1177 | |
| 1178 | // All defs come before the uses, so stop def_iterator early. |
| 1179 | if (!ReturnUses) { |
| 1180 | if (Op) { |
| 1181 | if (Op->isUse()) |
| 1182 | Op = nullptr; |
| 1183 | else |
| 1184 | assert(!Op->isDebug() && "Can't have debug defs" ); |
| 1185 | } |
| 1186 | } else { |
| 1187 | // If this is an operand we don't care about, skip it. |
| 1188 | while (Op && ((!ReturnDefs && Op->isDef()) || |
| 1189 | (SkipDebug && Op->isDebug()))) |
| 1190 | Op = getNextOperandForReg(MO: Op); |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | public: |
| 1195 | defusechain_instr_iterator() = default; |
| 1196 | |
| 1197 | bool operator==(const defusechain_instr_iterator &x) const { |
| 1198 | return Op == x.Op; |
| 1199 | } |
| 1200 | bool operator!=(const defusechain_instr_iterator &x) const { |
| 1201 | return !operator==(x); |
| 1202 | } |
| 1203 | |
| 1204 | // Iterator traversal: forward iteration only |
| 1205 | defusechain_instr_iterator &operator++() { // Preincrement |
| 1206 | assert(Op && "Cannot increment end iterator!" ); |
| 1207 | if (ByInstr) { |
| 1208 | MachineInstr *P = Op->getParent(); |
| 1209 | do { |
| 1210 | advance(); |
| 1211 | } while (Op && Op->getParent() == P); |
| 1212 | } else { |
| 1213 | MachineBasicBlock::instr_iterator P = |
| 1214 | getBundleStart(I: Op->getParent()->getIterator()); |
| 1215 | do { |
| 1216 | advance(); |
| 1217 | } while (Op && getBundleStart(I: Op->getParent()->getIterator()) == P); |
| 1218 | } |
| 1219 | |
| 1220 | return *this; |
| 1221 | } |
| 1222 | defusechain_instr_iterator operator++(int) { // Postincrement |
| 1223 | defusechain_instr_iterator tmp = *this; ++*this; return tmp; |
| 1224 | } |
| 1225 | |
| 1226 | // Retrieve a reference to the current operand. |
| 1227 | MachineInstr &operator*() const { |
| 1228 | assert(Op && "Cannot dereference end iterator!" ); |
| 1229 | if (!ByInstr) |
| 1230 | return *getBundleStart(I: Op->getParent()->getIterator()); |
| 1231 | return *Op->getParent(); |
| 1232 | } |
| 1233 | |
| 1234 | MachineInstr *operator->() const { return &operator*(); } |
| 1235 | }; |
| 1236 | }; |
| 1237 | |
| 1238 | /// Iterate over the pressure sets affected by the given physical or virtual |
| 1239 | /// register. If Reg is physical, it must be a register unit (from |
| 1240 | /// MCRegUnitIterator). |
| 1241 | class PSetIterator { |
| 1242 | const int *PSet = nullptr; |
| 1243 | unsigned Weight = 0; |
| 1244 | |
| 1245 | public: |
| 1246 | PSetIterator() = default; |
| 1247 | |
| 1248 | PSetIterator(Register RegUnit, const MachineRegisterInfo *MRI) { |
| 1249 | const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); |
| 1250 | if (RegUnit.isVirtual()) { |
| 1251 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: RegUnit); |
| 1252 | PSet = TRI->getRegClassPressureSets(RC); |
| 1253 | Weight = TRI->getRegClassWeight(RC).RegWeight; |
| 1254 | } else { |
| 1255 | PSet = TRI->getRegUnitPressureSets(RegUnit); |
| 1256 | Weight = TRI->getRegUnitWeight(RegUnit); |
| 1257 | } |
| 1258 | if (*PSet == -1) |
| 1259 | PSet = nullptr; |
| 1260 | } |
| 1261 | |
| 1262 | bool isValid() const { return PSet; } |
| 1263 | |
| 1264 | unsigned getWeight() const { return Weight; } |
| 1265 | |
| 1266 | unsigned operator*() const { return *PSet; } |
| 1267 | |
| 1268 | void operator++() { |
| 1269 | assert(isValid() && "Invalid PSetIterator." ); |
| 1270 | ++PSet; |
| 1271 | if (*PSet == -1) |
| 1272 | PSet = nullptr; |
| 1273 | } |
| 1274 | }; |
| 1275 | |
| 1276 | inline PSetIterator |
| 1277 | MachineRegisterInfo::getPressureSets(Register RegUnit) const { |
| 1278 | return PSetIterator(RegUnit, this); |
| 1279 | } |
| 1280 | |
| 1281 | } // end namespace llvm |
| 1282 | |
| 1283 | #endif // LLVM_CODEGEN_MACHINEREGISTERINFO_H |
| 1284 | |