1 | //===- Parsing, selection, and construction of pass pipelines --*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// Interfaces for registering analysis passes, producing common pass manager |
11 | /// configurations, and parsing of pass pipelines. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_PASSES_PASSBUILDER_H |
16 | #define LLVM_PASSES_PASSBUILDER_H |
17 | |
18 | #include "llvm/Analysis/CGSCCPassManager.h" |
19 | #include "llvm/CodeGen/MachinePassManager.h" |
20 | #include "llvm/CodeGen/RegAllocCommon.h" |
21 | #include "llvm/IR/PassManager.h" |
22 | #include "llvm/Passes/OptimizationLevel.h" |
23 | #include "llvm/Support/Compiler.h" |
24 | #include "llvm/Support/Error.h" |
25 | #include "llvm/Support/PGOOptions.h" |
26 | #include "llvm/Support/raw_ostream.h" |
27 | #include "llvm/Transforms/IPO/Inliner.h" |
28 | #include "llvm/Transforms/IPO/ModuleInliner.h" |
29 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
30 | #include <optional> |
31 | #include <vector> |
32 | |
33 | namespace llvm { |
34 | class StringRef; |
35 | class AAManager; |
36 | class TargetMachine; |
37 | class ModuleSummaryIndex; |
38 | template <typename T> class IntrusiveRefCntPtr; |
39 | namespace vfs { |
40 | class FileSystem; |
41 | } // namespace vfs |
42 | |
43 | /// Tunable parameters for passes in the default pipelines. |
44 | class PipelineTuningOptions { |
45 | public: |
46 | /// Constructor sets pipeline tuning defaults based on cl::opts. Each option |
47 | /// can be set in the PassBuilder when using a LLVM as a library. |
48 | LLVM_ABI PipelineTuningOptions(); |
49 | |
50 | /// Tuning option to set loop interleaving on/off, set based on opt level. |
51 | bool LoopInterleaving; |
52 | |
53 | /// Tuning option to enable/disable loop vectorization, set based on opt |
54 | /// level. |
55 | bool LoopVectorization; |
56 | |
57 | /// Tuning option to enable/disable slp loop vectorization, set based on opt |
58 | /// level. |
59 | bool SLPVectorization; |
60 | |
61 | /// Tuning option to enable/disable loop unrolling. Its default value is true. |
62 | bool LoopUnrolling; |
63 | |
64 | /// Tuning option to enable/disable loop interchange. Its default value is |
65 | /// false. |
66 | bool LoopInterchange; |
67 | |
68 | /// Tuning option to forget all SCEV loops in LoopUnroll. Its default value |
69 | /// is that of the flag: `-forget-scev-loop-unroll`. |
70 | bool ForgetAllSCEVInLoopUnroll; |
71 | |
72 | /// Tuning option to cap the number of calls to retrive clobbering accesses in |
73 | /// MemorySSA, in LICM. |
74 | unsigned LicmMssaOptCap; |
75 | |
76 | /// Tuning option to disable promotion to scalars in LICM with MemorySSA, if |
77 | /// the number of access is too large. |
78 | unsigned LicmMssaNoAccForPromotionCap; |
79 | |
80 | /// Tuning option to enable/disable call graph profile. Its default value is |
81 | /// that of the flag: `-enable-npm-call-graph-profile`. |
82 | bool CallGraphProfile; |
83 | |
84 | // Add LTO pipeline tuning option to enable the unified LTO pipeline. |
85 | bool UnifiedLTO; |
86 | |
87 | /// Tuning option to enable/disable function merging. Its default value is |
88 | /// false. |
89 | bool MergeFunctions; |
90 | |
91 | /// Tuning option to override the default inliner threshold. |
92 | int InlinerThreshold; |
93 | |
94 | // Experimental option to eagerly invalidate more analyses. This has the |
95 | // potential to decrease max memory usage in exchange for more compile time. |
96 | // This may affect codegen due to either passes using analyses only when |
97 | // cached, or invalidating and recalculating an analysis that was |
98 | // stale/imprecise but still valid. Currently this invalidates all function |
99 | // analyses after various module->function or cgscc->function adaptors in the |
100 | // default pipelines. |
101 | bool EagerlyInvalidateAnalyses; |
102 | }; |
103 | |
104 | /// This class provides access to building LLVM's passes. |
105 | /// |
106 | /// Its members provide the baseline state available to passes during their |
107 | /// construction. The \c PassRegistry.def file specifies how to construct all |
108 | /// of the built-in passes, and those may reference these members during |
109 | /// construction. |
110 | class PassBuilder { |
111 | TargetMachine *TM; |
112 | PipelineTuningOptions PTO; |
113 | std::optional<PGOOptions> PGOOpt; |
114 | PassInstrumentationCallbacks *PIC; |
115 | |
116 | public: |
117 | /// A struct to capture parsed pass pipeline names. |
118 | /// |
119 | /// A pipeline is defined as a series of names, each of which may in itself |
120 | /// recursively contain a nested pipeline. A name is either the name of a pass |
121 | /// (e.g. "instcombine") or the name of a pipeline type (e.g. "cgscc"). If the |
122 | /// name is the name of a pass, the InnerPipeline is empty, since passes |
123 | /// cannot contain inner pipelines. See parsePassPipeline() for a more |
124 | /// detailed description of the textual pipeline format. |
125 | struct PipelineElement { |
126 | StringRef Name; |
127 | std::vector<PipelineElement> InnerPipeline; |
128 | }; |
129 | |
130 | LLVM_ABI explicit PassBuilder( |
131 | TargetMachine *TM = nullptr, |
132 | PipelineTuningOptions PTO = PipelineTuningOptions(), |
133 | std::optional<PGOOptions> PGOOpt = std::nullopt, |
134 | PassInstrumentationCallbacks *PIC = nullptr); |
135 | |
136 | /// Cross register the analysis managers through their proxies. |
137 | /// |
138 | /// This is an interface that can be used to cross register each |
139 | /// AnalysisManager with all the others analysis managers. |
140 | LLVM_ABI void |
141 | crossRegisterProxies(LoopAnalysisManager &LAM, FunctionAnalysisManager &FAM, |
142 | CGSCCAnalysisManager &CGAM, ModuleAnalysisManager &MAM, |
143 | MachineFunctionAnalysisManager *MFAM = nullptr); |
144 | |
145 | /// Registers all available module analysis passes. |
146 | /// |
147 | /// This is an interface that can be used to populate a \c |
148 | /// ModuleAnalysisManager with all registered module analyses. Callers can |
149 | /// still manually register any additional analyses. Callers can also |
150 | /// pre-register analyses and this will not override those. |
151 | LLVM_ABI void registerModuleAnalyses(ModuleAnalysisManager &MAM); |
152 | |
153 | /// Registers all available CGSCC analysis passes. |
154 | /// |
155 | /// This is an interface that can be used to populate a \c CGSCCAnalysisManager |
156 | /// with all registered CGSCC analyses. Callers can still manually register any |
157 | /// additional analyses. Callers can also pre-register analyses and this will |
158 | /// not override those. |
159 | LLVM_ABI void registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM); |
160 | |
161 | /// Registers all available function analysis passes. |
162 | /// |
163 | /// This is an interface that can be used to populate a \c |
164 | /// FunctionAnalysisManager with all registered function analyses. Callers can |
165 | /// still manually register any additional analyses. Callers can also |
166 | /// pre-register analyses and this will not override those. |
167 | LLVM_ABI void registerFunctionAnalyses(FunctionAnalysisManager &FAM); |
168 | |
169 | /// Registers all available loop analysis passes. |
170 | /// |
171 | /// This is an interface that can be used to populate a \c LoopAnalysisManager |
172 | /// with all registered loop analyses. Callers can still manually register any |
173 | /// additional analyses. |
174 | LLVM_ABI void registerLoopAnalyses(LoopAnalysisManager &LAM); |
175 | |
176 | /// Registers all available machine function analysis passes. |
177 | /// |
178 | /// This is an interface that can be used to populate a \c |
179 | /// MachineFunctionAnalysisManager with all registered function analyses. |
180 | /// Callers can still manually register any additional analyses. Callers can |
181 | /// also pre-register analyses and this will not override those. |
182 | LLVM_ABI void |
183 | registerMachineFunctionAnalyses(MachineFunctionAnalysisManager &MFAM); |
184 | |
185 | /// Construct the core LLVM function canonicalization and simplification |
186 | /// pipeline. |
187 | /// |
188 | /// This is a long pipeline and uses most of the per-function optimization |
189 | /// passes in LLVM to canonicalize and simplify the IR. It is suitable to run |
190 | /// repeatedly over the IR and is not expected to destroy important |
191 | /// information about the semantics of the IR. |
192 | /// |
193 | /// Note that \p Level cannot be `O0` here. The pipelines produced are |
194 | /// only intended for use when attempting to optimize code. If frontends |
195 | /// require some transformations for semantic reasons, they should explicitly |
196 | /// build them. |
197 | /// |
198 | /// \p Phase indicates the current ThinLTO phase. |
199 | LLVM_ABI FunctionPassManager buildFunctionSimplificationPipeline( |
200 | OptimizationLevel Level, ThinOrFullLTOPhase Phase); |
201 | |
202 | /// Construct the core LLVM module canonicalization and simplification |
203 | /// pipeline. |
204 | /// |
205 | /// This pipeline focuses on canonicalizing and simplifying the entire module |
206 | /// of IR. Much like the function simplification pipeline above, it is |
207 | /// suitable to run repeatedly over the IR and is not expected to destroy |
208 | /// important information. It does, however, perform inlining and other |
209 | /// heuristic based simplifications that are not strictly reversible. |
210 | /// |
211 | /// Note that \p Level cannot be `O0` here. The pipelines produced are |
212 | /// only intended for use when attempting to optimize code. If frontends |
213 | /// require some transformations for semantic reasons, they should explicitly |
214 | /// build them. |
215 | /// |
216 | /// \p Phase indicates the current ThinLTO phase. |
217 | LLVM_ABI ModulePassManager buildModuleSimplificationPipeline( |
218 | OptimizationLevel Level, ThinOrFullLTOPhase Phase); |
219 | |
220 | /// Construct the module pipeline that performs inlining as well as |
221 | /// the inlining-driven cleanups. |
222 | LLVM_ABI ModuleInlinerWrapperPass |
223 | buildInlinerPipeline(OptimizationLevel Level, ThinOrFullLTOPhase Phase); |
224 | |
225 | /// Construct the module pipeline that performs inlining with |
226 | /// module inliner pass. |
227 | LLVM_ABI ModulePassManager |
228 | buildModuleInlinerPipeline(OptimizationLevel Level, ThinOrFullLTOPhase Phase); |
229 | |
230 | /// Construct the core LLVM module optimization pipeline. |
231 | /// |
232 | /// This pipeline focuses on optimizing the execution speed of the IR. It |
233 | /// uses cost modeling and thresholds to balance code growth against runtime |
234 | /// improvements. It includes vectorization and other information destroying |
235 | /// transformations. It also cannot generally be run repeatedly on a module |
236 | /// without potentially seriously regressing either runtime performance of |
237 | /// the code or serious code size growth. |
238 | /// |
239 | /// Note that \p Level cannot be `O0` here. The pipelines produced are |
240 | /// only intended for use when attempting to optimize code. If frontends |
241 | /// require some transformations for semantic reasons, they should explicitly |
242 | /// build them. |
243 | LLVM_ABI ModulePassManager buildModuleOptimizationPipeline( |
244 | OptimizationLevel Level, ThinOrFullLTOPhase LTOPhase); |
245 | |
246 | /// Build a per-module default optimization pipeline. |
247 | /// |
248 | /// This provides a good default optimization pipeline for per-module |
249 | /// optimization and code generation without any link-time optimization. It |
250 | /// typically correspond to frontend "-O[123]" options for optimization |
251 | /// levels \c O1, \c O2 and \c O3 resp. |
252 | LLVM_ABI ModulePassManager buildPerModuleDefaultPipeline( |
253 | OptimizationLevel Level, |
254 | ThinOrFullLTOPhase Phase = ThinOrFullLTOPhase::None); |
255 | |
256 | /// Build a fat object default optimization pipeline. |
257 | /// |
258 | /// This builds a pipeline that runs the LTO/ThinLTO pre-link pipeline, and |
259 | /// emits a section containing the pre-link bitcode along side the object code |
260 | /// generated in non-LTO compilation. |
261 | LLVM_ABI ModulePassManager buildFatLTODefaultPipeline(OptimizationLevel Level, |
262 | bool ThinLTO, |
263 | bool EmitSummary); |
264 | |
265 | /// Build a pre-link, ThinLTO-targeting default optimization pipeline to |
266 | /// a pass manager. |
267 | /// |
268 | /// This adds the pre-link optimizations tuned to prepare a module for |
269 | /// a ThinLTO run. It works to minimize the IR which needs to be analyzed |
270 | /// without making irreversible decisions which could be made better during |
271 | /// the LTO run. |
272 | LLVM_ABI ModulePassManager |
273 | buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level); |
274 | |
275 | /// Build a ThinLTO default optimization pipeline to a pass manager. |
276 | /// |
277 | /// This provides a good default optimization pipeline for link-time |
278 | /// optimization and code generation. It is particularly tuned to fit well |
279 | /// when IR coming into the LTO phase was first run through \c |
280 | /// buildThinLTOPreLinkDefaultPipeline, and the two coordinate closely. |
281 | LLVM_ABI ModulePassManager buildThinLTODefaultPipeline( |
282 | OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary); |
283 | |
284 | /// Build a pre-link, LTO-targeting default optimization pipeline to a pass |
285 | /// manager. |
286 | /// |
287 | /// This adds the pre-link optimizations tuned to work well with a later LTO |
288 | /// run. It works to minimize the IR which needs to be analyzed without |
289 | /// making irreversible decisions which could be made better during the LTO |
290 | /// run. |
291 | LLVM_ABI ModulePassManager |
292 | buildLTOPreLinkDefaultPipeline(OptimizationLevel Level); |
293 | |
294 | /// Build an LTO default optimization pipeline to a pass manager. |
295 | /// |
296 | /// This provides a good default optimization pipeline for link-time |
297 | /// optimization and code generation. It is particularly tuned to fit well |
298 | /// when IR coming into the LTO phase was first run through \c |
299 | /// buildLTOPreLinkDefaultPipeline, and the two coordinate closely. |
300 | LLVM_ABI ModulePassManager buildLTODefaultPipeline( |
301 | OptimizationLevel Level, ModuleSummaryIndex *ExportSummary); |
302 | |
303 | /// Build an O0 pipeline with the minimal semantically required passes. |
304 | /// |
305 | /// This should only be used for non-LTO and LTO pre-link pipelines. |
306 | LLVM_ABI ModulePassManager |
307 | buildO0DefaultPipeline(OptimizationLevel Level, |
308 | ThinOrFullLTOPhase Phase = ThinOrFullLTOPhase::None); |
309 | |
310 | /// Build the default `AAManager` with the default alias analysis pipeline |
311 | /// registered. |
312 | /// |
313 | /// This also adds target-specific alias analyses registered via |
314 | /// TargetMachine::registerDefaultAliasAnalyses(). |
315 | LLVM_ABI AAManager buildDefaultAAPipeline(); |
316 | |
317 | /// Parse a textual pass pipeline description into a \c |
318 | /// ModulePassManager. |
319 | /// |
320 | /// The format of the textual pass pipeline description looks something like: |
321 | /// |
322 | /// module(function(instcombine,sroa),dce,cgscc(inliner,function(...)),...) |
323 | /// |
324 | /// Pass managers have ()s describing the nest structure of passes. All passes |
325 | /// are comma separated. As a special shortcut, if the very first pass is not |
326 | /// a module pass (as a module pass manager is), this will automatically form |
327 | /// the shortest stack of pass managers that allow inserting that first pass. |
328 | /// So, assuming function passes 'fpassN', CGSCC passes 'cgpassN', and loop |
329 | /// passes 'lpassN', all of these are valid: |
330 | /// |
331 | /// fpass1,fpass2,fpass3 |
332 | /// cgpass1,cgpass2,cgpass3 |
333 | /// lpass1,lpass2,lpass3 |
334 | /// |
335 | /// And they are equivalent to the following (resp.): |
336 | /// |
337 | /// module(function(fpass1,fpass2,fpass3)) |
338 | /// module(cgscc(cgpass1,cgpass2,cgpass3)) |
339 | /// module(function(loop(lpass1,lpass2,lpass3))) |
340 | /// |
341 | /// This shortcut is especially useful for debugging and testing small pass |
342 | /// combinations. |
343 | /// |
344 | /// The sequence of passes aren't necessarily the exact same kind of pass. |
345 | /// You can mix different levels implicitly if adaptor passes are defined to |
346 | /// make them work. For example, |
347 | /// |
348 | /// mpass1,fpass1,fpass2,mpass2,lpass1 |
349 | /// |
350 | /// This pipeline uses only one pass manager: the top-level module manager. |
351 | /// fpass1,fpass2 and lpass1 are added into the top-level module manager |
352 | /// using only adaptor passes. No nested function/loop pass managers are |
353 | /// added. The purpose is to allow easy pass testing when the user |
354 | /// specifically want the pass to run under a adaptor directly. This is |
355 | /// preferred when a pipeline is largely of one type, but one or just a few |
356 | /// passes are of different types(See PassBuilder.cpp for examples). |
357 | LLVM_ABI Error parsePassPipeline(ModulePassManager &MPM, |
358 | StringRef PipelineText); |
359 | |
360 | /// {{@ Parse a textual pass pipeline description into a specific PassManager |
361 | /// |
362 | /// Automatic deduction of an appropriate pass manager stack is not supported. |
363 | /// For example, to insert a loop pass 'lpass' into a FunctionPassManager, |
364 | /// this is the valid pipeline text: |
365 | /// |
366 | /// function(lpass) |
367 | LLVM_ABI Error parsePassPipeline(CGSCCPassManager &CGPM, |
368 | StringRef PipelineText); |
369 | LLVM_ABI Error parsePassPipeline(FunctionPassManager &FPM, |
370 | StringRef PipelineText); |
371 | LLVM_ABI Error parsePassPipeline(LoopPassManager &LPM, |
372 | StringRef PipelineText); |
373 | /// @}} |
374 | |
375 | /// Parse a textual MIR pipeline into the provided \c MachineFunctionPass |
376 | /// manager. |
377 | /// The format of the textual machine pipeline is a comma separated list of |
378 | /// machine pass names: |
379 | /// |
380 | /// machine-funciton-pass,machine-module-pass,... |
381 | /// |
382 | /// There is no need to specify the pass nesting, and this function |
383 | /// currently cannot handle the pass nesting. |
384 | LLVM_ABI Error parsePassPipeline(MachineFunctionPassManager &MFPM, |
385 | StringRef PipelineText); |
386 | |
387 | /// Parse a textual alias analysis pipeline into the provided AA manager. |
388 | /// |
389 | /// The format of the textual AA pipeline is a comma separated list of AA |
390 | /// pass names: |
391 | /// |
392 | /// basic-aa,globals-aa,... |
393 | /// |
394 | /// The AA manager is set up such that the provided alias analyses are tried |
395 | /// in the order specified. See the \c AAManaager documentation for details |
396 | /// about the logic used. This routine just provides the textual mapping |
397 | /// between AA names and the analyses to register with the manager. |
398 | /// |
399 | /// Returns false if the text cannot be parsed cleanly. The specific state of |
400 | /// the \p AA manager is unspecified if such an error is encountered and this |
401 | /// returns false. |
402 | LLVM_ABI Error parseAAPipeline(AAManager &AA, StringRef PipelineText); |
403 | |
404 | /// Parse RegAllocFilterName to get RegAllocFilterFunc. |
405 | LLVM_ABI std::optional<RegAllocFilterFunc> |
406 | parseRegAllocFilter(StringRef RegAllocFilterName); |
407 | |
408 | /// Print pass names. |
409 | LLVM_ABI void printPassNames(raw_ostream &OS); |
410 | |
411 | /// Register a callback for a default optimizer pipeline extension |
412 | /// point |
413 | /// |
414 | /// This extension point allows adding passes that perform peephole |
415 | /// optimizations similar to the instruction combiner. These passes will be |
416 | /// inserted after each instance of the instruction combiner pass. |
417 | void registerPeepholeEPCallback( |
418 | const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) { |
419 | PeepholeEPCallbacks.push_back(Elt: C); |
420 | } |
421 | |
422 | /// Register a callback for a default optimizer pipeline extension |
423 | /// point |
424 | /// |
425 | /// This extension point allows adding late loop canonicalization and |
426 | /// simplification passes. This is the last point in the loop optimization |
427 | /// pipeline before loop deletion. Each pass added |
428 | /// here must be an instance of LoopPass. |
429 | /// This is the place to add passes that can remove loops, such as target- |
430 | /// specific loop idiom recognition. |
431 | void registerLateLoopOptimizationsEPCallback( |
432 | const std::function<void(LoopPassManager &, OptimizationLevel)> &C) { |
433 | LateLoopOptimizationsEPCallbacks.push_back(Elt: C); |
434 | } |
435 | |
436 | /// Register a callback for a default optimizer pipeline extension |
437 | /// point |
438 | /// |
439 | /// This extension point allows adding loop passes to the end of the loop |
440 | /// optimizer. |
441 | void registerLoopOptimizerEndEPCallback( |
442 | const std::function<void(LoopPassManager &, OptimizationLevel)> &C) { |
443 | LoopOptimizerEndEPCallbacks.push_back(Elt: C); |
444 | } |
445 | |
446 | /// Register a callback for a default optimizer pipeline extension |
447 | /// point |
448 | /// |
449 | /// This extension point allows adding optimization passes after most of the |
450 | /// main optimizations, but before the last cleanup-ish optimizations. |
451 | void registerScalarOptimizerLateEPCallback( |
452 | const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) { |
453 | ScalarOptimizerLateEPCallbacks.push_back(Elt: C); |
454 | } |
455 | |
456 | /// Register a callback for a default optimizer pipeline extension |
457 | /// point |
458 | /// |
459 | /// This extension point allows adding CallGraphSCC passes at the end of the |
460 | /// main CallGraphSCC passes and before any function simplification passes run |
461 | /// by CGPassManager. |
462 | void registerCGSCCOptimizerLateEPCallback( |
463 | const std::function<void(CGSCCPassManager &, OptimizationLevel)> &C) { |
464 | CGSCCOptimizerLateEPCallbacks.push_back(Elt: C); |
465 | } |
466 | |
467 | /// Register a callback for a default optimizer pipeline extension |
468 | /// point |
469 | /// |
470 | /// This extension point allows adding optimization passes before the |
471 | /// vectorizer and other highly target specific optimization passes are |
472 | /// executed. |
473 | void registerVectorizerStartEPCallback( |
474 | const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) { |
475 | VectorizerStartEPCallbacks.push_back(Elt: C); |
476 | } |
477 | |
478 | /// Register a callback for a default optimizer pipeline extension |
479 | /// point |
480 | /// |
481 | /// This extension point allows adding optimization passes after the |
482 | /// vectorizer and other highly target specific optimization passes are |
483 | /// executed. |
484 | void registerVectorizerEndEPCallback( |
485 | const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) { |
486 | VectorizerEndEPCallbacks.push_back(Elt: C); |
487 | } |
488 | |
489 | /// Register a callback for a default optimizer pipeline extension point. |
490 | /// |
491 | /// This extension point allows adding optimization once at the start of the |
492 | /// pipeline. This does not apply to 'backend' compiles (LTO and ThinLTO |
493 | /// link-time pipelines). |
494 | void registerPipelineStartEPCallback( |
495 | const std::function<void(ModulePassManager &, OptimizationLevel)> &C) { |
496 | PipelineStartEPCallbacks.push_back(Elt: C); |
497 | } |
498 | |
499 | /// Register a callback for a default optimizer pipeline extension point. |
500 | /// |
501 | /// This extension point allows adding optimization right after passes that do |
502 | /// basic simplification of the input IR. |
503 | void registerPipelineEarlySimplificationEPCallback( |
504 | const std::function<void(ModulePassManager &, OptimizationLevel, |
505 | ThinOrFullLTOPhase)> &C) { |
506 | PipelineEarlySimplificationEPCallbacks.push_back(Elt: C); |
507 | } |
508 | |
509 | /// Register a callback for a default optimizer pipeline extension point |
510 | /// |
511 | /// This extension point allows adding optimizations before the function |
512 | /// optimization pipeline. |
513 | void registerOptimizerEarlyEPCallback( |
514 | const std::function<void(ModulePassManager &, OptimizationLevel, |
515 | ThinOrFullLTOPhase Phase)> &C) { |
516 | OptimizerEarlyEPCallbacks.push_back(Elt: C); |
517 | } |
518 | |
519 | /// Register a callback for a default optimizer pipeline extension point |
520 | /// |
521 | /// This extension point allows adding optimizations at the very end of the |
522 | /// function optimization pipeline. |
523 | void registerOptimizerLastEPCallback( |
524 | const std::function<void(ModulePassManager &, OptimizationLevel, |
525 | ThinOrFullLTOPhase)> &C) { |
526 | OptimizerLastEPCallbacks.push_back(Elt: C); |
527 | } |
528 | |
529 | /// Register a callback for a default optimizer pipeline extension point |
530 | /// |
531 | /// This extension point allows adding optimizations at the start of the full |
532 | /// LTO pipeline. |
533 | void registerFullLinkTimeOptimizationEarlyEPCallback( |
534 | const std::function<void(ModulePassManager &, OptimizationLevel)> &C) { |
535 | FullLinkTimeOptimizationEarlyEPCallbacks.push_back(Elt: C); |
536 | } |
537 | |
538 | /// Register a callback for a default optimizer pipeline extension point |
539 | /// |
540 | /// This extension point allows adding optimizations at the end of the full |
541 | /// LTO pipeline. |
542 | void registerFullLinkTimeOptimizationLastEPCallback( |
543 | const std::function<void(ModulePassManager &, OptimizationLevel)> &C) { |
544 | FullLinkTimeOptimizationLastEPCallbacks.push_back(Elt: C); |
545 | } |
546 | |
547 | /// Register a callback for parsing an AliasAnalysis Name to populate |
548 | /// the given AAManager \p AA |
549 | void registerParseAACallback( |
550 | const std::function<bool(StringRef Name, AAManager &AA)> &C) { |
551 | AAParsingCallbacks.push_back(Elt: C); |
552 | } |
553 | |
554 | /// {{@ Register callbacks for analysis registration with this PassBuilder |
555 | /// instance. |
556 | /// Callees register their analyses with the given AnalysisManager objects. |
557 | void registerAnalysisRegistrationCallback( |
558 | const std::function<void(CGSCCAnalysisManager &)> &C) { |
559 | CGSCCAnalysisRegistrationCallbacks.push_back(Elt: C); |
560 | } |
561 | void registerAnalysisRegistrationCallback( |
562 | const std::function<void(FunctionAnalysisManager &)> &C) { |
563 | FunctionAnalysisRegistrationCallbacks.push_back(Elt: C); |
564 | } |
565 | void registerAnalysisRegistrationCallback( |
566 | const std::function<void(LoopAnalysisManager &)> &C) { |
567 | LoopAnalysisRegistrationCallbacks.push_back(Elt: C); |
568 | } |
569 | void registerAnalysisRegistrationCallback( |
570 | const std::function<void(ModuleAnalysisManager &)> &C) { |
571 | ModuleAnalysisRegistrationCallbacks.push_back(Elt: C); |
572 | } |
573 | void registerAnalysisRegistrationCallback( |
574 | const std::function<void(MachineFunctionAnalysisManager &)> &C) { |
575 | MachineFunctionAnalysisRegistrationCallbacks.push_back(Elt: C); |
576 | } |
577 | /// @}} |
578 | |
579 | /// {{@ Register pipeline parsing callbacks with this pass builder instance. |
580 | /// Using these callbacks, callers can parse both a single pass name, as well |
581 | /// as entire sub-pipelines, and populate the PassManager instance |
582 | /// accordingly. |
583 | void registerPipelineParsingCallback( |
584 | const std::function<bool(StringRef Name, CGSCCPassManager &, |
585 | ArrayRef<PipelineElement>)> &C) { |
586 | CGSCCPipelineParsingCallbacks.push_back(Elt: C); |
587 | } |
588 | void registerPipelineParsingCallback( |
589 | const std::function<bool(StringRef Name, FunctionPassManager &, |
590 | ArrayRef<PipelineElement>)> &C) { |
591 | FunctionPipelineParsingCallbacks.push_back(Elt: C); |
592 | } |
593 | void registerPipelineParsingCallback( |
594 | const std::function<bool(StringRef Name, LoopPassManager &, |
595 | ArrayRef<PipelineElement>)> &C) { |
596 | LoopPipelineParsingCallbacks.push_back(Elt: C); |
597 | } |
598 | void registerPipelineParsingCallback( |
599 | const std::function<bool(StringRef Name, ModulePassManager &, |
600 | ArrayRef<PipelineElement>)> &C) { |
601 | ModulePipelineParsingCallbacks.push_back(Elt: C); |
602 | } |
603 | void registerPipelineParsingCallback( |
604 | const std::function<bool(StringRef Name, MachineFunctionPassManager &, |
605 | ArrayRef<PipelineElement>)> &C) { |
606 | MachineFunctionPipelineParsingCallbacks.push_back(Elt: C); |
607 | } |
608 | /// @}} |
609 | |
610 | /// Register callbacks to parse target specific filter field if regalloc pass |
611 | /// needs it. E.g. AMDGPU requires regalloc passes can handle sgpr and vgpr |
612 | /// separately. |
613 | void registerRegClassFilterParsingCallback( |
614 | const std::function<RegAllocFilterFunc(StringRef)> &C) { |
615 | RegClassFilterParsingCallbacks.push_back(Elt: C); |
616 | } |
617 | |
618 | /// Register a callback for a top-level pipeline entry. |
619 | /// |
620 | /// If the PassManager type is not given at the top level of the pipeline |
621 | /// text, this Callback should be used to determine the appropriate stack of |
622 | /// PassManagers and populate the passed ModulePassManager. |
623 | LLVM_ABI void registerParseTopLevelPipelineCallback( |
624 | const std::function<bool(ModulePassManager &, ArrayRef<PipelineElement>)> |
625 | &C); |
626 | |
627 | /// Add PGOInstrumenation passes for O0 only. |
628 | LLVM_ABI void addPGOInstrPassesForO0(ModulePassManager &MPM, |
629 | bool RunProfileGen, bool IsCS, |
630 | bool AtomicCounterUpdate, |
631 | std::string ProfileFile, |
632 | std::string ProfileRemappingFile, |
633 | IntrusiveRefCntPtr<vfs::FileSystem> FS); |
634 | |
635 | /// Returns PIC. External libraries can use this to register pass |
636 | /// instrumentation callbacks. |
637 | PassInstrumentationCallbacks *getPassInstrumentationCallbacks() const { |
638 | return PIC; |
639 | } |
640 | |
641 | // Invoke the callbacks registered for the various extension points. |
642 | // Custom pipelines should use these to invoke the callbacks registered |
643 | // by TargetMachines and other clients. |
644 | LLVM_ABI void invokePeepholeEPCallbacks(FunctionPassManager &FPM, |
645 | OptimizationLevel Level); |
646 | LLVM_ABI void invokeLateLoopOptimizationsEPCallbacks(LoopPassManager &LPM, |
647 | OptimizationLevel Level); |
648 | LLVM_ABI void invokeLoopOptimizerEndEPCallbacks(LoopPassManager &LPM, |
649 | OptimizationLevel Level); |
650 | LLVM_ABI void invokeScalarOptimizerLateEPCallbacks(FunctionPassManager &FPM, |
651 | OptimizationLevel Level); |
652 | LLVM_ABI void invokeCGSCCOptimizerLateEPCallbacks(CGSCCPassManager &CGPM, |
653 | OptimizationLevel Level); |
654 | LLVM_ABI void invokeVectorizerStartEPCallbacks(FunctionPassManager &FPM, |
655 | OptimizationLevel Level); |
656 | LLVM_ABI void invokeVectorizerEndEPCallbacks(FunctionPassManager &FPM, |
657 | OptimizationLevel Level); |
658 | LLVM_ABI void invokeOptimizerEarlyEPCallbacks(ModulePassManager &MPM, |
659 | OptimizationLevel Level, |
660 | ThinOrFullLTOPhase Phase); |
661 | LLVM_ABI void invokeOptimizerLastEPCallbacks(ModulePassManager &MPM, |
662 | OptimizationLevel Level, |
663 | ThinOrFullLTOPhase Phase); |
664 | LLVM_ABI void |
665 | invokeFullLinkTimeOptimizationEarlyEPCallbacks(ModulePassManager &MPM, |
666 | OptimizationLevel Level); |
667 | LLVM_ABI void |
668 | invokeFullLinkTimeOptimizationLastEPCallbacks(ModulePassManager &MPM, |
669 | OptimizationLevel Level); |
670 | LLVM_ABI void invokePipelineStartEPCallbacks(ModulePassManager &MPM, |
671 | OptimizationLevel Level); |
672 | LLVM_ABI void |
673 | invokePipelineEarlySimplificationEPCallbacks(ModulePassManager &MPM, |
674 | OptimizationLevel Level, |
675 | ThinOrFullLTOPhase Phase); |
676 | |
677 | static bool checkParametrizedPassName(StringRef Name, StringRef PassName) { |
678 | if (!Name.consume_front(Prefix: PassName)) |
679 | return false; |
680 | // normal pass name w/o parameters == default parameters |
681 | if (Name.empty()) |
682 | return true; |
683 | return Name.starts_with(Prefix: "<" ) && Name.ends_with(Suffix: ">" ); |
684 | } |
685 | |
686 | /// This performs customized parsing of pass name with parameters. |
687 | /// |
688 | /// We do not need parametrization of passes in textual pipeline very often, |
689 | /// yet on a rare occasion ability to specify parameters right there can be |
690 | /// useful. |
691 | /// |
692 | /// \p Name - parameterized specification of a pass from a textual pipeline |
693 | /// is a string in a form of : |
694 | /// PassName '<' parameter-list '>' |
695 | /// |
696 | /// Parameter list is being parsed by the parser callable argument, \p Parser, |
697 | /// It takes a string-ref of parameters and returns either StringError or a |
698 | /// parameter list in a form of a custom parameters type, all wrapped into |
699 | /// Expected<> template class. |
700 | /// |
701 | template <typename ParametersParseCallableT> |
702 | static auto parsePassParameters(ParametersParseCallableT &&Parser, |
703 | StringRef Name, StringRef PassName) |
704 | -> decltype(Parser(StringRef{})) { |
705 | using ParametersT = typename decltype(Parser(StringRef{}))::value_type; |
706 | |
707 | StringRef Params = Name; |
708 | if (!Params.consume_front(Prefix: PassName)) { |
709 | llvm_unreachable( |
710 | "unable to strip pass name from parametrized pass specification" ); |
711 | } |
712 | if (!Params.empty() && |
713 | (!Params.consume_front(Prefix: "<" ) || !Params.consume_back(Suffix: ">" ))) { |
714 | llvm_unreachable("invalid format for parametrized pass name" ); |
715 | } |
716 | |
717 | Expected<ParametersT> Result = Parser(Params); |
718 | assert((Result || Result.template errorIsA<StringError>()) && |
719 | "Pass parameter parser can only return StringErrors." ); |
720 | return Result; |
721 | } |
722 | |
723 | /// Handle passes only accept one bool-valued parameter. |
724 | /// |
725 | /// \return false when Params is empty. |
726 | LLVM_ABI static Expected<bool> parseSinglePassOption(StringRef Params, |
727 | StringRef OptionName, |
728 | StringRef PassName); |
729 | |
730 | private: |
731 | // O1 pass pipeline |
732 | FunctionPassManager |
733 | buildO1FunctionSimplificationPipeline(OptimizationLevel Level, |
734 | ThinOrFullLTOPhase Phase); |
735 | |
736 | void addRequiredLTOPreLinkPasses(ModulePassManager &MPM); |
737 | |
738 | void addVectorPasses(OptimizationLevel Level, FunctionPassManager &FPM, |
739 | bool IsFullLTO); |
740 | |
741 | static std::optional<std::vector<PipelineElement>> |
742 | parsePipelineText(StringRef Text); |
743 | |
744 | Error parseModulePass(ModulePassManager &MPM, const PipelineElement &E); |
745 | Error parseCGSCCPass(CGSCCPassManager &CGPM, const PipelineElement &E); |
746 | Error parseFunctionPass(FunctionPassManager &FPM, const PipelineElement &E); |
747 | Error parseLoopPass(LoopPassManager &LPM, const PipelineElement &E); |
748 | Error parseMachinePass(MachineFunctionPassManager &MFPM, |
749 | const PipelineElement &E); |
750 | bool parseAAPassName(AAManager &AA, StringRef Name); |
751 | |
752 | Error parseMachinePassPipeline(MachineFunctionPassManager &MFPM, |
753 | ArrayRef<PipelineElement> Pipeline); |
754 | Error parseLoopPassPipeline(LoopPassManager &LPM, |
755 | ArrayRef<PipelineElement> Pipeline); |
756 | Error parseFunctionPassPipeline(FunctionPassManager &FPM, |
757 | ArrayRef<PipelineElement> Pipeline); |
758 | Error parseCGSCCPassPipeline(CGSCCPassManager &CGPM, |
759 | ArrayRef<PipelineElement> Pipeline); |
760 | Error parseModulePassPipeline(ModulePassManager &MPM, |
761 | ArrayRef<PipelineElement> Pipeline); |
762 | |
763 | // Adds passes to do pre-inlining and related cleanup passes before |
764 | // profile instrumentation/matching (to enable better context sensitivity), |
765 | // and for memprof to enable better matching with missing debug frames. |
766 | void addPreInlinerPasses(ModulePassManager &MPM, OptimizationLevel Level, |
767 | ThinOrFullLTOPhase LTOPhase); |
768 | |
769 | void addPGOInstrPasses(ModulePassManager &MPM, OptimizationLevel Level, |
770 | bool RunProfileGen, bool IsCS, |
771 | bool AtomicCounterUpdate, std::string ProfileFile, |
772 | std::string ProfileRemappingFile, |
773 | IntrusiveRefCntPtr<vfs::FileSystem> FS); |
774 | void addPostPGOLoopRotation(ModulePassManager &MPM, OptimizationLevel Level); |
775 | |
776 | bool isInstrumentedPGOUse() const; |
777 | |
778 | // Extension Point callbacks |
779 | SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2> |
780 | PeepholeEPCallbacks; |
781 | SmallVector<std::function<void(LoopPassManager &, OptimizationLevel)>, 2> |
782 | LateLoopOptimizationsEPCallbacks; |
783 | SmallVector<std::function<void(LoopPassManager &, OptimizationLevel)>, 2> |
784 | LoopOptimizerEndEPCallbacks; |
785 | SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2> |
786 | ScalarOptimizerLateEPCallbacks; |
787 | SmallVector<std::function<void(CGSCCPassManager &, OptimizationLevel)>, 2> |
788 | CGSCCOptimizerLateEPCallbacks; |
789 | SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2> |
790 | VectorizerStartEPCallbacks; |
791 | SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2> |
792 | VectorizerEndEPCallbacks; |
793 | // Module callbacks |
794 | SmallVector<std::function<void(ModulePassManager &, OptimizationLevel, |
795 | ThinOrFullLTOPhase)>, |
796 | 2> |
797 | OptimizerEarlyEPCallbacks; |
798 | SmallVector<std::function<void(ModulePassManager &, OptimizationLevel, |
799 | ThinOrFullLTOPhase)>, |
800 | 2> |
801 | OptimizerLastEPCallbacks; |
802 | SmallVector<std::function<void(ModulePassManager &, OptimizationLevel)>, 2> |
803 | FullLinkTimeOptimizationEarlyEPCallbacks; |
804 | SmallVector<std::function<void(ModulePassManager &, OptimizationLevel)>, 2> |
805 | FullLinkTimeOptimizationLastEPCallbacks; |
806 | SmallVector<std::function<void(ModulePassManager &, OptimizationLevel)>, 2> |
807 | PipelineStartEPCallbacks; |
808 | SmallVector<std::function<void(ModulePassManager &, OptimizationLevel, |
809 | ThinOrFullLTOPhase)>, |
810 | 2> |
811 | PipelineEarlySimplificationEPCallbacks; |
812 | |
813 | SmallVector<std::function<void(ModuleAnalysisManager &)>, 2> |
814 | ModuleAnalysisRegistrationCallbacks; |
815 | SmallVector<std::function<bool(StringRef, ModulePassManager &, |
816 | ArrayRef<PipelineElement>)>, |
817 | 2> |
818 | ModulePipelineParsingCallbacks; |
819 | SmallVector< |
820 | std::function<bool(ModulePassManager &, ArrayRef<PipelineElement>)>, 2> |
821 | TopLevelPipelineParsingCallbacks; |
822 | // CGSCC callbacks |
823 | SmallVector<std::function<void(CGSCCAnalysisManager &)>, 2> |
824 | CGSCCAnalysisRegistrationCallbacks; |
825 | SmallVector<std::function<bool(StringRef, CGSCCPassManager &, |
826 | ArrayRef<PipelineElement>)>, |
827 | 2> |
828 | CGSCCPipelineParsingCallbacks; |
829 | // Function callbacks |
830 | SmallVector<std::function<void(FunctionAnalysisManager &)>, 2> |
831 | FunctionAnalysisRegistrationCallbacks; |
832 | SmallVector<std::function<bool(StringRef, FunctionPassManager &, |
833 | ArrayRef<PipelineElement>)>, |
834 | 2> |
835 | FunctionPipelineParsingCallbacks; |
836 | // Loop callbacks |
837 | SmallVector<std::function<void(LoopAnalysisManager &)>, 2> |
838 | LoopAnalysisRegistrationCallbacks; |
839 | SmallVector<std::function<bool(StringRef, LoopPassManager &, |
840 | ArrayRef<PipelineElement>)>, |
841 | 2> |
842 | LoopPipelineParsingCallbacks; |
843 | // AA callbacks |
844 | SmallVector<std::function<bool(StringRef Name, AAManager &AA)>, 2> |
845 | AAParsingCallbacks; |
846 | // Machine pass callbackcs |
847 | SmallVector<std::function<void(MachineFunctionAnalysisManager &)>, 2> |
848 | MachineFunctionAnalysisRegistrationCallbacks; |
849 | SmallVector<std::function<bool(StringRef, MachineFunctionPassManager &, |
850 | ArrayRef<PipelineElement>)>, |
851 | 2> |
852 | MachineFunctionPipelineParsingCallbacks; |
853 | // Callbacks to parse `filter` parameter in register allocation passes |
854 | SmallVector<std::function<RegAllocFilterFunc(StringRef)>, 2> |
855 | RegClassFilterParsingCallbacks; |
856 | }; |
857 | |
858 | /// This utility template takes care of adding require<> and invalidate<> |
859 | /// passes for an analysis to a given \c PassManager. It is intended to be used |
860 | /// during parsing of a pass pipeline when parsing a single PipelineName. |
861 | /// When registering a new function analysis FancyAnalysis with the pass |
862 | /// pipeline name "fancy-analysis", a matching ParsePipelineCallback could look |
863 | /// like this: |
864 | /// |
865 | /// static bool parseFunctionPipeline(StringRef Name, FunctionPassManager &FPM, |
866 | /// ArrayRef<PipelineElement> P) { |
867 | /// if (parseAnalysisUtilityPasses<FancyAnalysis>("fancy-analysis", Name, |
868 | /// FPM)) |
869 | /// return true; |
870 | /// return false; |
871 | /// } |
872 | template <typename AnalysisT, typename IRUnitT, typename AnalysisManagerT, |
873 | typename... ExtraArgTs> |
874 | bool parseAnalysisUtilityPasses( |
875 | StringRef AnalysisName, StringRef PipelineName, |
876 | PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...> &PM) { |
877 | if (!PipelineName.ends_with(Suffix: ">" )) |
878 | return false; |
879 | // See if this is an invalidate<> pass name |
880 | if (PipelineName.starts_with(Prefix: "invalidate<" )) { |
881 | PipelineName = PipelineName.substr(Start: 11, N: PipelineName.size() - 12); |
882 | if (PipelineName != AnalysisName) |
883 | return false; |
884 | PM.addPass(InvalidateAnalysisPass<AnalysisT>()); |
885 | return true; |
886 | } |
887 | |
888 | // See if this is a require<> pass name |
889 | if (PipelineName.starts_with(Prefix: "require<" )) { |
890 | PipelineName = PipelineName.substr(Start: 8, N: PipelineName.size() - 9); |
891 | if (PipelineName != AnalysisName) |
892 | return false; |
893 | PM.addPass(RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT, |
894 | ExtraArgTs...>()); |
895 | return true; |
896 | } |
897 | |
898 | return false; |
899 | } |
900 | |
901 | // These are special since they are only for testing purposes. |
902 | |
903 | /// No-op module pass which does nothing. |
904 | struct NoOpModulePass : PassInfoMixin<NoOpModulePass> { |
905 | PreservedAnalyses run(Module &M, ModuleAnalysisManager &) { |
906 | return PreservedAnalyses::all(); |
907 | } |
908 | }; |
909 | |
910 | /// No-op module analysis. |
911 | class NoOpModuleAnalysis : public AnalysisInfoMixin<NoOpModuleAnalysis> { |
912 | friend AnalysisInfoMixin<NoOpModuleAnalysis>; |
913 | LLVM_ABI static AnalysisKey Key; |
914 | |
915 | public: |
916 | struct Result {}; |
917 | Result run(Module &, ModuleAnalysisManager &) { return Result(); } |
918 | }; |
919 | |
920 | /// No-op CGSCC pass which does nothing. |
921 | struct NoOpCGSCCPass : PassInfoMixin<NoOpCGSCCPass> { |
922 | PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &, |
923 | LazyCallGraph &, CGSCCUpdateResult &UR) { |
924 | return PreservedAnalyses::all(); |
925 | } |
926 | }; |
927 | |
928 | /// No-op CGSCC analysis. |
929 | class NoOpCGSCCAnalysis : public AnalysisInfoMixin<NoOpCGSCCAnalysis> { |
930 | friend AnalysisInfoMixin<NoOpCGSCCAnalysis>; |
931 | LLVM_ABI static AnalysisKey Key; |
932 | |
933 | public: |
934 | struct Result {}; |
935 | Result run(LazyCallGraph::SCC &, CGSCCAnalysisManager &, LazyCallGraph &G) { |
936 | return Result(); |
937 | } |
938 | }; |
939 | |
940 | /// No-op function pass which does nothing. |
941 | struct NoOpFunctionPass : PassInfoMixin<NoOpFunctionPass> { |
942 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &) { |
943 | return PreservedAnalyses::all(); |
944 | } |
945 | }; |
946 | |
947 | /// No-op function analysis. |
948 | class NoOpFunctionAnalysis : public AnalysisInfoMixin<NoOpFunctionAnalysis> { |
949 | friend AnalysisInfoMixin<NoOpFunctionAnalysis>; |
950 | LLVM_ABI static AnalysisKey Key; |
951 | |
952 | public: |
953 | struct Result {}; |
954 | Result run(Function &, FunctionAnalysisManager &) { return Result(); } |
955 | }; |
956 | |
957 | /// No-op loop nest pass which does nothing. |
958 | struct NoOpLoopNestPass : PassInfoMixin<NoOpLoopNestPass> { |
959 | PreservedAnalyses run(LoopNest &L, LoopAnalysisManager &, |
960 | LoopStandardAnalysisResults &, LPMUpdater &) { |
961 | return PreservedAnalyses::all(); |
962 | } |
963 | }; |
964 | |
965 | /// No-op loop pass which does nothing. |
966 | struct NoOpLoopPass : PassInfoMixin<NoOpLoopPass> { |
967 | PreservedAnalyses run(Loop &L, LoopAnalysisManager &, |
968 | LoopStandardAnalysisResults &, LPMUpdater &) { |
969 | return PreservedAnalyses::all(); |
970 | } |
971 | }; |
972 | |
973 | /// No-op machine function pass which does nothing. |
974 | struct NoOpMachineFunctionPass : public PassInfoMixin<NoOpMachineFunctionPass> { |
975 | PreservedAnalyses run(MachineFunction &, MachineFunctionAnalysisManager &) { |
976 | return PreservedAnalyses::all(); |
977 | } |
978 | }; |
979 | |
980 | /// No-op loop analysis. |
981 | class NoOpLoopAnalysis : public AnalysisInfoMixin<NoOpLoopAnalysis> { |
982 | friend AnalysisInfoMixin<NoOpLoopAnalysis>; |
983 | LLVM_ABI static AnalysisKey Key; |
984 | |
985 | public: |
986 | struct Result {}; |
987 | Result run(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &) { |
988 | return Result(); |
989 | } |
990 | }; |
991 | |
992 | /// Common option used by multiple tools to print pipeline passes |
993 | LLVM_ABI extern cl::opt<bool> PrintPipelinePasses; |
994 | } |
995 | |
996 | #endif |
997 | |