| 1 | //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This family of functions performs analyses on basic blocks, and instructions |
| 10 | // contained within basic blocks. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Analysis/CFG.h" |
| 15 | #include "llvm/Analysis/LoopInfo.h" |
| 16 | #include "llvm/IR/Dominators.h" |
| 17 | #include "llvm/IR/IntrinsicInst.h" |
| 18 | #include "llvm/Support/CommandLine.h" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | // The max number of basic blocks explored during reachability analysis between |
| 23 | // two basic blocks. This is kept reasonably small to limit compile time when |
| 24 | // repeatedly used by clients of this analysis (such as captureTracking). |
| 25 | static cl::opt<unsigned> DefaultMaxBBsToExplore( |
| 26 | "dom-tree-reachability-max-bbs-to-explore" , cl::Hidden, |
| 27 | cl::desc("Max number of BBs to explore for reachability analysis" ), |
| 28 | cl::init(Val: 32)); |
| 29 | |
| 30 | /// FindFunctionBackedges - Analyze the specified function to find all of the |
| 31 | /// loop backedges in the function and return them. This is a relatively cheap |
| 32 | /// (compared to computing dominators and loop info) analysis. |
| 33 | /// |
| 34 | /// The output is added to Result, as pairs of <from,to> edge info. |
| 35 | void llvm::FindFunctionBackedges(const Function &F, |
| 36 | SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { |
| 37 | const BasicBlock *BB = &F.getEntryBlock(); |
| 38 | if (succ_empty(BB)) |
| 39 | return; |
| 40 | |
| 41 | SmallPtrSet<const BasicBlock*, 8> Visited; |
| 42 | SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack; |
| 43 | SmallPtrSet<const BasicBlock*, 8> InStack; |
| 44 | |
| 45 | Visited.insert(Ptr: BB); |
| 46 | VisitStack.push_back(Elt: std::make_pair(x&: BB, y: succ_begin(BB))); |
| 47 | InStack.insert(Ptr: BB); |
| 48 | do { |
| 49 | std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back(); |
| 50 | const BasicBlock *ParentBB = Top.first; |
| 51 | const_succ_iterator &I = Top.second; |
| 52 | |
| 53 | bool FoundNew = false; |
| 54 | while (I != succ_end(BB: ParentBB)) { |
| 55 | BB = *I++; |
| 56 | if (Visited.insert(Ptr: BB).second) { |
| 57 | FoundNew = true; |
| 58 | break; |
| 59 | } |
| 60 | // Successor is in VisitStack, it's a back edge. |
| 61 | if (InStack.count(Ptr: BB)) |
| 62 | Result.push_back(Elt: std::make_pair(x&: ParentBB, y&: BB)); |
| 63 | } |
| 64 | |
| 65 | if (FoundNew) { |
| 66 | // Go down one level if there is a unvisited successor. |
| 67 | InStack.insert(Ptr: BB); |
| 68 | VisitStack.push_back(Elt: std::make_pair(x&: BB, y: succ_begin(BB))); |
| 69 | } else { |
| 70 | // Go up one level. |
| 71 | InStack.erase(Ptr: VisitStack.pop_back_val().first); |
| 72 | } |
| 73 | } while (!VisitStack.empty()); |
| 74 | } |
| 75 | |
| 76 | /// GetSuccessorNumber - Search for the specified successor of basic block BB |
| 77 | /// and return its position in the terminator instruction's list of |
| 78 | /// successors. It is an error to call this with a block that is not a |
| 79 | /// successor. |
| 80 | unsigned llvm::GetSuccessorNumber(const BasicBlock *BB, |
| 81 | const BasicBlock *Succ) { |
| 82 | const Instruction *Term = BB->getTerminator(); |
| 83 | #ifndef NDEBUG |
| 84 | unsigned e = Term->getNumSuccessors(); |
| 85 | #endif |
| 86 | for (unsigned i = 0; ; ++i) { |
| 87 | assert(i != e && "Didn't find edge?" ); |
| 88 | if (Term->getSuccessor(Idx: i) == Succ) |
| 89 | return i; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | /// isCriticalEdge - Return true if the specified edge is a critical edge. |
| 94 | /// Critical edges are edges from a block with multiple successors to a block |
| 95 | /// with multiple predecessors. |
| 96 | bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum, |
| 97 | bool AllowIdenticalEdges) { |
| 98 | assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!" ); |
| 99 | return isCriticalEdge(TI, Succ: TI->getSuccessor(Idx: SuccNum), AllowIdenticalEdges); |
| 100 | } |
| 101 | |
| 102 | bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest, |
| 103 | bool AllowIdenticalEdges) { |
| 104 | assert(TI->isTerminator() && "Must be a terminator to have successors!" ); |
| 105 | if (TI->getNumSuccessors() == 1) return false; |
| 106 | |
| 107 | assert(is_contained(predecessors(Dest), TI->getParent()) && |
| 108 | "No edge between TI's block and Dest." ); |
| 109 | |
| 110 | const_pred_iterator I = pred_begin(BB: Dest), E = pred_end(BB: Dest); |
| 111 | |
| 112 | // If there is more than one predecessor, this is a critical edge... |
| 113 | assert(I != E && "No preds, but we have an edge to the block?" ); |
| 114 | const BasicBlock *FirstPred = *I; |
| 115 | ++I; // Skip one edge due to the incoming arc from TI. |
| 116 | if (!AllowIdenticalEdges) |
| 117 | return I != E; |
| 118 | |
| 119 | // If AllowIdenticalEdges is true, then we allow this edge to be considered |
| 120 | // non-critical iff all preds come from TI's block. |
| 121 | for (; I != E; ++I) |
| 122 | if (*I != FirstPred) |
| 123 | return true; |
| 124 | return false; |
| 125 | } |
| 126 | |
| 127 | // LoopInfo contains a mapping from basic block to the innermost loop. Find |
| 128 | // the outermost loop in the loop nest that contains BB. |
| 129 | static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { |
| 130 | const Loop *L = LI->getLoopFor(BB); |
| 131 | return L ? L->getOutermostLoop() : nullptr; |
| 132 | } |
| 133 | |
| 134 | template <class StopSetT> |
| 135 | static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist, |
| 136 | const StopSetT &StopSet, |
| 137 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, |
| 138 | const DominatorTree *DT, const LoopInfo *LI) { |
| 139 | // When a stop block is unreachable, it's dominated from everywhere, |
| 140 | // regardless of whether there's a path between the two blocks. |
| 141 | if (DT) { |
| 142 | for (auto *BB : StopSet) { |
| 143 | if (!DT->isReachableFromEntry(BB)) { |
| 144 | DT = nullptr; |
| 145 | break; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | // We can't skip directly from a block that dominates the stop block if the |
| 151 | // exclusion block is potentially in between. |
| 152 | if (ExclusionSet && !ExclusionSet->empty()) |
| 153 | DT = nullptr; |
| 154 | |
| 155 | // Normally any block in a loop is reachable from any other block in a loop, |
| 156 | // however excluded blocks might partition the body of a loop to make that |
| 157 | // untrue. |
| 158 | SmallPtrSet<const Loop *, 8> LoopsWithHoles; |
| 159 | if (LI && ExclusionSet) { |
| 160 | for (auto *BB : *ExclusionSet) { |
| 161 | if (const Loop *L = getOutermostLoop(LI, BB)) |
| 162 | LoopsWithHoles.insert(Ptr: L); |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | SmallPtrSet<const Loop *, 2> StopLoops; |
| 167 | if (LI) { |
| 168 | for (auto *StopSetBB : StopSet) { |
| 169 | if (const Loop *L = getOutermostLoop(LI, StopSetBB)) |
| 170 | StopLoops.insert(Ptr: L); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | unsigned Limit = DefaultMaxBBsToExplore; |
| 175 | SmallPtrSet<const BasicBlock*, 32> Visited; |
| 176 | do { |
| 177 | BasicBlock *BB = Worklist.pop_back_val(); |
| 178 | if (!Visited.insert(Ptr: BB).second) |
| 179 | continue; |
| 180 | if (StopSet.contains(BB)) |
| 181 | return true; |
| 182 | if (ExclusionSet && ExclusionSet->count(Ptr: BB)) |
| 183 | continue; |
| 184 | if (DT) { |
| 185 | if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) { |
| 186 | return DT->dominates(A: BB, B: StopBB); |
| 187 | })) |
| 188 | return true; |
| 189 | } |
| 190 | |
| 191 | const Loop *Outer = nullptr; |
| 192 | if (LI) { |
| 193 | Outer = getOutermostLoop(LI, BB); |
| 194 | // If we're in a loop with a hole, not all blocks in the loop are |
| 195 | // reachable from all other blocks. That implies we can't simply jump to |
| 196 | // the loop's exit blocks, as that exit might need to pass through an |
| 197 | // excluded block. Clear Outer so we process BB's successors. |
| 198 | if (LoopsWithHoles.count(Ptr: Outer)) |
| 199 | Outer = nullptr; |
| 200 | if (StopLoops.contains(Ptr: Outer)) |
| 201 | return true; |
| 202 | } |
| 203 | |
| 204 | if (!--Limit) { |
| 205 | // We haven't been able to prove it one way or the other. Conservatively |
| 206 | // answer true -- that there is potentially a path. |
| 207 | return true; |
| 208 | } |
| 209 | |
| 210 | if (Outer) { |
| 211 | // All blocks in a single loop are reachable from all other blocks. From |
| 212 | // any of these blocks, we can skip directly to the exits of the loop, |
| 213 | // ignoring any other blocks inside the loop body. |
| 214 | Outer->getExitBlocks(ExitBlocks&: Worklist); |
| 215 | } else { |
| 216 | Worklist.append(in_start: succ_begin(BB), in_end: succ_end(BB)); |
| 217 | } |
| 218 | } while (!Worklist.empty()); |
| 219 | |
| 220 | // We have exhausted all possible paths and are certain that 'To' can not be |
| 221 | // reached from 'From'. |
| 222 | return false; |
| 223 | } |
| 224 | |
| 225 | template <class T> class SingleEntrySet { |
| 226 | public: |
| 227 | using const_iterator = const T *; |
| 228 | |
| 229 | SingleEntrySet(T Elem) : Elem(Elem) {} |
| 230 | |
| 231 | bool contains(T Other) const { return Elem == Other; } |
| 232 | |
| 233 | const_iterator begin() const { return &Elem; } |
| 234 | const_iterator end() const { return &Elem + 1; } |
| 235 | |
| 236 | private: |
| 237 | T Elem; |
| 238 | }; |
| 239 | |
| 240 | bool llvm::isPotentiallyReachableFromMany( |
| 241 | SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB, |
| 242 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, |
| 243 | const LoopInfo *LI) { |
| 244 | return isReachableImpl<SingleEntrySet<const BasicBlock *>>( |
| 245 | Worklist, StopSet: SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT, |
| 246 | LI); |
| 247 | } |
| 248 | |
| 249 | bool llvm::isManyPotentiallyReachableFromMany( |
| 250 | SmallVectorImpl<BasicBlock *> &Worklist, |
| 251 | const SmallPtrSetImpl<const BasicBlock *> &StopSet, |
| 252 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, |
| 253 | const LoopInfo *LI) { |
| 254 | return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>( |
| 255 | Worklist, StopSet, ExclusionSet, DT, LI); |
| 256 | } |
| 257 | |
| 258 | bool llvm::isPotentiallyReachable( |
| 259 | const BasicBlock *A, const BasicBlock *B, |
| 260 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, |
| 261 | const LoopInfo *LI) { |
| 262 | assert(A->getParent() == B->getParent() && |
| 263 | "This analysis is function-local!" ); |
| 264 | |
| 265 | if (DT) { |
| 266 | if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(A: B)) |
| 267 | return false; |
| 268 | if (!ExclusionSet || ExclusionSet->empty()) { |
| 269 | if (A->isEntryBlock() && DT->isReachableFromEntry(A: B)) |
| 270 | return true; |
| 271 | if (B->isEntryBlock() && DT->isReachableFromEntry(A)) |
| 272 | return false; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | SmallVector<BasicBlock*, 32> Worklist; |
| 277 | Worklist.push_back(Elt: const_cast<BasicBlock*>(A)); |
| 278 | |
| 279 | return isPotentiallyReachableFromMany(Worklist, StopBB: B, ExclusionSet, DT, LI); |
| 280 | } |
| 281 | |
| 282 | bool llvm::isPotentiallyReachable( |
| 283 | const Instruction *A, const Instruction *B, |
| 284 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, |
| 285 | const LoopInfo *LI) { |
| 286 | assert(A->getParent()->getParent() == B->getParent()->getParent() && |
| 287 | "This analysis is function-local!" ); |
| 288 | |
| 289 | if (A->getParent() == B->getParent()) { |
| 290 | // The same block case is special because it's the only time we're looking |
| 291 | // within a single block to see which instruction comes first. Once we |
| 292 | // start looking at multiple blocks, the first instruction of the block is |
| 293 | // reachable, so we only need to determine reachability between whole |
| 294 | // blocks. |
| 295 | BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); |
| 296 | |
| 297 | // If the block is in a loop then we can reach any instruction in the block |
| 298 | // from any other instruction in the block by going around a backedge. |
| 299 | if (LI && LI->getLoopFor(BB) != nullptr) |
| 300 | return true; |
| 301 | |
| 302 | // If A comes before B, then B is definitively reachable from A. |
| 303 | if (A == B || A->comesBefore(Other: B)) |
| 304 | return true; |
| 305 | |
| 306 | // Can't be in a loop if it's the entry block -- the entry block may not |
| 307 | // have predecessors. |
| 308 | if (BB->isEntryBlock()) |
| 309 | return false; |
| 310 | |
| 311 | // Otherwise, continue doing the normal per-BB CFG walk. |
| 312 | SmallVector<BasicBlock*, 32> Worklist; |
| 313 | Worklist.append(in_start: succ_begin(BB), in_end: succ_end(BB)); |
| 314 | if (Worklist.empty()) { |
| 315 | // We've proven that there's no path! |
| 316 | return false; |
| 317 | } |
| 318 | |
| 319 | return isPotentiallyReachableFromMany(Worklist, StopBB: B->getParent(), |
| 320 | ExclusionSet, DT, LI); |
| 321 | } |
| 322 | |
| 323 | return isPotentiallyReachable( |
| 324 | A: A->getParent(), B: B->getParent(), ExclusionSet, DT, LI); |
| 325 | } |
| 326 | |
| 327 | static bool instructionDoesNotReturn(const Instruction &I) { |
| 328 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
| 329 | return CB->hasFnAttr(Kind: Attribute::NoReturn); |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | // A basic block can only return if it terminates with a ReturnInst and does not |
| 334 | // contain calls to noreturn functions. |
| 335 | static bool basicBlockCanReturn(const BasicBlock &BB) { |
| 336 | if (!isa<ReturnInst>(Val: BB.getTerminator())) |
| 337 | return false; |
| 338 | return none_of(Range: BB, P: instructionDoesNotReturn); |
| 339 | } |
| 340 | |
| 341 | // FIXME: this doesn't handle recursion. |
| 342 | bool llvm::canReturn(const Function &F) { |
| 343 | SmallVector<const BasicBlock *, 16> Worklist; |
| 344 | SmallPtrSet<const BasicBlock *, 16> Visited; |
| 345 | |
| 346 | Visited.insert(Ptr: &F.front()); |
| 347 | Worklist.push_back(Elt: &F.front()); |
| 348 | |
| 349 | do { |
| 350 | const BasicBlock *BB = Worklist.pop_back_val(); |
| 351 | if (basicBlockCanReturn(BB: *BB)) |
| 352 | return true; |
| 353 | for (const BasicBlock *Succ : successors(BB)) |
| 354 | if (Visited.insert(Ptr: Succ).second) |
| 355 | Worklist.push_back(Elt: Succ); |
| 356 | } while (!Worklist.empty()); |
| 357 | |
| 358 | return false; |
| 359 | } |
| 360 | |
| 361 | bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, |
| 362 | const BasicBlock &Dest) { |
| 363 | assert(Src.getParent() == Dest.getParent()); |
| 364 | if (!Src.getParent()->isPresplitCoroutine()) |
| 365 | return false; |
| 366 | if (auto *SW = dyn_cast<SwitchInst>(Val: Src.getTerminator())) |
| 367 | if (auto *Intr = dyn_cast<IntrinsicInst>(Val: SW->getCondition())) |
| 368 | return Intr->getIntrinsicID() == Intrinsic::coro_suspend && |
| 369 | SW->getDefaultDest() == &Dest; |
| 370 | return false; |
| 371 | } |
| 372 | |