| 1 | //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 6 | // See https://llvm.org/LICENSE.txt for license information. |
| 7 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 8 | // |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | /// |
| 11 | /// \file |
| 12 | /// This file defines the implementation for the loop cache analysis. |
| 13 | /// The implementation is largely based on the following paper: |
| 14 | /// |
| 15 | /// Compiler Optimizations for Improving Data Locality |
| 16 | /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng |
| 17 | /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf |
| 18 | /// |
| 19 | /// The general approach taken to estimate the number of cache lines used by the |
| 20 | /// memory references in an inner loop is: |
| 21 | /// 1. Partition memory references that exhibit temporal or spacial reuse |
| 22 | /// into reference groups. |
| 23 | /// 2. For each loop L in the a loop nest LN: |
| 24 | /// a. Compute the cost of the reference group |
| 25 | /// b. Compute the loop cost by summing up the reference groups costs |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #include "llvm/Analysis/LoopCacheAnalysis.h" |
| 29 | #include "llvm/ADT/BreadthFirstIterator.h" |
| 30 | #include "llvm/ADT/Sequence.h" |
| 31 | #include "llvm/ADT/SmallVector.h" |
| 32 | #include "llvm/Analysis/AliasAnalysis.h" |
| 33 | #include "llvm/Analysis/Delinearization.h" |
| 34 | #include "llvm/Analysis/DependenceAnalysis.h" |
| 35 | #include "llvm/Analysis/LoopInfo.h" |
| 36 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 37 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 38 | #include "llvm/Support/CommandLine.h" |
| 39 | #include "llvm/Support/Debug.h" |
| 40 | |
| 41 | using namespace llvm; |
| 42 | |
| 43 | #define DEBUG_TYPE "loop-cache-cost" |
| 44 | |
| 45 | static cl::opt<unsigned> DefaultTripCount( |
| 46 | "default-trip-count" , cl::init(Val: 100), cl::Hidden, |
| 47 | cl::desc("Use this to specify the default trip count of a loop" )); |
| 48 | |
| 49 | // In this analysis two array references are considered to exhibit temporal |
| 50 | // reuse if they access either the same memory location, or a memory location |
| 51 | // with distance smaller than a configurable threshold. |
| 52 | static cl::opt<unsigned> TemporalReuseThreshold( |
| 53 | "temporal-reuse-threshold" , cl::init(Val: 2), cl::Hidden, |
| 54 | cl::desc("Use this to specify the max. distance between array elements " |
| 55 | "accessed in a loop so that the elements are classified to have " |
| 56 | "temporal reuse" )); |
| 57 | |
| 58 | /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a |
| 59 | /// nullptr if any loops in the loop vector supplied has more than one sibling. |
| 60 | /// The loop vector is expected to contain loops collected in breadth-first |
| 61 | /// order. |
| 62 | static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { |
| 63 | assert(!Loops.empty() && "Expecting a non-empy loop vector" ); |
| 64 | |
| 65 | Loop *LastLoop = Loops.back(); |
| 66 | Loop *ParentLoop = LastLoop->getParentLoop(); |
| 67 | |
| 68 | if (ParentLoop == nullptr) { |
| 69 | assert(Loops.size() == 1 && "Expecting a single loop" ); |
| 70 | return LastLoop; |
| 71 | } |
| 72 | |
| 73 | return (llvm::is_sorted(Range: Loops, |
| 74 | C: [](const Loop *L1, const Loop *L2) { |
| 75 | return L1->getLoopDepth() < L2->getLoopDepth(); |
| 76 | })) |
| 77 | ? LastLoop |
| 78 | : nullptr; |
| 79 | } |
| 80 | |
| 81 | static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, |
| 82 | const Loop &L, ScalarEvolution &SE) { |
| 83 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: &AccessFn); |
| 84 | if (!AR || !AR->isAffine()) |
| 85 | return false; |
| 86 | |
| 87 | assert(AR->getLoop() && "AR should have a loop" ); |
| 88 | |
| 89 | // Check that start and increment are not add recurrences. |
| 90 | const SCEV *Start = AR->getStart(); |
| 91 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 92 | if (isa<SCEVAddRecExpr>(Val: Start) || isa<SCEVAddRecExpr>(Val: Step)) |
| 93 | return false; |
| 94 | |
| 95 | // Check that start and increment are both invariant in the loop. |
| 96 | if (!SE.isLoopInvariant(S: Start, L: &L) || !SE.isLoopInvariant(S: Step, L: &L)) |
| 97 | return false; |
| 98 | |
| 99 | const SCEV *StepRec = AR->getStepRecurrence(SE); |
| 100 | if (StepRec && SE.isKnownNegative(S: StepRec)) |
| 101 | StepRec = SE.getNegativeSCEV(V: StepRec); |
| 102 | |
| 103 | return StepRec == &ElemSize; |
| 104 | } |
| 105 | |
| 106 | /// Compute the trip count for the given loop \p L or assume a default value if |
| 107 | /// it is not a compile time constant. Return the SCEV expression for the trip |
| 108 | /// count. |
| 109 | static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, |
| 110 | ScalarEvolution &SE) { |
| 111 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L: &L); |
| 112 | const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount) && |
| 113 | isa<SCEVConstant>(Val: BackedgeTakenCount)) |
| 114 | ? SE.getTripCountFromExitCount(ExitCount: BackedgeTakenCount) |
| 115 | : nullptr; |
| 116 | |
| 117 | if (!TripCount) { |
| 118 | LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() |
| 119 | << " could not be computed, using DefaultTripCount\n" ); |
| 120 | TripCount = SE.getConstant(Ty: ElemSize.getType(), V: DefaultTripCount); |
| 121 | } |
| 122 | |
| 123 | return TripCount; |
| 124 | } |
| 125 | |
| 126 | //===----------------------------------------------------------------------===// |
| 127 | // IndexedReference implementation |
| 128 | // |
| 129 | raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { |
| 130 | if (!R.IsValid) { |
| 131 | OS << R.StoreOrLoadInst; |
| 132 | OS << ", IsValid=false." ; |
| 133 | return OS; |
| 134 | } |
| 135 | |
| 136 | OS << *R.BasePointer; |
| 137 | for (const SCEV *Subscript : R.Subscripts) |
| 138 | OS << "[" << *Subscript << "]" ; |
| 139 | |
| 140 | OS << ", Sizes: " ; |
| 141 | for (const SCEV *Size : R.Sizes) |
| 142 | OS << "[" << *Size << "]" ; |
| 143 | |
| 144 | return OS; |
| 145 | } |
| 146 | |
| 147 | IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, |
| 148 | const LoopInfo &LI, ScalarEvolution &SE) |
| 149 | : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { |
| 150 | assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && |
| 151 | "Expecting a load or store instruction" ); |
| 152 | |
| 153 | IsValid = delinearize(LI); |
| 154 | if (IsValid) |
| 155 | LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this |
| 156 | << "\n" ); |
| 157 | } |
| 158 | |
| 159 | std::optional<bool> |
| 160 | IndexedReference::hasSpacialReuse(const IndexedReference &Other, unsigned CLS, |
| 161 | AAResults &AA) const { |
| 162 | assert(IsValid && "Expecting a valid reference" ); |
| 163 | |
| 164 | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { |
| 165 | LLVM_DEBUG(dbgs().indent(2) |
| 166 | << "No spacial reuse: different base pointers\n" ); |
| 167 | return false; |
| 168 | } |
| 169 | |
| 170 | unsigned NumSubscripts = getNumSubscripts(); |
| 171 | if (NumSubscripts != Other.getNumSubscripts()) { |
| 172 | LLVM_DEBUG(dbgs().indent(2) |
| 173 | << "No spacial reuse: different number of subscripts\n" ); |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | // all subscripts must be equal, except the leftmost one (the last one). |
| 178 | for (auto SubNum : seq<unsigned>(Begin: 0, End: NumSubscripts - 1)) { |
| 179 | if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { |
| 180 | LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " |
| 181 | << "\n\t" << *getSubscript(SubNum) << "\n\t" |
| 182 | << *Other.getSubscript(SubNum) << "\n" ); |
| 183 | return false; |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | // the difference between the last subscripts must be less than the cache line |
| 188 | // size. |
| 189 | const SCEV *LastSubscript = getLastSubscript(); |
| 190 | const SCEV *OtherLastSubscript = Other.getLastSubscript(); |
| 191 | const SCEVConstant *Diff = dyn_cast<SCEVConstant>( |
| 192 | Val: SE.getMinusSCEV(LHS: LastSubscript, RHS: OtherLastSubscript)); |
| 193 | |
| 194 | if (Diff == nullptr) { |
| 195 | LLVM_DEBUG(dbgs().indent(2) |
| 196 | << "No spacial reuse, difference between subscript:\n\t" |
| 197 | << *LastSubscript << "\n\t" << OtherLastSubscript |
| 198 | << "\nis not constant.\n" ); |
| 199 | return std::nullopt; |
| 200 | } |
| 201 | |
| 202 | bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); |
| 203 | |
| 204 | LLVM_DEBUG({ |
| 205 | if (InSameCacheLine) |
| 206 | dbgs().indent(2) << "Found spacial reuse.\n" ; |
| 207 | else |
| 208 | dbgs().indent(2) << "No spacial reuse.\n" ; |
| 209 | }); |
| 210 | |
| 211 | return InSameCacheLine; |
| 212 | } |
| 213 | |
| 214 | std::optional<bool> |
| 215 | IndexedReference::hasTemporalReuse(const IndexedReference &Other, |
| 216 | unsigned MaxDistance, const Loop &L, |
| 217 | DependenceInfo &DI, AAResults &AA) const { |
| 218 | assert(IsValid && "Expecting a valid reference" ); |
| 219 | |
| 220 | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { |
| 221 | LLVM_DEBUG(dbgs().indent(2) |
| 222 | << "No temporal reuse: different base pointer\n" ); |
| 223 | return false; |
| 224 | } |
| 225 | |
| 226 | std::unique_ptr<Dependence> D = |
| 227 | DI.depends(Src: &StoreOrLoadInst, Dst: &Other.StoreOrLoadInst); |
| 228 | |
| 229 | if (D == nullptr) { |
| 230 | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n" ); |
| 231 | return false; |
| 232 | } |
| 233 | |
| 234 | if (D->isLoopIndependent()) { |
| 235 | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n" ); |
| 236 | return true; |
| 237 | } |
| 238 | |
| 239 | // Check the dependence distance at every loop level. There is temporal reuse |
| 240 | // if the distance at the given loop's depth is small (|d| <= MaxDistance) and |
| 241 | // it is zero at every other loop level. |
| 242 | int LoopDepth = L.getLoopDepth(); |
| 243 | int Levels = D->getLevels(); |
| 244 | for (int Level = 1; Level <= Levels; ++Level) { |
| 245 | const SCEV *Distance = D->getDistance(Level); |
| 246 | const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Val: Distance); |
| 247 | |
| 248 | if (SCEVConst == nullptr) { |
| 249 | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n" ); |
| 250 | return std::nullopt; |
| 251 | } |
| 252 | |
| 253 | const ConstantInt &CI = *SCEVConst->getValue(); |
| 254 | if (Level != LoopDepth && !CI.isZero()) { |
| 255 | LLVM_DEBUG(dbgs().indent(2) |
| 256 | << "No temporal reuse: distance is not zero at depth=" << Level |
| 257 | << "\n" ); |
| 258 | return false; |
| 259 | } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { |
| 260 | LLVM_DEBUG( |
| 261 | dbgs().indent(2) |
| 262 | << "No temporal reuse: distance is greater than MaxDistance at depth=" |
| 263 | << Level << "\n" ); |
| 264 | return false; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n" ); |
| 269 | return true; |
| 270 | } |
| 271 | |
| 272 | CacheCostTy IndexedReference::computeRefCost(const Loop &L, |
| 273 | unsigned CLS) const { |
| 274 | assert(IsValid && "Expecting a valid reference" ); |
| 275 | LLVM_DEBUG({ |
| 276 | dbgs().indent(2) << "Computing cache cost for:\n" ; |
| 277 | dbgs().indent(4) << *this << "\n" ; |
| 278 | }); |
| 279 | |
| 280 | // If the indexed reference is loop invariant the cost is one. |
| 281 | if (isLoopInvariant(L)) { |
| 282 | LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n" ); |
| 283 | return 1; |
| 284 | } |
| 285 | |
| 286 | const SCEV *TripCount = computeTripCount(L, ElemSize: *Sizes.back(), SE); |
| 287 | assert(TripCount && "Expecting valid TripCount" ); |
| 288 | LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n" ); |
| 289 | |
| 290 | const SCEV *RefCost = nullptr; |
| 291 | const SCEV *Stride = nullptr; |
| 292 | if (isConsecutive(L, Stride, CLS)) { |
| 293 | // If the indexed reference is 'consecutive' the cost is |
| 294 | // (TripCount*Stride)/CLS. |
| 295 | assert(Stride != nullptr && |
| 296 | "Stride should not be null for consecutive access!" ); |
| 297 | Type *WiderType = SE.getWiderType(Ty1: Stride->getType(), Ty2: TripCount->getType()); |
| 298 | const SCEV *CacheLineSize = SE.getConstant(Ty: WiderType, V: CLS); |
| 299 | Stride = SE.getNoopOrAnyExtend(V: Stride, Ty: WiderType); |
| 300 | TripCount = SE.getNoopOrZeroExtend(V: TripCount, Ty: WiderType); |
| 301 | const SCEV *Numerator = SE.getMulExpr(LHS: Stride, RHS: TripCount); |
| 302 | // Round the fractional cost up to the nearest integer number. |
| 303 | // The impact is the most significant when cost is calculated |
| 304 | // to be a number less than one, because it makes more sense |
| 305 | // to say one cache line is used rather than zero cache line |
| 306 | // is used. |
| 307 | RefCost = SE.getUDivCeilSCEV(N: Numerator, D: CacheLineSize); |
| 308 | |
| 309 | LLVM_DEBUG(dbgs().indent(4) |
| 310 | << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" |
| 311 | << *RefCost << "\n" ); |
| 312 | } else { |
| 313 | // If the indexed reference is not 'consecutive' the cost is proportional to |
| 314 | // the trip count and the depth of the dimension which the subject loop |
| 315 | // subscript is accessing. We try to estimate this by multiplying the cost |
| 316 | // by the trip counts of loops corresponding to the inner dimensions. For |
| 317 | // example, given the indexed reference 'A[i][j][k]', and assuming the |
| 318 | // i-loop is in the innermost position, the cost would be equal to the |
| 319 | // iterations of the i-loop multiplied by iterations of the j-loop. |
| 320 | RefCost = TripCount; |
| 321 | |
| 322 | int Index = getSubscriptIndex(L); |
| 323 | assert(Index >= 0 && "Could not locate a valid Index" ); |
| 324 | |
| 325 | for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { |
| 326 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: getSubscript(SubNum: I)); |
| 327 | assert(AR && AR->getLoop() && "Expecting valid loop" ); |
| 328 | const SCEV *TripCount = |
| 329 | computeTripCount(L: *AR->getLoop(), ElemSize: *Sizes.back(), SE); |
| 330 | Type *WiderType = SE.getWiderType(Ty1: RefCost->getType(), Ty2: TripCount->getType()); |
| 331 | // For the multiplication result to fit, request a type twice as wide. |
| 332 | WiderType = WiderType->getExtendedType(); |
| 333 | RefCost = SE.getMulExpr(LHS: SE.getNoopOrZeroExtend(V: RefCost, Ty: WiderType), |
| 334 | RHS: SE.getNoopOrZeroExtend(V: TripCount, Ty: WiderType)); |
| 335 | } |
| 336 | |
| 337 | LLVM_DEBUG(dbgs().indent(4) |
| 338 | << "Access is not consecutive: RefCost=" << *RefCost << "\n" ); |
| 339 | } |
| 340 | assert(RefCost && "Expecting a valid RefCost" ); |
| 341 | |
| 342 | // Attempt to fold RefCost into a constant. |
| 343 | // CacheCostTy is a signed integer, but the tripcount value can be large |
| 344 | // and may not fit, so saturate/limit the value to the maximum signed |
| 345 | // integer value. |
| 346 | if (auto ConstantCost = dyn_cast<SCEVConstant>(Val: RefCost)) |
| 347 | return ConstantCost->getValue()->getLimitedValue( |
| 348 | Limit: std::numeric_limits<int64_t>::max()); |
| 349 | |
| 350 | LLVM_DEBUG(dbgs().indent(4) |
| 351 | << "RefCost is not a constant! Setting to RefCost=InvalidCost " |
| 352 | "(invalid value).\n" ); |
| 353 | |
| 354 | return CacheCostTy::getInvalid(); |
| 355 | } |
| 356 | |
| 357 | bool IndexedReference::tryDelinearizeFixedSize( |
| 358 | const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) { |
| 359 | SmallVector<int, 4> ArraySizes; |
| 360 | if (!tryDelinearizeFixedSizeImpl(SE: &SE, Inst: &StoreOrLoadInst, AccessFn, Subscripts, |
| 361 | Sizes&: ArraySizes)) |
| 362 | return false; |
| 363 | |
| 364 | // Populate Sizes with scev expressions to be used in calculations later. |
| 365 | for (auto Idx : seq<unsigned>(Begin: 1, End: Subscripts.size())) |
| 366 | Sizes.push_back( |
| 367 | Elt: SE.getConstant(Ty: Subscripts[Idx]->getType(), V: ArraySizes[Idx - 1])); |
| 368 | |
| 369 | LLVM_DEBUG({ |
| 370 | dbgs() << "Delinearized subscripts of fixed-size array\n" |
| 371 | << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst) |
| 372 | << "\n" ; |
| 373 | }); |
| 374 | return true; |
| 375 | } |
| 376 | |
| 377 | bool IndexedReference::delinearize(const LoopInfo &LI) { |
| 378 | assert(Subscripts.empty() && "Subscripts should be empty" ); |
| 379 | assert(Sizes.empty() && "Sizes should be empty" ); |
| 380 | assert(!IsValid && "Should be called once from the constructor" ); |
| 381 | LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n" ); |
| 382 | |
| 383 | const SCEV *ElemSize = SE.getElementSize(Inst: &StoreOrLoadInst); |
| 384 | const BasicBlock *BB = StoreOrLoadInst.getParent(); |
| 385 | |
| 386 | if (Loop *L = LI.getLoopFor(BB)) { |
| 387 | const SCEV *AccessFn = |
| 388 | SE.getSCEVAtScope(V: getPointerOperand(V: &StoreOrLoadInst), L); |
| 389 | |
| 390 | BasePointer = dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFn)); |
| 391 | if (BasePointer == nullptr) { |
| 392 | LLVM_DEBUG( |
| 393 | dbgs().indent(2) |
| 394 | << "ERROR: failed to delinearize, can't identify base pointer\n" ); |
| 395 | return false; |
| 396 | } |
| 397 | |
| 398 | bool IsFixedSize = false; |
| 399 | // Try to delinearize fixed-size arrays. |
| 400 | if (tryDelinearizeFixedSize(AccessFn, Subscripts)) { |
| 401 | IsFixedSize = true; |
| 402 | // The last element of Sizes is the element size. |
| 403 | Sizes.push_back(Elt: ElemSize); |
| 404 | LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() |
| 405 | << "', AccessFn: " << *AccessFn << "\n" ); |
| 406 | } |
| 407 | |
| 408 | AccessFn = SE.getMinusSCEV(LHS: AccessFn, RHS: BasePointer); |
| 409 | |
| 410 | // Try to delinearize parametric-size arrays. |
| 411 | if (!IsFixedSize) { |
| 412 | LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() |
| 413 | << "', AccessFn: " << *AccessFn << "\n" ); |
| 414 | llvm::delinearize(SE, Expr: AccessFn, Subscripts, Sizes, |
| 415 | ElementSize: SE.getElementSize(Inst: &StoreOrLoadInst)); |
| 416 | } |
| 417 | |
| 418 | if (Subscripts.empty() || Sizes.empty() || |
| 419 | Subscripts.size() != Sizes.size()) { |
| 420 | // Attempt to determine whether we have a single dimensional array access. |
| 421 | // before giving up. |
| 422 | if (!isOneDimensionalArray(AccessFn: *AccessFn, ElemSize: *ElemSize, L: *L, SE)) { |
| 423 | LLVM_DEBUG(dbgs().indent(2) |
| 424 | << "ERROR: failed to delinearize reference\n" ); |
| 425 | Subscripts.clear(); |
| 426 | Sizes.clear(); |
| 427 | return false; |
| 428 | } |
| 429 | |
| 430 | // The array may be accessed in reverse, for example: |
| 431 | // for (i = N; i > 0; i--) |
| 432 | // A[i] = 0; |
| 433 | // In this case, reconstruct the access function using the absolute value |
| 434 | // of the step recurrence. |
| 435 | const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(Val: AccessFn); |
| 436 | const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; |
| 437 | |
| 438 | if (StepRec && SE.isKnownNegative(S: StepRec)) |
| 439 | AccessFn = SE.getAddRecExpr(Start: AccessFnAR->getStart(), |
| 440 | Step: SE.getNegativeSCEV(V: StepRec), |
| 441 | L: AccessFnAR->getLoop(), |
| 442 | Flags: AccessFnAR->getNoWrapFlags()); |
| 443 | const SCEV *Div = SE.getUDivExactExpr(LHS: AccessFn, RHS: ElemSize); |
| 444 | Subscripts.push_back(Elt: Div); |
| 445 | Sizes.push_back(Elt: ElemSize); |
| 446 | } |
| 447 | |
| 448 | return all_of(Range&: Subscripts, P: [&](const SCEV *Subscript) { |
| 449 | return isSimpleAddRecurrence(Subscript: *Subscript, L: *L); |
| 450 | }); |
| 451 | } |
| 452 | |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | bool IndexedReference::isLoopInvariant(const Loop &L) const { |
| 457 | Value *Addr = getPointerOperand(V: &StoreOrLoadInst); |
| 458 | assert(Addr != nullptr && "Expecting either a load or a store instruction" ); |
| 459 | assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable" ); |
| 460 | |
| 461 | if (SE.isLoopInvariant(S: SE.getSCEV(V: Addr), L: &L)) |
| 462 | return true; |
| 463 | |
| 464 | // The indexed reference is loop invariant if none of the coefficients use |
| 465 | // the loop induction variable. |
| 466 | bool allCoeffForLoopAreZero = all_of(Range: Subscripts, P: [&](const SCEV *Subscript) { |
| 467 | return isCoeffForLoopZeroOrInvariant(Subscript: *Subscript, L); |
| 468 | }); |
| 469 | |
| 470 | return allCoeffForLoopAreZero; |
| 471 | } |
| 472 | |
| 473 | bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride, |
| 474 | unsigned CLS) const { |
| 475 | // The indexed reference is 'consecutive' if the only coefficient that uses |
| 476 | // the loop induction variable is the last one... |
| 477 | const SCEV *LastSubscript = Subscripts.back(); |
| 478 | for (const SCEV *Subscript : Subscripts) { |
| 479 | if (Subscript == LastSubscript) |
| 480 | continue; |
| 481 | if (!isCoeffForLoopZeroOrInvariant(Subscript: *Subscript, L)) |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | // ...and the access stride is less than the cache line size. |
| 486 | const SCEV *Coeff = getLastCoefficient(); |
| 487 | const SCEV *ElemSize = Sizes.back(); |
| 488 | Type *WiderType = SE.getWiderType(Ty1: Coeff->getType(), Ty2: ElemSize->getType()); |
| 489 | // FIXME: This assumes that all values are signed integers which may |
| 490 | // be incorrect in unusual codes and incorrectly use sext instead of zext. |
| 491 | // for (uint32_t i = 0; i < 512; ++i) { |
| 492 | // uint8_t trunc = i; |
| 493 | // A[trunc] = 42; |
| 494 | // } |
| 495 | // This consecutively iterates twice over A. If `trunc` is sign-extended, |
| 496 | // we would conclude that this may iterate backwards over the array. |
| 497 | // However, LoopCacheAnalysis is heuristic anyway and transformations must |
| 498 | // not result in wrong optimizations if the heuristic was incorrect. |
| 499 | Stride = SE.getMulExpr(LHS: SE.getNoopOrSignExtend(V: Coeff, Ty: WiderType), |
| 500 | RHS: SE.getNoopOrSignExtend(V: ElemSize, Ty: WiderType)); |
| 501 | const SCEV *CacheLineSize = SE.getConstant(Ty: Stride->getType(), V: CLS); |
| 502 | |
| 503 | Stride = SE.isKnownNegative(S: Stride) ? SE.getNegativeSCEV(V: Stride) : Stride; |
| 504 | return SE.isKnownPredicate(Pred: ICmpInst::ICMP_ULT, LHS: Stride, RHS: CacheLineSize); |
| 505 | } |
| 506 | |
| 507 | int IndexedReference::getSubscriptIndex(const Loop &L) const { |
| 508 | for (auto Idx : seq<int>(Begin: 0, End: getNumSubscripts())) { |
| 509 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: getSubscript(SubNum: Idx)); |
| 510 | if (AR && AR->getLoop() == &L) { |
| 511 | return Idx; |
| 512 | } |
| 513 | } |
| 514 | return -1; |
| 515 | } |
| 516 | |
| 517 | const SCEV *IndexedReference::getLastCoefficient() const { |
| 518 | const SCEV *LastSubscript = getLastSubscript(); |
| 519 | auto *AR = cast<SCEVAddRecExpr>(Val: LastSubscript); |
| 520 | return AR->getStepRecurrence(SE); |
| 521 | } |
| 522 | |
| 523 | bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, |
| 524 | const Loop &L) const { |
| 525 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: &Subscript); |
| 526 | return (AR != nullptr) ? AR->getLoop() != &L |
| 527 | : SE.isLoopInvariant(S: &Subscript, L: &L); |
| 528 | } |
| 529 | |
| 530 | bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, |
| 531 | const Loop &L) const { |
| 532 | if (!isa<SCEVAddRecExpr>(Val: Subscript)) |
| 533 | return false; |
| 534 | |
| 535 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: &Subscript); |
| 536 | assert(AR->getLoop() && "AR should have a loop" ); |
| 537 | |
| 538 | if (!AR->isAffine()) |
| 539 | return false; |
| 540 | |
| 541 | const SCEV *Start = AR->getStart(); |
| 542 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 543 | |
| 544 | if (!SE.isLoopInvariant(S: Start, L: &L) || !SE.isLoopInvariant(S: Step, L: &L)) |
| 545 | return false; |
| 546 | |
| 547 | return true; |
| 548 | } |
| 549 | |
| 550 | bool IndexedReference::isAliased(const IndexedReference &Other, |
| 551 | AAResults &AA) const { |
| 552 | const auto &Loc1 = MemoryLocation::get(Inst: &StoreOrLoadInst); |
| 553 | const auto &Loc2 = MemoryLocation::get(Inst: &Other.StoreOrLoadInst); |
| 554 | return AA.isMustAlias(LocA: Loc1, LocB: Loc2); |
| 555 | } |
| 556 | |
| 557 | //===----------------------------------------------------------------------===// |
| 558 | // CacheCost implementation |
| 559 | // |
| 560 | raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { |
| 561 | for (const auto &LC : CC.LoopCosts) { |
| 562 | const Loop *L = LC.first; |
| 563 | OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n" ; |
| 564 | } |
| 565 | return OS; |
| 566 | } |
| 567 | |
| 568 | CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, |
| 569 | ScalarEvolution &SE, TargetTransformInfo &TTI, |
| 570 | AAResults &AA, DependenceInfo &DI, |
| 571 | std::optional<unsigned> TRT) |
| 572 | : Loops(Loops), TRT(TRT.value_or(u&: TemporalReuseThreshold)), LI(LI), SE(SE), |
| 573 | TTI(TTI), AA(AA), DI(DI) { |
| 574 | assert(!Loops.empty() && "Expecting a non-empty loop vector." ); |
| 575 | |
| 576 | for (const Loop *L : Loops) { |
| 577 | unsigned TripCount = SE.getSmallConstantTripCount(L); |
| 578 | TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; |
| 579 | TripCounts.push_back(Elt: {L, TripCount}); |
| 580 | } |
| 581 | |
| 582 | calculateCacheFootprint(); |
| 583 | } |
| 584 | |
| 585 | std::unique_ptr<CacheCost> |
| 586 | CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, |
| 587 | DependenceInfo &DI, std::optional<unsigned> TRT) { |
| 588 | if (!Root.isOutermost()) { |
| 589 | LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n" ); |
| 590 | return nullptr; |
| 591 | } |
| 592 | |
| 593 | LoopVectorTy Loops; |
| 594 | append_range(C&: Loops, R: breadth_first(G: &Root)); |
| 595 | |
| 596 | if (!getInnerMostLoop(Loops)) { |
| 597 | LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " |
| 598 | "than one innermost loop\n" ); |
| 599 | return nullptr; |
| 600 | } |
| 601 | |
| 602 | return std::make_unique<CacheCost>(args&: Loops, args&: AR.LI, args&: AR.SE, args&: AR.TTI, args&: AR.AA, args&: DI, args&: TRT); |
| 603 | } |
| 604 | |
| 605 | void CacheCost::() { |
| 606 | LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n" ); |
| 607 | ReferenceGroupsTy RefGroups; |
| 608 | if (!populateReferenceGroups(RefGroups)) |
| 609 | return; |
| 610 | |
| 611 | LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n" ); |
| 612 | for (const Loop *L : Loops) { |
| 613 | assert(llvm::none_of( |
| 614 | LoopCosts, |
| 615 | [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && |
| 616 | "Should not add duplicate element" ); |
| 617 | CacheCostTy LoopCost = computeLoopCacheCost(L: *L, RefGroups); |
| 618 | LoopCosts.push_back(Elt: std::make_pair(x&: L, y&: LoopCost)); |
| 619 | } |
| 620 | |
| 621 | sortLoopCosts(); |
| 622 | RefGroups.clear(); |
| 623 | } |
| 624 | |
| 625 | bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { |
| 626 | assert(RefGroups.empty() && "Reference groups should be empty" ); |
| 627 | |
| 628 | unsigned CLS = TTI.getCacheLineSize(); |
| 629 | Loop *InnerMostLoop = getInnerMostLoop(Loops); |
| 630 | assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop" ); |
| 631 | |
| 632 | for (BasicBlock *BB : InnerMostLoop->getBlocks()) { |
| 633 | for (Instruction &I : *BB) { |
| 634 | if (!isa<StoreInst>(Val: I) && !isa<LoadInst>(Val: I)) |
| 635 | continue; |
| 636 | |
| 637 | std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); |
| 638 | if (!R->isValid()) |
| 639 | continue; |
| 640 | |
| 641 | bool Added = false; |
| 642 | for (ReferenceGroupTy &RefGroup : RefGroups) { |
| 643 | const IndexedReference &Representative = *RefGroup.front(); |
| 644 | LLVM_DEBUG({ |
| 645 | dbgs() << "References:\n" ; |
| 646 | dbgs().indent(2) << *R << "\n" ; |
| 647 | dbgs().indent(2) << Representative << "\n" ; |
| 648 | }); |
| 649 | |
| 650 | |
| 651 | // FIXME: Both positive and negative access functions will be placed |
| 652 | // into the same reference group, resulting in a bi-directional array |
| 653 | // access such as: |
| 654 | // for (i = N; i > 0; i--) |
| 655 | // A[i] = A[N - i]; |
| 656 | // having the same cost calculation as a single dimention access pattern |
| 657 | // for (i = 0; i < N; i++) |
| 658 | // A[i] = A[i]; |
| 659 | // when in actuality, depending on the array size, the first example |
| 660 | // should have a cost closer to 2x the second due to the two cache |
| 661 | // access per iteration from opposite ends of the array |
| 662 | std::optional<bool> HasTemporalReuse = |
| 663 | R->hasTemporalReuse(Other: Representative, MaxDistance: *TRT, L: *InnerMostLoop, DI, AA); |
| 664 | std::optional<bool> HasSpacialReuse = |
| 665 | R->hasSpacialReuse(Other: Representative, CLS, AA); |
| 666 | |
| 667 | if ((HasTemporalReuse && *HasTemporalReuse) || |
| 668 | (HasSpacialReuse && *HasSpacialReuse)) { |
| 669 | RefGroup.push_back(Elt: std::move(R)); |
| 670 | Added = true; |
| 671 | break; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | if (!Added) { |
| 676 | ReferenceGroupTy RG; |
| 677 | RG.push_back(Elt: std::move(R)); |
| 678 | RefGroups.push_back(Elt: std::move(RG)); |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | if (RefGroups.empty()) |
| 684 | return false; |
| 685 | |
| 686 | LLVM_DEBUG({ |
| 687 | dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n" ; |
| 688 | int n = 1; |
| 689 | for (const ReferenceGroupTy &RG : RefGroups) { |
| 690 | dbgs().indent(2) << "RefGroup " << n << ":\n" ; |
| 691 | for (const auto &IR : RG) |
| 692 | dbgs().indent(4) << *IR << "\n" ; |
| 693 | n++; |
| 694 | } |
| 695 | dbgs() << "\n" ; |
| 696 | }); |
| 697 | |
| 698 | return true; |
| 699 | } |
| 700 | |
| 701 | CacheCostTy |
| 702 | CacheCost::computeLoopCacheCost(const Loop &L, |
| 703 | const ReferenceGroupsTy &RefGroups) const { |
| 704 | if (!L.isLoopSimplifyForm()) |
| 705 | return CacheCostTy::getInvalid(); |
| 706 | |
| 707 | LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() |
| 708 | << "' as innermost loop.\n" ); |
| 709 | |
| 710 | // Compute the product of the trip counts of each other loop in the nest. |
| 711 | CacheCostTy TripCountsProduct = 1; |
| 712 | for (const auto &TC : TripCounts) { |
| 713 | if (TC.first == &L) |
| 714 | continue; |
| 715 | TripCountsProduct *= TC.second; |
| 716 | } |
| 717 | |
| 718 | CacheCostTy LoopCost = 0; |
| 719 | for (const ReferenceGroupTy &RG : RefGroups) { |
| 720 | CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); |
| 721 | LoopCost += RefGroupCost * TripCountsProduct; |
| 722 | } |
| 723 | |
| 724 | LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() |
| 725 | << "' has cost=" << LoopCost << "\n" ); |
| 726 | |
| 727 | return LoopCost; |
| 728 | } |
| 729 | |
| 730 | CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, |
| 731 | const Loop &L) const { |
| 732 | assert(!RG.empty() && "Reference group should have at least one member." ); |
| 733 | |
| 734 | const IndexedReference *Representative = RG.front().get(); |
| 735 | return Representative->computeRefCost(L, CLS: TTI.getCacheLineSize()); |
| 736 | } |
| 737 | |
| 738 | //===----------------------------------------------------------------------===// |
| 739 | // LoopCachePrinterPass implementation |
| 740 | // |
| 741 | PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, |
| 742 | LoopStandardAnalysisResults &AR, |
| 743 | LPMUpdater &U) { |
| 744 | Function *F = L.getHeader()->getParent(); |
| 745 | DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); |
| 746 | |
| 747 | if (auto CC = CacheCost::getCacheCost(Root&: L, AR, DI)) |
| 748 | OS << *CC; |
| 749 | |
| 750 | return PreservedAnalyses::all(); |
| 751 | } |
| 752 | |