1 | //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
6 | // See https://llvm.org/LICENSE.txt for license information. |
7 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
8 | // |
9 | //===----------------------------------------------------------------------===// |
10 | /// |
11 | /// \file |
12 | /// This file defines the implementation for the loop cache analysis. |
13 | /// The implementation is largely based on the following paper: |
14 | /// |
15 | /// Compiler Optimizations for Improving Data Locality |
16 | /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng |
17 | /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf |
18 | /// |
19 | /// The general approach taken to estimate the number of cache lines used by the |
20 | /// memory references in an inner loop is: |
21 | /// 1. Partition memory references that exhibit temporal or spacial reuse |
22 | /// into reference groups. |
23 | /// 2. For each loop L in the a loop nest LN: |
24 | /// a. Compute the cost of the reference group |
25 | /// b. Compute the loop cost by summing up the reference groups costs |
26 | //===----------------------------------------------------------------------===// |
27 | |
28 | #include "llvm/Analysis/LoopCacheAnalysis.h" |
29 | #include "llvm/ADT/BreadthFirstIterator.h" |
30 | #include "llvm/ADT/Sequence.h" |
31 | #include "llvm/ADT/SmallVector.h" |
32 | #include "llvm/Analysis/AliasAnalysis.h" |
33 | #include "llvm/Analysis/Delinearization.h" |
34 | #include "llvm/Analysis/DependenceAnalysis.h" |
35 | #include "llvm/Analysis/LoopInfo.h" |
36 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
37 | #include "llvm/Analysis/TargetTransformInfo.h" |
38 | #include "llvm/Support/CommandLine.h" |
39 | #include "llvm/Support/Debug.h" |
40 | |
41 | using namespace llvm; |
42 | |
43 | #define DEBUG_TYPE "loop-cache-cost" |
44 | |
45 | static cl::opt<unsigned> DefaultTripCount( |
46 | "default-trip-count" , cl::init(Val: 100), cl::Hidden, |
47 | cl::desc("Use this to specify the default trip count of a loop" )); |
48 | |
49 | // In this analysis two array references are considered to exhibit temporal |
50 | // reuse if they access either the same memory location, or a memory location |
51 | // with distance smaller than a configurable threshold. |
52 | static cl::opt<unsigned> TemporalReuseThreshold( |
53 | "temporal-reuse-threshold" , cl::init(Val: 2), cl::Hidden, |
54 | cl::desc("Use this to specify the max. distance between array elements " |
55 | "accessed in a loop so that the elements are classified to have " |
56 | "temporal reuse" )); |
57 | |
58 | /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a |
59 | /// nullptr if any loops in the loop vector supplied has more than one sibling. |
60 | /// The loop vector is expected to contain loops collected in breadth-first |
61 | /// order. |
62 | static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { |
63 | assert(!Loops.empty() && "Expecting a non-empy loop vector" ); |
64 | |
65 | Loop *LastLoop = Loops.back(); |
66 | Loop *ParentLoop = LastLoop->getParentLoop(); |
67 | |
68 | if (ParentLoop == nullptr) { |
69 | assert(Loops.size() == 1 && "Expecting a single loop" ); |
70 | return LastLoop; |
71 | } |
72 | |
73 | return (llvm::is_sorted(Range: Loops, |
74 | C: [](const Loop *L1, const Loop *L2) { |
75 | return L1->getLoopDepth() < L2->getLoopDepth(); |
76 | })) |
77 | ? LastLoop |
78 | : nullptr; |
79 | } |
80 | |
81 | static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, |
82 | const Loop &L, ScalarEvolution &SE) { |
83 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: &AccessFn); |
84 | if (!AR || !AR->isAffine()) |
85 | return false; |
86 | |
87 | assert(AR->getLoop() && "AR should have a loop" ); |
88 | |
89 | // Check that start and increment are not add recurrences. |
90 | const SCEV *Start = AR->getStart(); |
91 | const SCEV *Step = AR->getStepRecurrence(SE); |
92 | if (isa<SCEVAddRecExpr>(Val: Start) || isa<SCEVAddRecExpr>(Val: Step)) |
93 | return false; |
94 | |
95 | // Check that start and increment are both invariant in the loop. |
96 | if (!SE.isLoopInvariant(S: Start, L: &L) || !SE.isLoopInvariant(S: Step, L: &L)) |
97 | return false; |
98 | |
99 | const SCEV *StepRec = AR->getStepRecurrence(SE); |
100 | if (StepRec && SE.isKnownNegative(S: StepRec)) |
101 | StepRec = SE.getNegativeSCEV(V: StepRec); |
102 | |
103 | return StepRec == &ElemSize; |
104 | } |
105 | |
106 | /// Compute the trip count for the given loop \p L or assume a default value if |
107 | /// it is not a compile time constant. Return the SCEV expression for the trip |
108 | /// count. |
109 | static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, |
110 | ScalarEvolution &SE) { |
111 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L: &L); |
112 | const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount) && |
113 | isa<SCEVConstant>(Val: BackedgeTakenCount)) |
114 | ? SE.getTripCountFromExitCount(ExitCount: BackedgeTakenCount) |
115 | : nullptr; |
116 | |
117 | if (!TripCount) { |
118 | LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() |
119 | << " could not be computed, using DefaultTripCount\n" ); |
120 | TripCount = SE.getConstant(Ty: ElemSize.getType(), V: DefaultTripCount); |
121 | } |
122 | |
123 | return TripCount; |
124 | } |
125 | |
126 | //===----------------------------------------------------------------------===// |
127 | // IndexedReference implementation |
128 | // |
129 | raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { |
130 | if (!R.IsValid) { |
131 | OS << R.StoreOrLoadInst; |
132 | OS << ", IsValid=false." ; |
133 | return OS; |
134 | } |
135 | |
136 | OS << *R.BasePointer; |
137 | for (const SCEV *Subscript : R.Subscripts) |
138 | OS << "[" << *Subscript << "]" ; |
139 | |
140 | OS << ", Sizes: " ; |
141 | for (const SCEV *Size : R.Sizes) |
142 | OS << "[" << *Size << "]" ; |
143 | |
144 | return OS; |
145 | } |
146 | |
147 | IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, |
148 | const LoopInfo &LI, ScalarEvolution &SE) |
149 | : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { |
150 | assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && |
151 | "Expecting a load or store instruction" ); |
152 | |
153 | IsValid = delinearize(LI); |
154 | if (IsValid) |
155 | LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this |
156 | << "\n" ); |
157 | } |
158 | |
159 | std::optional<bool> |
160 | IndexedReference::hasSpacialReuse(const IndexedReference &Other, unsigned CLS, |
161 | AAResults &AA) const { |
162 | assert(IsValid && "Expecting a valid reference" ); |
163 | |
164 | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { |
165 | LLVM_DEBUG(dbgs().indent(2) |
166 | << "No spacial reuse: different base pointers\n" ); |
167 | return false; |
168 | } |
169 | |
170 | unsigned NumSubscripts = getNumSubscripts(); |
171 | if (NumSubscripts != Other.getNumSubscripts()) { |
172 | LLVM_DEBUG(dbgs().indent(2) |
173 | << "No spacial reuse: different number of subscripts\n" ); |
174 | return false; |
175 | } |
176 | |
177 | // all subscripts must be equal, except the leftmost one (the last one). |
178 | for (auto SubNum : seq<unsigned>(Begin: 0, End: NumSubscripts - 1)) { |
179 | if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { |
180 | LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " |
181 | << "\n\t" << *getSubscript(SubNum) << "\n\t" |
182 | << *Other.getSubscript(SubNum) << "\n" ); |
183 | return false; |
184 | } |
185 | } |
186 | |
187 | // the difference between the last subscripts must be less than the cache line |
188 | // size. |
189 | const SCEV *LastSubscript = getLastSubscript(); |
190 | const SCEV *OtherLastSubscript = Other.getLastSubscript(); |
191 | const SCEVConstant *Diff = dyn_cast<SCEVConstant>( |
192 | Val: SE.getMinusSCEV(LHS: LastSubscript, RHS: OtherLastSubscript)); |
193 | |
194 | if (Diff == nullptr) { |
195 | LLVM_DEBUG(dbgs().indent(2) |
196 | << "No spacial reuse, difference between subscript:\n\t" |
197 | << *LastSubscript << "\n\t" << OtherLastSubscript |
198 | << "\nis not constant.\n" ); |
199 | return std::nullopt; |
200 | } |
201 | |
202 | bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); |
203 | |
204 | LLVM_DEBUG({ |
205 | if (InSameCacheLine) |
206 | dbgs().indent(2) << "Found spacial reuse.\n" ; |
207 | else |
208 | dbgs().indent(2) << "No spacial reuse.\n" ; |
209 | }); |
210 | |
211 | return InSameCacheLine; |
212 | } |
213 | |
214 | std::optional<bool> |
215 | IndexedReference::hasTemporalReuse(const IndexedReference &Other, |
216 | unsigned MaxDistance, const Loop &L, |
217 | DependenceInfo &DI, AAResults &AA) const { |
218 | assert(IsValid && "Expecting a valid reference" ); |
219 | |
220 | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { |
221 | LLVM_DEBUG(dbgs().indent(2) |
222 | << "No temporal reuse: different base pointer\n" ); |
223 | return false; |
224 | } |
225 | |
226 | std::unique_ptr<Dependence> D = |
227 | DI.depends(Src: &StoreOrLoadInst, Dst: &Other.StoreOrLoadInst); |
228 | |
229 | if (D == nullptr) { |
230 | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n" ); |
231 | return false; |
232 | } |
233 | |
234 | if (D->isLoopIndependent()) { |
235 | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n" ); |
236 | return true; |
237 | } |
238 | |
239 | // Check the dependence distance at every loop level. There is temporal reuse |
240 | // if the distance at the given loop's depth is small (|d| <= MaxDistance) and |
241 | // it is zero at every other loop level. |
242 | int LoopDepth = L.getLoopDepth(); |
243 | int Levels = D->getLevels(); |
244 | for (int Level = 1; Level <= Levels; ++Level) { |
245 | const SCEV *Distance = D->getDistance(Level); |
246 | const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Val: Distance); |
247 | |
248 | if (SCEVConst == nullptr) { |
249 | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n" ); |
250 | return std::nullopt; |
251 | } |
252 | |
253 | const ConstantInt &CI = *SCEVConst->getValue(); |
254 | if (Level != LoopDepth && !CI.isZero()) { |
255 | LLVM_DEBUG(dbgs().indent(2) |
256 | << "No temporal reuse: distance is not zero at depth=" << Level |
257 | << "\n" ); |
258 | return false; |
259 | } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { |
260 | LLVM_DEBUG( |
261 | dbgs().indent(2) |
262 | << "No temporal reuse: distance is greater than MaxDistance at depth=" |
263 | << Level << "\n" ); |
264 | return false; |
265 | } |
266 | } |
267 | |
268 | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n" ); |
269 | return true; |
270 | } |
271 | |
272 | CacheCostTy IndexedReference::computeRefCost(const Loop &L, |
273 | unsigned CLS) const { |
274 | assert(IsValid && "Expecting a valid reference" ); |
275 | LLVM_DEBUG({ |
276 | dbgs().indent(2) << "Computing cache cost for:\n" ; |
277 | dbgs().indent(4) << *this << "\n" ; |
278 | }); |
279 | |
280 | // If the indexed reference is loop invariant the cost is one. |
281 | if (isLoopInvariant(L)) { |
282 | LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n" ); |
283 | return 1; |
284 | } |
285 | |
286 | const SCEV *TripCount = computeTripCount(L, ElemSize: *Sizes.back(), SE); |
287 | assert(TripCount && "Expecting valid TripCount" ); |
288 | LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n" ); |
289 | |
290 | const SCEV *RefCost = nullptr; |
291 | const SCEV *Stride = nullptr; |
292 | if (isConsecutive(L, Stride, CLS)) { |
293 | // If the indexed reference is 'consecutive' the cost is |
294 | // (TripCount*Stride)/CLS. |
295 | assert(Stride != nullptr && |
296 | "Stride should not be null for consecutive access!" ); |
297 | Type *WiderType = SE.getWiderType(Ty1: Stride->getType(), Ty2: TripCount->getType()); |
298 | const SCEV *CacheLineSize = SE.getConstant(Ty: WiderType, V: CLS); |
299 | Stride = SE.getNoopOrAnyExtend(V: Stride, Ty: WiderType); |
300 | TripCount = SE.getNoopOrZeroExtend(V: TripCount, Ty: WiderType); |
301 | const SCEV *Numerator = SE.getMulExpr(LHS: Stride, RHS: TripCount); |
302 | // Round the fractional cost up to the nearest integer number. |
303 | // The impact is the most significant when cost is calculated |
304 | // to be a number less than one, because it makes more sense |
305 | // to say one cache line is used rather than zero cache line |
306 | // is used. |
307 | RefCost = SE.getUDivCeilSCEV(N: Numerator, D: CacheLineSize); |
308 | |
309 | LLVM_DEBUG(dbgs().indent(4) |
310 | << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" |
311 | << *RefCost << "\n" ); |
312 | } else { |
313 | // If the indexed reference is not 'consecutive' the cost is proportional to |
314 | // the trip count and the depth of the dimension which the subject loop |
315 | // subscript is accessing. We try to estimate this by multiplying the cost |
316 | // by the trip counts of loops corresponding to the inner dimensions. For |
317 | // example, given the indexed reference 'A[i][j][k]', and assuming the |
318 | // i-loop is in the innermost position, the cost would be equal to the |
319 | // iterations of the i-loop multiplied by iterations of the j-loop. |
320 | RefCost = TripCount; |
321 | |
322 | int Index = getSubscriptIndex(L); |
323 | assert(Index >= 0 && "Could not locate a valid Index" ); |
324 | |
325 | for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { |
326 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: getSubscript(SubNum: I)); |
327 | assert(AR && AR->getLoop() && "Expecting valid loop" ); |
328 | const SCEV *TripCount = |
329 | computeTripCount(L: *AR->getLoop(), ElemSize: *Sizes.back(), SE); |
330 | Type *WiderType = SE.getWiderType(Ty1: RefCost->getType(), Ty2: TripCount->getType()); |
331 | // For the multiplication result to fit, request a type twice as wide. |
332 | WiderType = WiderType->getExtendedType(); |
333 | RefCost = SE.getMulExpr(LHS: SE.getNoopOrZeroExtend(V: RefCost, Ty: WiderType), |
334 | RHS: SE.getNoopOrZeroExtend(V: TripCount, Ty: WiderType)); |
335 | } |
336 | |
337 | LLVM_DEBUG(dbgs().indent(4) |
338 | << "Access is not consecutive: RefCost=" << *RefCost << "\n" ); |
339 | } |
340 | assert(RefCost && "Expecting a valid RefCost" ); |
341 | |
342 | // Attempt to fold RefCost into a constant. |
343 | // CacheCostTy is a signed integer, but the tripcount value can be large |
344 | // and may not fit, so saturate/limit the value to the maximum signed |
345 | // integer value. |
346 | if (auto ConstantCost = dyn_cast<SCEVConstant>(Val: RefCost)) |
347 | return ConstantCost->getValue()->getLimitedValue( |
348 | Limit: std::numeric_limits<int64_t>::max()); |
349 | |
350 | LLVM_DEBUG(dbgs().indent(4) |
351 | << "RefCost is not a constant! Setting to RefCost=InvalidCost " |
352 | "(invalid value).\n" ); |
353 | |
354 | return CacheCostTy::getInvalid(); |
355 | } |
356 | |
357 | bool IndexedReference::tryDelinearizeFixedSize( |
358 | const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) { |
359 | SmallVector<int, 4> ArraySizes; |
360 | if (!tryDelinearizeFixedSizeImpl(SE: &SE, Inst: &StoreOrLoadInst, AccessFn, Subscripts, |
361 | Sizes&: ArraySizes)) |
362 | return false; |
363 | |
364 | // Populate Sizes with scev expressions to be used in calculations later. |
365 | for (auto Idx : seq<unsigned>(Begin: 1, End: Subscripts.size())) |
366 | Sizes.push_back( |
367 | Elt: SE.getConstant(Ty: Subscripts[Idx]->getType(), V: ArraySizes[Idx - 1])); |
368 | |
369 | LLVM_DEBUG({ |
370 | dbgs() << "Delinearized subscripts of fixed-size array\n" |
371 | << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst) |
372 | << "\n" ; |
373 | }); |
374 | return true; |
375 | } |
376 | |
377 | bool IndexedReference::delinearize(const LoopInfo &LI) { |
378 | assert(Subscripts.empty() && "Subscripts should be empty" ); |
379 | assert(Sizes.empty() && "Sizes should be empty" ); |
380 | assert(!IsValid && "Should be called once from the constructor" ); |
381 | LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n" ); |
382 | |
383 | const SCEV *ElemSize = SE.getElementSize(Inst: &StoreOrLoadInst); |
384 | const BasicBlock *BB = StoreOrLoadInst.getParent(); |
385 | |
386 | if (Loop *L = LI.getLoopFor(BB)) { |
387 | const SCEV *AccessFn = |
388 | SE.getSCEVAtScope(V: getPointerOperand(V: &StoreOrLoadInst), L); |
389 | |
390 | BasePointer = dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFn)); |
391 | if (BasePointer == nullptr) { |
392 | LLVM_DEBUG( |
393 | dbgs().indent(2) |
394 | << "ERROR: failed to delinearize, can't identify base pointer\n" ); |
395 | return false; |
396 | } |
397 | |
398 | bool IsFixedSize = false; |
399 | // Try to delinearize fixed-size arrays. |
400 | if (tryDelinearizeFixedSize(AccessFn, Subscripts)) { |
401 | IsFixedSize = true; |
402 | // The last element of Sizes is the element size. |
403 | Sizes.push_back(Elt: ElemSize); |
404 | LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() |
405 | << "', AccessFn: " << *AccessFn << "\n" ); |
406 | } |
407 | |
408 | AccessFn = SE.getMinusSCEV(LHS: AccessFn, RHS: BasePointer); |
409 | |
410 | // Try to delinearize parametric-size arrays. |
411 | if (!IsFixedSize) { |
412 | LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() |
413 | << "', AccessFn: " << *AccessFn << "\n" ); |
414 | llvm::delinearize(SE, Expr: AccessFn, Subscripts, Sizes, |
415 | ElementSize: SE.getElementSize(Inst: &StoreOrLoadInst)); |
416 | } |
417 | |
418 | if (Subscripts.empty() || Sizes.empty() || |
419 | Subscripts.size() != Sizes.size()) { |
420 | // Attempt to determine whether we have a single dimensional array access. |
421 | // before giving up. |
422 | if (!isOneDimensionalArray(AccessFn: *AccessFn, ElemSize: *ElemSize, L: *L, SE)) { |
423 | LLVM_DEBUG(dbgs().indent(2) |
424 | << "ERROR: failed to delinearize reference\n" ); |
425 | Subscripts.clear(); |
426 | Sizes.clear(); |
427 | return false; |
428 | } |
429 | |
430 | // The array may be accessed in reverse, for example: |
431 | // for (i = N; i > 0; i--) |
432 | // A[i] = 0; |
433 | // In this case, reconstruct the access function using the absolute value |
434 | // of the step recurrence. |
435 | const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(Val: AccessFn); |
436 | const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; |
437 | |
438 | if (StepRec && SE.isKnownNegative(S: StepRec)) |
439 | AccessFn = SE.getAddRecExpr(Start: AccessFnAR->getStart(), |
440 | Step: SE.getNegativeSCEV(V: StepRec), |
441 | L: AccessFnAR->getLoop(), |
442 | Flags: AccessFnAR->getNoWrapFlags()); |
443 | const SCEV *Div = SE.getUDivExactExpr(LHS: AccessFn, RHS: ElemSize); |
444 | Subscripts.push_back(Elt: Div); |
445 | Sizes.push_back(Elt: ElemSize); |
446 | } |
447 | |
448 | return all_of(Range&: Subscripts, P: [&](const SCEV *Subscript) { |
449 | return isSimpleAddRecurrence(Subscript: *Subscript, L: *L); |
450 | }); |
451 | } |
452 | |
453 | return false; |
454 | } |
455 | |
456 | bool IndexedReference::isLoopInvariant(const Loop &L) const { |
457 | Value *Addr = getPointerOperand(V: &StoreOrLoadInst); |
458 | assert(Addr != nullptr && "Expecting either a load or a store instruction" ); |
459 | assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable" ); |
460 | |
461 | if (SE.isLoopInvariant(S: SE.getSCEV(V: Addr), L: &L)) |
462 | return true; |
463 | |
464 | // The indexed reference is loop invariant if none of the coefficients use |
465 | // the loop induction variable. |
466 | bool allCoeffForLoopAreZero = all_of(Range: Subscripts, P: [&](const SCEV *Subscript) { |
467 | return isCoeffForLoopZeroOrInvariant(Subscript: *Subscript, L); |
468 | }); |
469 | |
470 | return allCoeffForLoopAreZero; |
471 | } |
472 | |
473 | bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride, |
474 | unsigned CLS) const { |
475 | // The indexed reference is 'consecutive' if the only coefficient that uses |
476 | // the loop induction variable is the last one... |
477 | const SCEV *LastSubscript = Subscripts.back(); |
478 | for (const SCEV *Subscript : Subscripts) { |
479 | if (Subscript == LastSubscript) |
480 | continue; |
481 | if (!isCoeffForLoopZeroOrInvariant(Subscript: *Subscript, L)) |
482 | return false; |
483 | } |
484 | |
485 | // ...and the access stride is less than the cache line size. |
486 | const SCEV *Coeff = getLastCoefficient(); |
487 | const SCEV *ElemSize = Sizes.back(); |
488 | Type *WiderType = SE.getWiderType(Ty1: Coeff->getType(), Ty2: ElemSize->getType()); |
489 | // FIXME: This assumes that all values are signed integers which may |
490 | // be incorrect in unusual codes and incorrectly use sext instead of zext. |
491 | // for (uint32_t i = 0; i < 512; ++i) { |
492 | // uint8_t trunc = i; |
493 | // A[trunc] = 42; |
494 | // } |
495 | // This consecutively iterates twice over A. If `trunc` is sign-extended, |
496 | // we would conclude that this may iterate backwards over the array. |
497 | // However, LoopCacheAnalysis is heuristic anyway and transformations must |
498 | // not result in wrong optimizations if the heuristic was incorrect. |
499 | Stride = SE.getMulExpr(LHS: SE.getNoopOrSignExtend(V: Coeff, Ty: WiderType), |
500 | RHS: SE.getNoopOrSignExtend(V: ElemSize, Ty: WiderType)); |
501 | const SCEV *CacheLineSize = SE.getConstant(Ty: Stride->getType(), V: CLS); |
502 | |
503 | Stride = SE.isKnownNegative(S: Stride) ? SE.getNegativeSCEV(V: Stride) : Stride; |
504 | return SE.isKnownPredicate(Pred: ICmpInst::ICMP_ULT, LHS: Stride, RHS: CacheLineSize); |
505 | } |
506 | |
507 | int IndexedReference::getSubscriptIndex(const Loop &L) const { |
508 | for (auto Idx : seq<int>(Begin: 0, End: getNumSubscripts())) { |
509 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: getSubscript(SubNum: Idx)); |
510 | if (AR && AR->getLoop() == &L) { |
511 | return Idx; |
512 | } |
513 | } |
514 | return -1; |
515 | } |
516 | |
517 | const SCEV *IndexedReference::getLastCoefficient() const { |
518 | const SCEV *LastSubscript = getLastSubscript(); |
519 | auto *AR = cast<SCEVAddRecExpr>(Val: LastSubscript); |
520 | return AR->getStepRecurrence(SE); |
521 | } |
522 | |
523 | bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, |
524 | const Loop &L) const { |
525 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: &Subscript); |
526 | return (AR != nullptr) ? AR->getLoop() != &L |
527 | : SE.isLoopInvariant(S: &Subscript, L: &L); |
528 | } |
529 | |
530 | bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, |
531 | const Loop &L) const { |
532 | if (!isa<SCEVAddRecExpr>(Val: Subscript)) |
533 | return false; |
534 | |
535 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: &Subscript); |
536 | assert(AR->getLoop() && "AR should have a loop" ); |
537 | |
538 | if (!AR->isAffine()) |
539 | return false; |
540 | |
541 | const SCEV *Start = AR->getStart(); |
542 | const SCEV *Step = AR->getStepRecurrence(SE); |
543 | |
544 | if (!SE.isLoopInvariant(S: Start, L: &L) || !SE.isLoopInvariant(S: Step, L: &L)) |
545 | return false; |
546 | |
547 | return true; |
548 | } |
549 | |
550 | bool IndexedReference::isAliased(const IndexedReference &Other, |
551 | AAResults &AA) const { |
552 | const auto &Loc1 = MemoryLocation::get(Inst: &StoreOrLoadInst); |
553 | const auto &Loc2 = MemoryLocation::get(Inst: &Other.StoreOrLoadInst); |
554 | return AA.isMustAlias(LocA: Loc1, LocB: Loc2); |
555 | } |
556 | |
557 | //===----------------------------------------------------------------------===// |
558 | // CacheCost implementation |
559 | // |
560 | raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { |
561 | for (const auto &LC : CC.LoopCosts) { |
562 | const Loop *L = LC.first; |
563 | OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n" ; |
564 | } |
565 | return OS; |
566 | } |
567 | |
568 | CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, |
569 | ScalarEvolution &SE, TargetTransformInfo &TTI, |
570 | AAResults &AA, DependenceInfo &DI, |
571 | std::optional<unsigned> TRT) |
572 | : Loops(Loops), TRT(TRT.value_or(u&: TemporalReuseThreshold)), LI(LI), SE(SE), |
573 | TTI(TTI), AA(AA), DI(DI) { |
574 | assert(!Loops.empty() && "Expecting a non-empty loop vector." ); |
575 | |
576 | for (const Loop *L : Loops) { |
577 | unsigned TripCount = SE.getSmallConstantTripCount(L); |
578 | TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; |
579 | TripCounts.push_back(Elt: {L, TripCount}); |
580 | } |
581 | |
582 | calculateCacheFootprint(); |
583 | } |
584 | |
585 | std::unique_ptr<CacheCost> |
586 | CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, |
587 | DependenceInfo &DI, std::optional<unsigned> TRT) { |
588 | if (!Root.isOutermost()) { |
589 | LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n" ); |
590 | return nullptr; |
591 | } |
592 | |
593 | LoopVectorTy Loops; |
594 | append_range(C&: Loops, R: breadth_first(G: &Root)); |
595 | |
596 | if (!getInnerMostLoop(Loops)) { |
597 | LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " |
598 | "than one innermost loop\n" ); |
599 | return nullptr; |
600 | } |
601 | |
602 | return std::make_unique<CacheCost>(args&: Loops, args&: AR.LI, args&: AR.SE, args&: AR.TTI, args&: AR.AA, args&: DI, args&: TRT); |
603 | } |
604 | |
605 | void CacheCost::() { |
606 | LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n" ); |
607 | ReferenceGroupsTy RefGroups; |
608 | if (!populateReferenceGroups(RefGroups)) |
609 | return; |
610 | |
611 | LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n" ); |
612 | for (const Loop *L : Loops) { |
613 | assert(llvm::none_of( |
614 | LoopCosts, |
615 | [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && |
616 | "Should not add duplicate element" ); |
617 | CacheCostTy LoopCost = computeLoopCacheCost(L: *L, RefGroups); |
618 | LoopCosts.push_back(Elt: std::make_pair(x&: L, y&: LoopCost)); |
619 | } |
620 | |
621 | sortLoopCosts(); |
622 | RefGroups.clear(); |
623 | } |
624 | |
625 | bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { |
626 | assert(RefGroups.empty() && "Reference groups should be empty" ); |
627 | |
628 | unsigned CLS = TTI.getCacheLineSize(); |
629 | Loop *InnerMostLoop = getInnerMostLoop(Loops); |
630 | assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop" ); |
631 | |
632 | for (BasicBlock *BB : InnerMostLoop->getBlocks()) { |
633 | for (Instruction &I : *BB) { |
634 | if (!isa<StoreInst>(Val: I) && !isa<LoadInst>(Val: I)) |
635 | continue; |
636 | |
637 | std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); |
638 | if (!R->isValid()) |
639 | continue; |
640 | |
641 | bool Added = false; |
642 | for (ReferenceGroupTy &RefGroup : RefGroups) { |
643 | const IndexedReference &Representative = *RefGroup.front(); |
644 | LLVM_DEBUG({ |
645 | dbgs() << "References:\n" ; |
646 | dbgs().indent(2) << *R << "\n" ; |
647 | dbgs().indent(2) << Representative << "\n" ; |
648 | }); |
649 | |
650 | |
651 | // FIXME: Both positive and negative access functions will be placed |
652 | // into the same reference group, resulting in a bi-directional array |
653 | // access such as: |
654 | // for (i = N; i > 0; i--) |
655 | // A[i] = A[N - i]; |
656 | // having the same cost calculation as a single dimention access pattern |
657 | // for (i = 0; i < N; i++) |
658 | // A[i] = A[i]; |
659 | // when in actuality, depending on the array size, the first example |
660 | // should have a cost closer to 2x the second due to the two cache |
661 | // access per iteration from opposite ends of the array |
662 | std::optional<bool> HasTemporalReuse = |
663 | R->hasTemporalReuse(Other: Representative, MaxDistance: *TRT, L: *InnerMostLoop, DI, AA); |
664 | std::optional<bool> HasSpacialReuse = |
665 | R->hasSpacialReuse(Other: Representative, CLS, AA); |
666 | |
667 | if ((HasTemporalReuse && *HasTemporalReuse) || |
668 | (HasSpacialReuse && *HasSpacialReuse)) { |
669 | RefGroup.push_back(Elt: std::move(R)); |
670 | Added = true; |
671 | break; |
672 | } |
673 | } |
674 | |
675 | if (!Added) { |
676 | ReferenceGroupTy RG; |
677 | RG.push_back(Elt: std::move(R)); |
678 | RefGroups.push_back(Elt: std::move(RG)); |
679 | } |
680 | } |
681 | } |
682 | |
683 | if (RefGroups.empty()) |
684 | return false; |
685 | |
686 | LLVM_DEBUG({ |
687 | dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n" ; |
688 | int n = 1; |
689 | for (const ReferenceGroupTy &RG : RefGroups) { |
690 | dbgs().indent(2) << "RefGroup " << n << ":\n" ; |
691 | for (const auto &IR : RG) |
692 | dbgs().indent(4) << *IR << "\n" ; |
693 | n++; |
694 | } |
695 | dbgs() << "\n" ; |
696 | }); |
697 | |
698 | return true; |
699 | } |
700 | |
701 | CacheCostTy |
702 | CacheCost::computeLoopCacheCost(const Loop &L, |
703 | const ReferenceGroupsTy &RefGroups) const { |
704 | if (!L.isLoopSimplifyForm()) |
705 | return CacheCostTy::getInvalid(); |
706 | |
707 | LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() |
708 | << "' as innermost loop.\n" ); |
709 | |
710 | // Compute the product of the trip counts of each other loop in the nest. |
711 | CacheCostTy TripCountsProduct = 1; |
712 | for (const auto &TC : TripCounts) { |
713 | if (TC.first == &L) |
714 | continue; |
715 | TripCountsProduct *= TC.second; |
716 | } |
717 | |
718 | CacheCostTy LoopCost = 0; |
719 | for (const ReferenceGroupTy &RG : RefGroups) { |
720 | CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); |
721 | LoopCost += RefGroupCost * TripCountsProduct; |
722 | } |
723 | |
724 | LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() |
725 | << "' has cost=" << LoopCost << "\n" ); |
726 | |
727 | return LoopCost; |
728 | } |
729 | |
730 | CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, |
731 | const Loop &L) const { |
732 | assert(!RG.empty() && "Reference group should have at least one member." ); |
733 | |
734 | const IndexedReference *Representative = RG.front().get(); |
735 | return Representative->computeRefCost(L, CLS: TTI.getCacheLineSize()); |
736 | } |
737 | |
738 | //===----------------------------------------------------------------------===// |
739 | // LoopCachePrinterPass implementation |
740 | // |
741 | PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, |
742 | LoopStandardAnalysisResults &AR, |
743 | LPMUpdater &U) { |
744 | Function *F = L.getHeader()->getParent(); |
745 | DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); |
746 | |
747 | if (auto CC = CacheCost::getCacheCost(Root&: L, AR, DI)) |
748 | OS << *CC; |
749 | |
750 | return PreservedAnalyses::all(); |
751 | } |
752 | |