| 1 | //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains a pass (at IR level) to replace atomic instructions with |
| 10 | // __atomic_* library calls, or target specific instruction which implement the |
| 11 | // same semantics in a way which better fits the target backend. This can |
| 12 | // include the use of (intrinsic-based) load-linked/store-conditional loops, |
| 13 | // AtomicCmpXchg, or type coercions. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/STLFunctionalExtras.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/Analysis/InstSimplifyFolder.h" |
| 21 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 22 | #include "llvm/CodeGen/AtomicExpand.h" |
| 23 | #include "llvm/CodeGen/AtomicExpandUtils.h" |
| 24 | #include "llvm/CodeGen/TargetLowering.h" |
| 25 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 27 | #include "llvm/CodeGen/ValueTypes.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/Constant.h" |
| 31 | #include "llvm/IR/Constants.h" |
| 32 | #include "llvm/IR/DataLayout.h" |
| 33 | #include "llvm/IR/DerivedTypes.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/IRBuilder.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/Instructions.h" |
| 38 | #include "llvm/IR/MDBuilder.h" |
| 39 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
| 40 | #include "llvm/IR/Module.h" |
| 41 | #include "llvm/IR/Type.h" |
| 42 | #include "llvm/IR/User.h" |
| 43 | #include "llvm/IR/Value.h" |
| 44 | #include "llvm/InitializePasses.h" |
| 45 | #include "llvm/Pass.h" |
| 46 | #include "llvm/Support/AtomicOrdering.h" |
| 47 | #include "llvm/Support/Casting.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Support/ErrorHandling.h" |
| 50 | #include "llvm/Support/raw_ostream.h" |
| 51 | #include "llvm/Target/TargetMachine.h" |
| 52 | #include "llvm/Transforms/Utils/LowerAtomic.h" |
| 53 | #include <cassert> |
| 54 | #include <cstdint> |
| 55 | #include <iterator> |
| 56 | |
| 57 | using namespace llvm; |
| 58 | |
| 59 | #define DEBUG_TYPE "atomic-expand" |
| 60 | |
| 61 | namespace { |
| 62 | |
| 63 | class AtomicExpandImpl { |
| 64 | const TargetLowering *TLI = nullptr; |
| 65 | const DataLayout *DL = nullptr; |
| 66 | |
| 67 | private: |
| 68 | bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); |
| 69 | IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); |
| 70 | LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); |
| 71 | bool tryExpandAtomicLoad(LoadInst *LI); |
| 72 | bool expandAtomicLoadToLL(LoadInst *LI); |
| 73 | bool expandAtomicLoadToCmpXchg(LoadInst *LI); |
| 74 | StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); |
| 75 | bool tryExpandAtomicStore(StoreInst *SI); |
| 76 | void expandAtomicStore(StoreInst *SI); |
| 77 | bool tryExpandAtomicRMW(AtomicRMWInst *AI); |
| 78 | AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); |
| 79 | Value * |
| 80 | insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, |
| 81 | Align AddrAlign, AtomicOrdering MemOpOrder, |
| 82 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); |
| 83 | void expandAtomicOpToLLSC( |
| 84 | Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, |
| 85 | AtomicOrdering MemOpOrder, |
| 86 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); |
| 87 | void expandPartwordAtomicRMW( |
| 88 | AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); |
| 89 | AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); |
| 90 | bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); |
| 91 | void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); |
| 92 | void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); |
| 93 | |
| 94 | AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); |
| 95 | static Value *insertRMWCmpXchgLoop( |
| 96 | IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, |
| 97 | AtomicOrdering MemOpOrder, SyncScope::ID SSID, |
| 98 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, |
| 99 | CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc); |
| 100 | bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
| 101 | |
| 102 | bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
| 103 | bool isIdempotentRMW(AtomicRMWInst *RMWI); |
| 104 | bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); |
| 105 | |
| 106 | bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, |
| 107 | Value *PointerOperand, Value *ValueOperand, |
| 108 | Value *CASExpected, AtomicOrdering Ordering, |
| 109 | AtomicOrdering Ordering2, |
| 110 | ArrayRef<RTLIB::Libcall> Libcalls); |
| 111 | void expandAtomicLoadToLibcall(LoadInst *LI); |
| 112 | void expandAtomicStoreToLibcall(StoreInst *LI); |
| 113 | void expandAtomicRMWToLibcall(AtomicRMWInst *I); |
| 114 | void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); |
| 115 | |
| 116 | friend bool |
| 117 | llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, |
| 118 | CreateCmpXchgInstFun CreateCmpXchg); |
| 119 | |
| 120 | bool processAtomicInstr(Instruction *I); |
| 121 | |
| 122 | public: |
| 123 | bool run(Function &F, const TargetMachine *TM); |
| 124 | }; |
| 125 | |
| 126 | class AtomicExpandLegacy : public FunctionPass { |
| 127 | public: |
| 128 | static char ID; // Pass identification, replacement for typeid |
| 129 | |
| 130 | AtomicExpandLegacy() : FunctionPass(ID) { |
| 131 | initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); |
| 132 | } |
| 133 | |
| 134 | bool runOnFunction(Function &F) override; |
| 135 | }; |
| 136 | |
| 137 | // IRBuilder to be used for replacement atomic instructions. |
| 138 | struct ReplacementIRBuilder |
| 139 | : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { |
| 140 | MDNode *MMRAMD = nullptr; |
| 141 | |
| 142 | // Preserves the DebugLoc from I, and preserves still valid metadata. |
| 143 | // Enable StrictFP builder mode when appropriate. |
| 144 | explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) |
| 145 | : IRBuilder(I->getContext(), InstSimplifyFolder(DL), |
| 146 | IRBuilderCallbackInserter( |
| 147 | [this](Instruction *I) { addMMRAMD(I); })) { |
| 148 | SetInsertPoint(I); |
| 149 | this->CollectMetadataToCopy(Src: I, MetadataKinds: {LLVMContext::MD_pcsections}); |
| 150 | if (BB->getParent()->getAttributes().hasFnAttr(Kind: Attribute::StrictFP)) |
| 151 | this->setIsFPConstrained(true); |
| 152 | |
| 153 | MMRAMD = I->getMetadata(KindID: LLVMContext::MD_mmra); |
| 154 | } |
| 155 | |
| 156 | void addMMRAMD(Instruction *I) { |
| 157 | if (canInstructionHaveMMRAs(I: *I)) |
| 158 | I->setMetadata(KindID: LLVMContext::MD_mmra, Node: MMRAMD); |
| 159 | } |
| 160 | }; |
| 161 | |
| 162 | } // end anonymous namespace |
| 163 | |
| 164 | char AtomicExpandLegacy::ID = 0; |
| 165 | |
| 166 | char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; |
| 167 | |
| 168 | INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, |
| 169 | "Expand Atomic instructions" , false, false) |
| 170 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| 171 | INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, |
| 172 | "Expand Atomic instructions" , false, false) |
| 173 | |
| 174 | // Helper functions to retrieve the size of atomic instructions. |
| 175 | static unsigned getAtomicOpSize(LoadInst *LI) { |
| 176 | const DataLayout &DL = LI->getDataLayout(); |
| 177 | return DL.getTypeStoreSize(Ty: LI->getType()); |
| 178 | } |
| 179 | |
| 180 | static unsigned getAtomicOpSize(StoreInst *SI) { |
| 181 | const DataLayout &DL = SI->getDataLayout(); |
| 182 | return DL.getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
| 183 | } |
| 184 | |
| 185 | static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { |
| 186 | const DataLayout &DL = RMWI->getDataLayout(); |
| 187 | return DL.getTypeStoreSize(Ty: RMWI->getValOperand()->getType()); |
| 188 | } |
| 189 | |
| 190 | static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { |
| 191 | const DataLayout &DL = CASI->getDataLayout(); |
| 192 | return DL.getTypeStoreSize(Ty: CASI->getCompareOperand()->getType()); |
| 193 | } |
| 194 | |
| 195 | /// Copy metadata that's safe to preserve when widening atomics. |
| 196 | static void copyMetadataForAtomic(Instruction &Dest, |
| 197 | const Instruction &Source) { |
| 198 | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; |
| 199 | Source.getAllMetadata(MDs&: MD); |
| 200 | LLVMContext &Ctx = Dest.getContext(); |
| 201 | MDBuilder MDB(Ctx); |
| 202 | |
| 203 | for (auto [ID, N] : MD) { |
| 204 | switch (ID) { |
| 205 | case LLVMContext::MD_dbg: |
| 206 | case LLVMContext::MD_tbaa: |
| 207 | case LLVMContext::MD_tbaa_struct: |
| 208 | case LLVMContext::MD_alias_scope: |
| 209 | case LLVMContext::MD_noalias: |
| 210 | case LLVMContext::MD_noalias_addrspace: |
| 211 | case LLVMContext::MD_access_group: |
| 212 | case LLVMContext::MD_mmra: |
| 213 | Dest.setMetadata(KindID: ID, Node: N); |
| 214 | break; |
| 215 | default: |
| 216 | if (ID == Ctx.getMDKindID(Name: "amdgpu.no.remote.memory" )) |
| 217 | Dest.setMetadata(KindID: ID, Node: N); |
| 218 | else if (ID == Ctx.getMDKindID(Name: "amdgpu.no.fine.grained.memory" )) |
| 219 | Dest.setMetadata(KindID: ID, Node: N); |
| 220 | |
| 221 | // Losing amdgpu.ignore.denormal.mode, but it doesn't matter for current |
| 222 | // uses. |
| 223 | break; |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | // Determine if a particular atomic operation has a supported size, |
| 229 | // and is of appropriate alignment, to be passed through for target |
| 230 | // lowering. (Versus turning into a __atomic libcall) |
| 231 | template <typename Inst> |
| 232 | static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { |
| 233 | unsigned Size = getAtomicOpSize(I); |
| 234 | Align Alignment = I->getAlign(); |
| 235 | return Alignment >= Size && |
| 236 | Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; |
| 237 | } |
| 238 | |
| 239 | bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { |
| 240 | auto *LI = dyn_cast<LoadInst>(Val: I); |
| 241 | auto *SI = dyn_cast<StoreInst>(Val: I); |
| 242 | auto *RMWI = dyn_cast<AtomicRMWInst>(Val: I); |
| 243 | auto *CASI = dyn_cast<AtomicCmpXchgInst>(Val: I); |
| 244 | |
| 245 | bool MadeChange = false; |
| 246 | |
| 247 | // If the Size/Alignment is not supported, replace with a libcall. |
| 248 | if (LI) { |
| 249 | if (!LI->isAtomic()) |
| 250 | return false; |
| 251 | |
| 252 | if (!atomicSizeSupported(TLI, I: LI)) { |
| 253 | expandAtomicLoadToLibcall(LI); |
| 254 | return true; |
| 255 | } |
| 256 | |
| 257 | if (TLI->shouldCastAtomicLoadInIR(LI) == |
| 258 | TargetLoweringBase::AtomicExpansionKind::CastToInteger) { |
| 259 | I = LI = convertAtomicLoadToIntegerType(LI); |
| 260 | MadeChange = true; |
| 261 | } |
| 262 | } else if (SI) { |
| 263 | if (!SI->isAtomic()) |
| 264 | return false; |
| 265 | |
| 266 | if (!atomicSizeSupported(TLI, I: SI)) { |
| 267 | expandAtomicStoreToLibcall(LI: SI); |
| 268 | return true; |
| 269 | } |
| 270 | |
| 271 | if (TLI->shouldCastAtomicStoreInIR(SI) == |
| 272 | TargetLoweringBase::AtomicExpansionKind::CastToInteger) { |
| 273 | I = SI = convertAtomicStoreToIntegerType(SI); |
| 274 | MadeChange = true; |
| 275 | } |
| 276 | } else if (RMWI) { |
| 277 | if (!atomicSizeSupported(TLI, I: RMWI)) { |
| 278 | expandAtomicRMWToLibcall(I: RMWI); |
| 279 | return true; |
| 280 | } |
| 281 | |
| 282 | if (TLI->shouldCastAtomicRMWIInIR(RMWI) == |
| 283 | TargetLoweringBase::AtomicExpansionKind::CastToInteger) { |
| 284 | I = RMWI = convertAtomicXchgToIntegerType(RMWI); |
| 285 | MadeChange = true; |
| 286 | } |
| 287 | } else if (CASI) { |
| 288 | if (!atomicSizeSupported(TLI, I: CASI)) { |
| 289 | expandAtomicCASToLibcall(I: CASI); |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | // TODO: when we're ready to make the change at the IR level, we can |
| 294 | // extend convertCmpXchgToInteger for floating point too. |
| 295 | if (CASI->getCompareOperand()->getType()->isPointerTy()) { |
| 296 | // TODO: add a TLI hook to control this so that each target can |
| 297 | // convert to lowering the original type one at a time. |
| 298 | I = CASI = convertCmpXchgToIntegerType(CI: CASI); |
| 299 | MadeChange = true; |
| 300 | } |
| 301 | } else |
| 302 | return false; |
| 303 | |
| 304 | if (TLI->shouldInsertFencesForAtomic(I)) { |
| 305 | auto FenceOrdering = AtomicOrdering::Monotonic; |
| 306 | if (LI && isAcquireOrStronger(AO: LI->getOrdering())) { |
| 307 | FenceOrdering = LI->getOrdering(); |
| 308 | LI->setOrdering(AtomicOrdering::Monotonic); |
| 309 | } else if (SI && isReleaseOrStronger(AO: SI->getOrdering())) { |
| 310 | FenceOrdering = SI->getOrdering(); |
| 311 | SI->setOrdering(AtomicOrdering::Monotonic); |
| 312 | } else if (RMWI && (isReleaseOrStronger(AO: RMWI->getOrdering()) || |
| 313 | isAcquireOrStronger(AO: RMWI->getOrdering()))) { |
| 314 | FenceOrdering = RMWI->getOrdering(); |
| 315 | RMWI->setOrdering(AtomicOrdering::Monotonic); |
| 316 | } else if (CASI && |
| 317 | TLI->shouldExpandAtomicCmpXchgInIR(AI: CASI) == |
| 318 | TargetLoweringBase::AtomicExpansionKind::None && |
| 319 | (isReleaseOrStronger(AO: CASI->getSuccessOrdering()) || |
| 320 | isAcquireOrStronger(AO: CASI->getSuccessOrdering()) || |
| 321 | isAcquireOrStronger(AO: CASI->getFailureOrdering()))) { |
| 322 | // If a compare and swap is lowered to LL/SC, we can do smarter fence |
| 323 | // insertion, with a stronger one on the success path than on the |
| 324 | // failure path. As a result, fence insertion is directly done by |
| 325 | // expandAtomicCmpXchg in that case. |
| 326 | FenceOrdering = CASI->getMergedOrdering(); |
| 327 | auto CASOrdering = TLI->atomicOperationOrderAfterFenceSplit(I: CASI); |
| 328 | |
| 329 | CASI->setSuccessOrdering(CASOrdering); |
| 330 | CASI->setFailureOrdering(CASOrdering); |
| 331 | } |
| 332 | |
| 333 | if (FenceOrdering != AtomicOrdering::Monotonic) { |
| 334 | MadeChange |= bracketInstWithFences(I, Order: FenceOrdering); |
| 335 | } |
| 336 | } else if (I->hasAtomicStore() && |
| 337 | TLI->shouldInsertTrailingFenceForAtomicStore(I)) { |
| 338 | auto FenceOrdering = AtomicOrdering::Monotonic; |
| 339 | if (SI) |
| 340 | FenceOrdering = SI->getOrdering(); |
| 341 | else if (RMWI) |
| 342 | FenceOrdering = RMWI->getOrdering(); |
| 343 | else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(AI: CASI) != |
| 344 | TargetLoweringBase::AtomicExpansionKind::LLSC) |
| 345 | // LLSC is handled in expandAtomicCmpXchg(). |
| 346 | FenceOrdering = CASI->getSuccessOrdering(); |
| 347 | |
| 348 | IRBuilder Builder(I); |
| 349 | if (auto TrailingFence = |
| 350 | TLI->emitTrailingFence(Builder, Inst: I, Ord: FenceOrdering)) { |
| 351 | TrailingFence->moveAfter(MovePos: I); |
| 352 | MadeChange = true; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | if (LI) |
| 357 | MadeChange |= tryExpandAtomicLoad(LI); |
| 358 | else if (SI) |
| 359 | MadeChange |= tryExpandAtomicStore(SI); |
| 360 | else if (RMWI) { |
| 361 | // There are two different ways of expanding RMW instructions: |
| 362 | // - into a load if it is idempotent |
| 363 | // - into a Cmpxchg/LL-SC loop otherwise |
| 364 | // we try them in that order. |
| 365 | |
| 366 | if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { |
| 367 | MadeChange = true; |
| 368 | |
| 369 | } else { |
| 370 | MadeChange |= tryExpandAtomicRMW(AI: RMWI); |
| 371 | } |
| 372 | } else if (CASI) |
| 373 | MadeChange |= tryExpandAtomicCmpXchg(CI: CASI); |
| 374 | |
| 375 | return MadeChange; |
| 376 | } |
| 377 | |
| 378 | bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { |
| 379 | const auto *Subtarget = TM->getSubtargetImpl(F); |
| 380 | if (!Subtarget->enableAtomicExpand()) |
| 381 | return false; |
| 382 | TLI = Subtarget->getTargetLowering(); |
| 383 | DL = &F.getDataLayout(); |
| 384 | |
| 385 | bool MadeChange = false; |
| 386 | |
| 387 | for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { |
| 388 | BasicBlock *BB = &*BBI; |
| 389 | |
| 390 | BasicBlock::reverse_iterator Next; |
| 391 | |
| 392 | for (BasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend(); I != E; |
| 393 | I = Next) { |
| 394 | Instruction &Inst = *I; |
| 395 | Next = std::next(x: I); |
| 396 | |
| 397 | if (processAtomicInstr(I: &Inst)) { |
| 398 | MadeChange = true; |
| 399 | |
| 400 | // New blocks may have been inserted. |
| 401 | BBE = F.end(); |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | return MadeChange; |
| 407 | } |
| 408 | |
| 409 | bool AtomicExpandLegacy::runOnFunction(Function &F) { |
| 410 | |
| 411 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 412 | if (!TPC) |
| 413 | return false; |
| 414 | auto *TM = &TPC->getTM<TargetMachine>(); |
| 415 | AtomicExpandImpl AE; |
| 416 | return AE.run(F, TM); |
| 417 | } |
| 418 | |
| 419 | FunctionPass *llvm::createAtomicExpandLegacyPass() { |
| 420 | return new AtomicExpandLegacy(); |
| 421 | } |
| 422 | |
| 423 | PreservedAnalyses AtomicExpandPass::run(Function &F, |
| 424 | FunctionAnalysisManager &AM) { |
| 425 | AtomicExpandImpl AE; |
| 426 | |
| 427 | bool Changed = AE.run(F, TM); |
| 428 | if (!Changed) |
| 429 | return PreservedAnalyses::all(); |
| 430 | |
| 431 | return PreservedAnalyses::none(); |
| 432 | } |
| 433 | |
| 434 | bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, |
| 435 | AtomicOrdering Order) { |
| 436 | ReplacementIRBuilder Builder(I, *DL); |
| 437 | |
| 438 | auto LeadingFence = TLI->emitLeadingFence(Builder, Inst: I, Ord: Order); |
| 439 | |
| 440 | auto TrailingFence = TLI->emitTrailingFence(Builder, Inst: I, Ord: Order); |
| 441 | // We have a guard here because not every atomic operation generates a |
| 442 | // trailing fence. |
| 443 | if (TrailingFence) |
| 444 | TrailingFence->moveAfter(MovePos: I); |
| 445 | |
| 446 | return (LeadingFence || TrailingFence); |
| 447 | } |
| 448 | |
| 449 | /// Get the iX type with the same bitwidth as T. |
| 450 | IntegerType * |
| 451 | AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { |
| 452 | EVT VT = TLI->getMemValueType(DL, Ty: T); |
| 453 | unsigned BitWidth = VT.getStoreSizeInBits(); |
| 454 | assert(BitWidth == VT.getSizeInBits() && "must be a power of two" ); |
| 455 | return IntegerType::get(C&: T->getContext(), NumBits: BitWidth); |
| 456 | } |
| 457 | |
| 458 | /// Convert an atomic load of a non-integral type to an integer load of the |
| 459 | /// equivalent bitwidth. See the function comment on |
| 460 | /// convertAtomicStoreToIntegerType for background. |
| 461 | LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { |
| 462 | auto *M = LI->getModule(); |
| 463 | Type *NewTy = getCorrespondingIntegerType(T: LI->getType(), DL: M->getDataLayout()); |
| 464 | |
| 465 | ReplacementIRBuilder Builder(LI, *DL); |
| 466 | |
| 467 | Value *Addr = LI->getPointerOperand(); |
| 468 | |
| 469 | auto *NewLI = Builder.CreateLoad(Ty: NewTy, Ptr: Addr); |
| 470 | NewLI->setAlignment(LI->getAlign()); |
| 471 | NewLI->setVolatile(LI->isVolatile()); |
| 472 | NewLI->setAtomic(Ordering: LI->getOrdering(), SSID: LI->getSyncScopeID()); |
| 473 | LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n" ); |
| 474 | |
| 475 | Value *NewVal = Builder.CreateBitCast(V: NewLI, DestTy: LI->getType()); |
| 476 | LI->replaceAllUsesWith(V: NewVal); |
| 477 | LI->eraseFromParent(); |
| 478 | return NewLI; |
| 479 | } |
| 480 | |
| 481 | AtomicRMWInst * |
| 482 | AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { |
| 483 | assert(RMWI->getOperation() == AtomicRMWInst::Xchg); |
| 484 | |
| 485 | auto *M = RMWI->getModule(); |
| 486 | Type *NewTy = |
| 487 | getCorrespondingIntegerType(T: RMWI->getType(), DL: M->getDataLayout()); |
| 488 | |
| 489 | ReplacementIRBuilder Builder(RMWI, *DL); |
| 490 | |
| 491 | Value *Addr = RMWI->getPointerOperand(); |
| 492 | Value *Val = RMWI->getValOperand(); |
| 493 | Value *NewVal = Val->getType()->isPointerTy() |
| 494 | ? Builder.CreatePtrToInt(V: Val, DestTy: NewTy) |
| 495 | : Builder.CreateBitCast(V: Val, DestTy: NewTy); |
| 496 | |
| 497 | auto *NewRMWI = Builder.CreateAtomicRMW(Op: AtomicRMWInst::Xchg, Ptr: Addr, Val: NewVal, |
| 498 | Align: RMWI->getAlign(), Ordering: RMWI->getOrdering(), |
| 499 | SSID: RMWI->getSyncScopeID()); |
| 500 | NewRMWI->setVolatile(RMWI->isVolatile()); |
| 501 | copyMetadataForAtomic(Dest&: *NewRMWI, Source: *RMWI); |
| 502 | LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n" ); |
| 503 | |
| 504 | Value *NewRVal = RMWI->getType()->isPointerTy() |
| 505 | ? Builder.CreateIntToPtr(V: NewRMWI, DestTy: RMWI->getType()) |
| 506 | : Builder.CreateBitCast(V: NewRMWI, DestTy: RMWI->getType()); |
| 507 | RMWI->replaceAllUsesWith(V: NewRVal); |
| 508 | RMWI->eraseFromParent(); |
| 509 | return NewRMWI; |
| 510 | } |
| 511 | |
| 512 | bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { |
| 513 | switch (TLI->shouldExpandAtomicLoadInIR(LI)) { |
| 514 | case TargetLoweringBase::AtomicExpansionKind::None: |
| 515 | return false; |
| 516 | case TargetLoweringBase::AtomicExpansionKind::LLSC: |
| 517 | expandAtomicOpToLLSC( |
| 518 | I: LI, ResultTy: LI->getType(), Addr: LI->getPointerOperand(), AddrAlign: LI->getAlign(), |
| 519 | MemOpOrder: LI->getOrdering(), |
| 520 | PerformOp: [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); |
| 521 | return true; |
| 522 | case TargetLoweringBase::AtomicExpansionKind::LLOnly: |
| 523 | return expandAtomicLoadToLL(LI); |
| 524 | case TargetLoweringBase::AtomicExpansionKind::CmpXChg: |
| 525 | return expandAtomicLoadToCmpXchg(LI); |
| 526 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
| 527 | LI->setAtomic(Ordering: AtomicOrdering::NotAtomic); |
| 528 | return true; |
| 529 | default: |
| 530 | llvm_unreachable("Unhandled case in tryExpandAtomicLoad" ); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { |
| 535 | switch (TLI->shouldExpandAtomicStoreInIR(SI)) { |
| 536 | case TargetLoweringBase::AtomicExpansionKind::None: |
| 537 | return false; |
| 538 | case TargetLoweringBase::AtomicExpansionKind::Expand: |
| 539 | expandAtomicStore(SI); |
| 540 | return true; |
| 541 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
| 542 | SI->setAtomic(Ordering: AtomicOrdering::NotAtomic); |
| 543 | return true; |
| 544 | default: |
| 545 | llvm_unreachable("Unhandled case in tryExpandAtomicStore" ); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { |
| 550 | ReplacementIRBuilder Builder(LI, *DL); |
| 551 | |
| 552 | // On some architectures, load-linked instructions are atomic for larger |
| 553 | // sizes than normal loads. For example, the only 64-bit load guaranteed |
| 554 | // to be single-copy atomic by ARM is an ldrexd (A3.5.3). |
| 555 | Value *Val = TLI->emitLoadLinked(Builder, ValueTy: LI->getType(), |
| 556 | Addr: LI->getPointerOperand(), Ord: LI->getOrdering()); |
| 557 | TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); |
| 558 | |
| 559 | LI->replaceAllUsesWith(V: Val); |
| 560 | LI->eraseFromParent(); |
| 561 | |
| 562 | return true; |
| 563 | } |
| 564 | |
| 565 | bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { |
| 566 | ReplacementIRBuilder Builder(LI, *DL); |
| 567 | AtomicOrdering Order = LI->getOrdering(); |
| 568 | if (Order == AtomicOrdering::Unordered) |
| 569 | Order = AtomicOrdering::Monotonic; |
| 570 | |
| 571 | Value *Addr = LI->getPointerOperand(); |
| 572 | Type *Ty = LI->getType(); |
| 573 | Constant *DummyVal = Constant::getNullValue(Ty); |
| 574 | |
| 575 | Value *Pair = Builder.CreateAtomicCmpXchg( |
| 576 | Ptr: Addr, Cmp: DummyVal, New: DummyVal, Align: LI->getAlign(), SuccessOrdering: Order, |
| 577 | FailureOrdering: AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: Order)); |
| 578 | Value *Loaded = Builder.CreateExtractValue(Agg: Pair, Idxs: 0, Name: "loaded" ); |
| 579 | |
| 580 | LI->replaceAllUsesWith(V: Loaded); |
| 581 | LI->eraseFromParent(); |
| 582 | |
| 583 | return true; |
| 584 | } |
| 585 | |
| 586 | /// Convert an atomic store of a non-integral type to an integer store of the |
| 587 | /// equivalent bitwidth. We used to not support floating point or vector |
| 588 | /// atomics in the IR at all. The backends learned to deal with the bitcast |
| 589 | /// idiom because that was the only way of expressing the notion of a atomic |
| 590 | /// float or vector store. The long term plan is to teach each backend to |
| 591 | /// instruction select from the original atomic store, but as a migration |
| 592 | /// mechanism, we convert back to the old format which the backends understand. |
| 593 | /// Each backend will need individual work to recognize the new format. |
| 594 | StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { |
| 595 | ReplacementIRBuilder Builder(SI, *DL); |
| 596 | auto *M = SI->getModule(); |
| 597 | Type *NewTy = getCorrespondingIntegerType(T: SI->getValueOperand()->getType(), |
| 598 | DL: M->getDataLayout()); |
| 599 | Value *NewVal = Builder.CreateBitCast(V: SI->getValueOperand(), DestTy: NewTy); |
| 600 | |
| 601 | Value *Addr = SI->getPointerOperand(); |
| 602 | |
| 603 | StoreInst *NewSI = Builder.CreateStore(Val: NewVal, Ptr: Addr); |
| 604 | NewSI->setAlignment(SI->getAlign()); |
| 605 | NewSI->setVolatile(SI->isVolatile()); |
| 606 | NewSI->setAtomic(Ordering: SI->getOrdering(), SSID: SI->getSyncScopeID()); |
| 607 | LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n" ); |
| 608 | SI->eraseFromParent(); |
| 609 | return NewSI; |
| 610 | } |
| 611 | |
| 612 | void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { |
| 613 | // This function is only called on atomic stores that are too large to be |
| 614 | // atomic if implemented as a native store. So we replace them by an |
| 615 | // atomic swap, that can be implemented for example as a ldrex/strex on ARM |
| 616 | // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. |
| 617 | // It is the responsibility of the target to only signal expansion via |
| 618 | // shouldExpandAtomicRMW in cases where this is required and possible. |
| 619 | ReplacementIRBuilder Builder(SI, *DL); |
| 620 | AtomicOrdering Ordering = SI->getOrdering(); |
| 621 | assert(Ordering != AtomicOrdering::NotAtomic); |
| 622 | AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered |
| 623 | ? AtomicOrdering::Monotonic |
| 624 | : Ordering; |
| 625 | AtomicRMWInst *AI = Builder.CreateAtomicRMW( |
| 626 | Op: AtomicRMWInst::Xchg, Ptr: SI->getPointerOperand(), Val: SI->getValueOperand(), |
| 627 | Align: SI->getAlign(), Ordering: RMWOrdering); |
| 628 | SI->eraseFromParent(); |
| 629 | |
| 630 | // Now we have an appropriate swap instruction, lower it as usual. |
| 631 | tryExpandAtomicRMW(AI); |
| 632 | } |
| 633 | |
| 634 | static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, |
| 635 | Value *Loaded, Value *NewVal, Align AddrAlign, |
| 636 | AtomicOrdering MemOpOrder, SyncScope::ID SSID, |
| 637 | Value *&Success, Value *&NewLoaded, |
| 638 | Instruction *MetadataSrc) { |
| 639 | Type *OrigTy = NewVal->getType(); |
| 640 | |
| 641 | // This code can go away when cmpxchg supports FP and vector types. |
| 642 | assert(!OrigTy->isPointerTy()); |
| 643 | bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); |
| 644 | if (NeedBitcast) { |
| 645 | IntegerType *IntTy = Builder.getIntNTy(N: OrigTy->getPrimitiveSizeInBits()); |
| 646 | NewVal = Builder.CreateBitCast(V: NewVal, DestTy: IntTy); |
| 647 | Loaded = Builder.CreateBitCast(V: Loaded, DestTy: IntTy); |
| 648 | } |
| 649 | |
| 650 | AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( |
| 651 | Ptr: Addr, Cmp: Loaded, New: NewVal, Align: AddrAlign, SuccessOrdering: MemOpOrder, |
| 652 | FailureOrdering: AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: MemOpOrder), SSID); |
| 653 | if (MetadataSrc) |
| 654 | copyMetadataForAtomic(Dest&: *Pair, Source: *MetadataSrc); |
| 655 | |
| 656 | Success = Builder.CreateExtractValue(Agg: Pair, Idxs: 1, Name: "success" ); |
| 657 | NewLoaded = Builder.CreateExtractValue(Agg: Pair, Idxs: 0, Name: "newloaded" ); |
| 658 | |
| 659 | if (NeedBitcast) |
| 660 | NewLoaded = Builder.CreateBitCast(V: NewLoaded, DestTy: OrigTy); |
| 661 | } |
| 662 | |
| 663 | bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { |
| 664 | LLVMContext &Ctx = AI->getModule()->getContext(); |
| 665 | TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(RMW: AI); |
| 666 | switch (Kind) { |
| 667 | case TargetLoweringBase::AtomicExpansionKind::None: |
| 668 | return false; |
| 669 | case TargetLoweringBase::AtomicExpansionKind::LLSC: { |
| 670 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
| 671 | unsigned ValueSize = getAtomicOpSize(RMWI: AI); |
| 672 | if (ValueSize < MinCASSize) { |
| 673 | expandPartwordAtomicRMW(I: AI, |
| 674 | ExpansionKind: TargetLoweringBase::AtomicExpansionKind::LLSC); |
| 675 | } else { |
| 676 | auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { |
| 677 | return buildAtomicRMWValue(Op: AI->getOperation(), Builder, Loaded, |
| 678 | Val: AI->getValOperand()); |
| 679 | }; |
| 680 | expandAtomicOpToLLSC(I: AI, ResultTy: AI->getType(), Addr: AI->getPointerOperand(), |
| 681 | AddrAlign: AI->getAlign(), MemOpOrder: AI->getOrdering(), PerformOp); |
| 682 | } |
| 683 | return true; |
| 684 | } |
| 685 | case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { |
| 686 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
| 687 | unsigned ValueSize = getAtomicOpSize(RMWI: AI); |
| 688 | if (ValueSize < MinCASSize) { |
| 689 | expandPartwordAtomicRMW(I: AI, |
| 690 | ExpansionKind: TargetLoweringBase::AtomicExpansionKind::CmpXChg); |
| 691 | } else { |
| 692 | SmallVector<StringRef> SSNs; |
| 693 | Ctx.getSyncScopeNames(SSNs); |
| 694 | auto MemScope = SSNs[AI->getSyncScopeID()].empty() |
| 695 | ? "system" |
| 696 | : SSNs[AI->getSyncScopeID()]; |
| 697 | OptimizationRemarkEmitter ORE(AI->getFunction()); |
| 698 | ORE.emit(RemarkBuilder: [&]() { |
| 699 | return OptimizationRemark(DEBUG_TYPE, "Passed" , AI) |
| 700 | << "A compare and swap loop was generated for an atomic " |
| 701 | << AI->getOperationName(Op: AI->getOperation()) << " operation at " |
| 702 | << MemScope << " memory scope" ; |
| 703 | }); |
| 704 | expandAtomicRMWToCmpXchg(AI, CreateCmpXchg: createCmpXchgInstFun); |
| 705 | } |
| 706 | return true; |
| 707 | } |
| 708 | case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { |
| 709 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
| 710 | unsigned ValueSize = getAtomicOpSize(RMWI: AI); |
| 711 | if (ValueSize < MinCASSize) { |
| 712 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
| 713 | // Widen And/Or/Xor and give the target another chance at expanding it. |
| 714 | if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
| 715 | Op == AtomicRMWInst::And) { |
| 716 | tryExpandAtomicRMW(AI: widenPartwordAtomicRMW(AI)); |
| 717 | return true; |
| 718 | } |
| 719 | } |
| 720 | expandAtomicRMWToMaskedIntrinsic(AI); |
| 721 | return true; |
| 722 | } |
| 723 | case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { |
| 724 | TLI->emitBitTestAtomicRMWIntrinsic(AI); |
| 725 | return true; |
| 726 | } |
| 727 | case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { |
| 728 | TLI->emitCmpArithAtomicRMWIntrinsic(AI); |
| 729 | return true; |
| 730 | } |
| 731 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
| 732 | return lowerAtomicRMWInst(RMWI: AI); |
| 733 | case TargetLoweringBase::AtomicExpansionKind::Expand: |
| 734 | TLI->emitExpandAtomicRMW(AI); |
| 735 | return true; |
| 736 | default: |
| 737 | llvm_unreachable("Unhandled case in tryExpandAtomicRMW" ); |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | namespace { |
| 742 | |
| 743 | struct PartwordMaskValues { |
| 744 | // These three fields are guaranteed to be set by createMaskInstrs. |
| 745 | Type *WordType = nullptr; |
| 746 | Type *ValueType = nullptr; |
| 747 | Type *IntValueType = nullptr; |
| 748 | Value *AlignedAddr = nullptr; |
| 749 | Align AlignedAddrAlignment; |
| 750 | // The remaining fields can be null. |
| 751 | Value *ShiftAmt = nullptr; |
| 752 | Value *Mask = nullptr; |
| 753 | Value *Inv_Mask = nullptr; |
| 754 | }; |
| 755 | |
| 756 | LLVM_ATTRIBUTE_UNUSED |
| 757 | raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { |
| 758 | auto PrintObj = [&O](auto *V) { |
| 759 | if (V) |
| 760 | O << *V; |
| 761 | else |
| 762 | O << "nullptr" ; |
| 763 | O << '\n'; |
| 764 | }; |
| 765 | O << "PartwordMaskValues {\n" ; |
| 766 | O << " WordType: " ; |
| 767 | PrintObj(PMV.WordType); |
| 768 | O << " ValueType: " ; |
| 769 | PrintObj(PMV.ValueType); |
| 770 | O << " AlignedAddr: " ; |
| 771 | PrintObj(PMV.AlignedAddr); |
| 772 | O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; |
| 773 | O << " ShiftAmt: " ; |
| 774 | PrintObj(PMV.ShiftAmt); |
| 775 | O << " Mask: " ; |
| 776 | PrintObj(PMV.Mask); |
| 777 | O << " Inv_Mask: " ; |
| 778 | PrintObj(PMV.Inv_Mask); |
| 779 | O << "}\n" ; |
| 780 | return O; |
| 781 | } |
| 782 | |
| 783 | } // end anonymous namespace |
| 784 | |
| 785 | /// This is a helper function which builds instructions to provide |
| 786 | /// values necessary for partword atomic operations. It takes an |
| 787 | /// incoming address, Addr, and ValueType, and constructs the address, |
| 788 | /// shift-amounts and masks needed to work with a larger value of size |
| 789 | /// WordSize. |
| 790 | /// |
| 791 | /// AlignedAddr: Addr rounded down to a multiple of WordSize |
| 792 | /// |
| 793 | /// ShiftAmt: Number of bits to right-shift a WordSize value loaded |
| 794 | /// from AlignAddr for it to have the same value as if |
| 795 | /// ValueType was loaded from Addr. |
| 796 | /// |
| 797 | /// Mask: Value to mask with the value loaded from AlignAddr to |
| 798 | /// include only the part that would've been loaded from Addr. |
| 799 | /// |
| 800 | /// Inv_Mask: The inverse of Mask. |
| 801 | static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, |
| 802 | Instruction *I, Type *ValueType, |
| 803 | Value *Addr, Align AddrAlign, |
| 804 | unsigned MinWordSize) { |
| 805 | PartwordMaskValues PMV; |
| 806 | |
| 807 | Module *M = I->getModule(); |
| 808 | LLVMContext &Ctx = M->getContext(); |
| 809 | const DataLayout &DL = M->getDataLayout(); |
| 810 | unsigned ValueSize = DL.getTypeStoreSize(Ty: ValueType); |
| 811 | |
| 812 | PMV.ValueType = PMV.IntValueType = ValueType; |
| 813 | if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) |
| 814 | PMV.IntValueType = |
| 815 | Type::getIntNTy(C&: Ctx, N: ValueType->getPrimitiveSizeInBits()); |
| 816 | |
| 817 | PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(C&: Ctx, N: MinWordSize * 8) |
| 818 | : ValueType; |
| 819 | if (PMV.ValueType == PMV.WordType) { |
| 820 | PMV.AlignedAddr = Addr; |
| 821 | PMV.AlignedAddrAlignment = AddrAlign; |
| 822 | PMV.ShiftAmt = ConstantInt::get(Ty: PMV.ValueType, V: 0); |
| 823 | PMV.Mask = ConstantInt::get(Ty: PMV.ValueType, V: ~0, /*isSigned*/ IsSigned: true); |
| 824 | return PMV; |
| 825 | } |
| 826 | |
| 827 | PMV.AlignedAddrAlignment = Align(MinWordSize); |
| 828 | |
| 829 | assert(ValueSize < MinWordSize); |
| 830 | |
| 831 | PointerType *PtrTy = cast<PointerType>(Val: Addr->getType()); |
| 832 | IntegerType *IntTy = DL.getIndexType(C&: Ctx, AddressSpace: PtrTy->getAddressSpace()); |
| 833 | Value *PtrLSB; |
| 834 | |
| 835 | if (AddrAlign < MinWordSize) { |
| 836 | PMV.AlignedAddr = Builder.CreateIntrinsic( |
| 837 | ID: Intrinsic::ptrmask, Types: {PtrTy, IntTy}, |
| 838 | Args: {Addr, ConstantInt::get(Ty: IntTy, V: ~(uint64_t)(MinWordSize - 1))}, FMFSource: nullptr, |
| 839 | Name: "AlignedAddr" ); |
| 840 | |
| 841 | Value *AddrInt = Builder.CreatePtrToInt(V: Addr, DestTy: IntTy); |
| 842 | PtrLSB = Builder.CreateAnd(LHS: AddrInt, RHS: MinWordSize - 1, Name: "PtrLSB" ); |
| 843 | } else { |
| 844 | // If the alignment is high enough, the LSB are known 0. |
| 845 | PMV.AlignedAddr = Addr; |
| 846 | PtrLSB = ConstantInt::getNullValue(Ty: IntTy); |
| 847 | } |
| 848 | |
| 849 | if (DL.isLittleEndian()) { |
| 850 | // turn bytes into bits |
| 851 | PMV.ShiftAmt = Builder.CreateShl(LHS: PtrLSB, RHS: 3); |
| 852 | } else { |
| 853 | // turn bytes into bits, and count from the other side. |
| 854 | PMV.ShiftAmt = Builder.CreateShl( |
| 855 | LHS: Builder.CreateXor(LHS: PtrLSB, RHS: MinWordSize - ValueSize), RHS: 3); |
| 856 | } |
| 857 | |
| 858 | PMV.ShiftAmt = Builder.CreateTrunc(V: PMV.ShiftAmt, DestTy: PMV.WordType, Name: "ShiftAmt" ); |
| 859 | PMV.Mask = Builder.CreateShl( |
| 860 | LHS: ConstantInt::get(Ty: PMV.WordType, V: (1 << (ValueSize * 8)) - 1), RHS: PMV.ShiftAmt, |
| 861 | Name: "Mask" ); |
| 862 | |
| 863 | PMV.Inv_Mask = Builder.CreateNot(V: PMV.Mask, Name: "Inv_Mask" ); |
| 864 | |
| 865 | return PMV; |
| 866 | } |
| 867 | |
| 868 | static Value *(IRBuilderBase &Builder, Value *WideWord, |
| 869 | const PartwordMaskValues &PMV) { |
| 870 | assert(WideWord->getType() == PMV.WordType && "Widened type mismatch" ); |
| 871 | if (PMV.WordType == PMV.ValueType) |
| 872 | return WideWord; |
| 873 | |
| 874 | Value *Shift = Builder.CreateLShr(LHS: WideWord, RHS: PMV.ShiftAmt, Name: "shifted" ); |
| 875 | Value *Trunc = Builder.CreateTrunc(V: Shift, DestTy: PMV.IntValueType, Name: "extracted" ); |
| 876 | return Builder.CreateBitCast(V: Trunc, DestTy: PMV.ValueType); |
| 877 | } |
| 878 | |
| 879 | static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, |
| 880 | Value *Updated, const PartwordMaskValues &PMV) { |
| 881 | assert(WideWord->getType() == PMV.WordType && "Widened type mismatch" ); |
| 882 | assert(Updated->getType() == PMV.ValueType && "Value type mismatch" ); |
| 883 | if (PMV.WordType == PMV.ValueType) |
| 884 | return Updated; |
| 885 | |
| 886 | Updated = Builder.CreateBitCast(V: Updated, DestTy: PMV.IntValueType); |
| 887 | |
| 888 | Value *ZExt = Builder.CreateZExt(V: Updated, DestTy: PMV.WordType, Name: "extended" ); |
| 889 | Value *Shift = |
| 890 | Builder.CreateShl(LHS: ZExt, RHS: PMV.ShiftAmt, Name: "shifted" , /*HasNUW*/ true); |
| 891 | Value *And = Builder.CreateAnd(LHS: WideWord, RHS: PMV.Inv_Mask, Name: "unmasked" ); |
| 892 | Value *Or = Builder.CreateOr(LHS: And, RHS: Shift, Name: "inserted" ); |
| 893 | return Or; |
| 894 | } |
| 895 | |
| 896 | /// Emit IR to implement a masked version of a given atomicrmw |
| 897 | /// operation. (That is, only the bits under the Mask should be |
| 898 | /// affected by the operation) |
| 899 | static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, |
| 900 | IRBuilderBase &Builder, Value *Loaded, |
| 901 | Value *Shifted_Inc, Value *Inc, |
| 902 | const PartwordMaskValues &PMV) { |
| 903 | // TODO: update to use |
| 904 | // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order |
| 905 | // to merge bits from two values without requiring PMV.Inv_Mask. |
| 906 | switch (Op) { |
| 907 | case AtomicRMWInst::Xchg: { |
| 908 | Value *Loaded_MaskOut = Builder.CreateAnd(LHS: Loaded, RHS: PMV.Inv_Mask); |
| 909 | Value *FinalVal = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: Shifted_Inc); |
| 910 | return FinalVal; |
| 911 | } |
| 912 | case AtomicRMWInst::Or: |
| 913 | case AtomicRMWInst::Xor: |
| 914 | case AtomicRMWInst::And: |
| 915 | llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW" ); |
| 916 | case AtomicRMWInst::Add: |
| 917 | case AtomicRMWInst::Sub: |
| 918 | case AtomicRMWInst::Nand: { |
| 919 | // The other arithmetic ops need to be masked into place. |
| 920 | Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Val: Shifted_Inc); |
| 921 | Value *NewVal_Masked = Builder.CreateAnd(LHS: NewVal, RHS: PMV.Mask); |
| 922 | Value *Loaded_MaskOut = Builder.CreateAnd(LHS: Loaded, RHS: PMV.Inv_Mask); |
| 923 | Value *FinalVal = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: NewVal_Masked); |
| 924 | return FinalVal; |
| 925 | } |
| 926 | case AtomicRMWInst::Max: |
| 927 | case AtomicRMWInst::Min: |
| 928 | case AtomicRMWInst::UMax: |
| 929 | case AtomicRMWInst::UMin: |
| 930 | case AtomicRMWInst::FAdd: |
| 931 | case AtomicRMWInst::FSub: |
| 932 | case AtomicRMWInst::FMin: |
| 933 | case AtomicRMWInst::FMax: |
| 934 | case AtomicRMWInst::FMaximum: |
| 935 | case AtomicRMWInst::FMinimum: |
| 936 | case AtomicRMWInst::UIncWrap: |
| 937 | case AtomicRMWInst::UDecWrap: |
| 938 | case AtomicRMWInst::USubCond: |
| 939 | case AtomicRMWInst::USubSat: { |
| 940 | // Finally, other ops will operate on the full value, so truncate down to |
| 941 | // the original size, and expand out again after doing the |
| 942 | // operation. Bitcasts will be inserted for FP values. |
| 943 | Value * = extractMaskedValue(Builder, WideWord: Loaded, PMV); |
| 944 | Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded: Loaded_Extract, Val: Inc); |
| 945 | Value *FinalVal = insertMaskedValue(Builder, WideWord: Loaded, Updated: NewVal, PMV); |
| 946 | return FinalVal; |
| 947 | } |
| 948 | default: |
| 949 | llvm_unreachable("Unknown atomic op" ); |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | /// Expand a sub-word atomicrmw operation into an appropriate |
| 954 | /// word-sized operation. |
| 955 | /// |
| 956 | /// It will create an LL/SC or cmpxchg loop, as appropriate, the same |
| 957 | /// way as a typical atomicrmw expansion. The only difference here is |
| 958 | /// that the operation inside of the loop may operate upon only a |
| 959 | /// part of the value. |
| 960 | void AtomicExpandImpl::expandPartwordAtomicRMW( |
| 961 | AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { |
| 962 | // Widen And/Or/Xor and give the target another chance at expanding it. |
| 963 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
| 964 | if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
| 965 | Op == AtomicRMWInst::And) { |
| 966 | tryExpandAtomicRMW(AI: widenPartwordAtomicRMW(AI)); |
| 967 | return; |
| 968 | } |
| 969 | AtomicOrdering MemOpOrder = AI->getOrdering(); |
| 970 | SyncScope::ID SSID = AI->getSyncScopeID(); |
| 971 | |
| 972 | ReplacementIRBuilder Builder(AI, *DL); |
| 973 | |
| 974 | PartwordMaskValues PMV = |
| 975 | createMaskInstrs(Builder, I: AI, ValueType: AI->getType(), Addr: AI->getPointerOperand(), |
| 976 | AddrAlign: AI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
| 977 | |
| 978 | Value *ValOperand_Shifted = nullptr; |
| 979 | if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || |
| 980 | Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { |
| 981 | Value *ValOp = Builder.CreateBitCast(V: AI->getValOperand(), DestTy: PMV.IntValueType); |
| 982 | ValOperand_Shifted = |
| 983 | Builder.CreateShl(LHS: Builder.CreateZExt(V: ValOp, DestTy: PMV.WordType), RHS: PMV.ShiftAmt, |
| 984 | Name: "ValOperand_Shifted" ); |
| 985 | } |
| 986 | |
| 987 | auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { |
| 988 | return performMaskedAtomicOp(Op, Builder, Loaded, Shifted_Inc: ValOperand_Shifted, |
| 989 | Inc: AI->getValOperand(), PMV); |
| 990 | }; |
| 991 | |
| 992 | Value *OldResult; |
| 993 | if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { |
| 994 | OldResult = insertRMWCmpXchgLoop( |
| 995 | Builder, ResultType: PMV.WordType, Addr: PMV.AlignedAddr, AddrAlign: PMV.AlignedAddrAlignment, |
| 996 | MemOpOrder, SSID, PerformOp: PerformPartwordOp, CreateCmpXchg: createCmpXchgInstFun, MetadataSrc: AI); |
| 997 | } else { |
| 998 | assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); |
| 999 | OldResult = insertRMWLLSCLoop(Builder, ResultTy: PMV.WordType, Addr: PMV.AlignedAddr, |
| 1000 | AddrAlign: PMV.AlignedAddrAlignment, MemOpOrder, |
| 1001 | PerformOp: PerformPartwordOp); |
| 1002 | } |
| 1003 | |
| 1004 | Value *FinalOldResult = extractMaskedValue(Builder, WideWord: OldResult, PMV); |
| 1005 | AI->replaceAllUsesWith(V: FinalOldResult); |
| 1006 | AI->eraseFromParent(); |
| 1007 | } |
| 1008 | |
| 1009 | // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. |
| 1010 | AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { |
| 1011 | ReplacementIRBuilder Builder(AI, *DL); |
| 1012 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
| 1013 | |
| 1014 | assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
| 1015 | Op == AtomicRMWInst::And) && |
| 1016 | "Unable to widen operation" ); |
| 1017 | |
| 1018 | PartwordMaskValues PMV = |
| 1019 | createMaskInstrs(Builder, I: AI, ValueType: AI->getType(), Addr: AI->getPointerOperand(), |
| 1020 | AddrAlign: AI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
| 1021 | |
| 1022 | Value *ValOperand_Shifted = |
| 1023 | Builder.CreateShl(LHS: Builder.CreateZExt(V: AI->getValOperand(), DestTy: PMV.WordType), |
| 1024 | RHS: PMV.ShiftAmt, Name: "ValOperand_Shifted" ); |
| 1025 | |
| 1026 | Value *NewOperand; |
| 1027 | |
| 1028 | if (Op == AtomicRMWInst::And) |
| 1029 | NewOperand = |
| 1030 | Builder.CreateOr(LHS: ValOperand_Shifted, RHS: PMV.Inv_Mask, Name: "AndOperand" ); |
| 1031 | else |
| 1032 | NewOperand = ValOperand_Shifted; |
| 1033 | |
| 1034 | AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( |
| 1035 | Op, Ptr: PMV.AlignedAddr, Val: NewOperand, Align: PMV.AlignedAddrAlignment, |
| 1036 | Ordering: AI->getOrdering(), SSID: AI->getSyncScopeID()); |
| 1037 | |
| 1038 | copyMetadataForAtomic(Dest&: *NewAI, Source: *AI); |
| 1039 | |
| 1040 | Value *FinalOldResult = extractMaskedValue(Builder, WideWord: NewAI, PMV); |
| 1041 | AI->replaceAllUsesWith(V: FinalOldResult); |
| 1042 | AI->eraseFromParent(); |
| 1043 | return NewAI; |
| 1044 | } |
| 1045 | |
| 1046 | bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { |
| 1047 | // The basic idea here is that we're expanding a cmpxchg of a |
| 1048 | // smaller memory size up to a word-sized cmpxchg. To do this, we |
| 1049 | // need to add a retry-loop for strong cmpxchg, so that |
| 1050 | // modifications to other parts of the word don't cause a spurious |
| 1051 | // failure. |
| 1052 | |
| 1053 | // This generates code like the following: |
| 1054 | // [[Setup mask values PMV.*]] |
| 1055 | // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt |
| 1056 | // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt |
| 1057 | // %InitLoaded = load i32* %addr |
| 1058 | // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask |
| 1059 | // br partword.cmpxchg.loop |
| 1060 | // partword.cmpxchg.loop: |
| 1061 | // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], |
| 1062 | // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] |
| 1063 | // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted |
| 1064 | // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted |
| 1065 | // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, |
| 1066 | // i32 %FullWord_NewVal success_ordering failure_ordering |
| 1067 | // %OldVal = extractvalue { i32, i1 } %NewCI, 0 |
| 1068 | // %Success = extractvalue { i32, i1 } %NewCI, 1 |
| 1069 | // br i1 %Success, label %partword.cmpxchg.end, |
| 1070 | // label %partword.cmpxchg.failure |
| 1071 | // partword.cmpxchg.failure: |
| 1072 | // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask |
| 1073 | // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut |
| 1074 | // br i1 %ShouldContinue, label %partword.cmpxchg.loop, |
| 1075 | // label %partword.cmpxchg.end |
| 1076 | // partword.cmpxchg.end: |
| 1077 | // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt |
| 1078 | // %FinalOldVal = trunc i32 %tmp1 to i8 |
| 1079 | // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 |
| 1080 | // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 |
| 1081 | |
| 1082 | Value *Addr = CI->getPointerOperand(); |
| 1083 | Value *Cmp = CI->getCompareOperand(); |
| 1084 | Value *NewVal = CI->getNewValOperand(); |
| 1085 | |
| 1086 | BasicBlock *BB = CI->getParent(); |
| 1087 | Function *F = BB->getParent(); |
| 1088 | ReplacementIRBuilder Builder(CI, *DL); |
| 1089 | LLVMContext &Ctx = Builder.getContext(); |
| 1090 | |
| 1091 | BasicBlock *EndBB = |
| 1092 | BB->splitBasicBlock(I: CI->getIterator(), BBName: "partword.cmpxchg.end" ); |
| 1093 | auto FailureBB = |
| 1094 | BasicBlock::Create(Context&: Ctx, Name: "partword.cmpxchg.failure" , Parent: F, InsertBefore: EndBB); |
| 1095 | auto LoopBB = BasicBlock::Create(Context&: Ctx, Name: "partword.cmpxchg.loop" , Parent: F, InsertBefore: FailureBB); |
| 1096 | |
| 1097 | // The split call above "helpfully" added a branch at the end of BB |
| 1098 | // (to the wrong place). |
| 1099 | std::prev(x: BB->end())->eraseFromParent(); |
| 1100 | Builder.SetInsertPoint(BB); |
| 1101 | |
| 1102 | PartwordMaskValues PMV = |
| 1103 | createMaskInstrs(Builder, I: CI, ValueType: CI->getCompareOperand()->getType(), Addr, |
| 1104 | AddrAlign: CI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
| 1105 | |
| 1106 | // Shift the incoming values over, into the right location in the word. |
| 1107 | Value *NewVal_Shifted = |
| 1108 | Builder.CreateShl(LHS: Builder.CreateZExt(V: NewVal, DestTy: PMV.WordType), RHS: PMV.ShiftAmt); |
| 1109 | Value *Cmp_Shifted = |
| 1110 | Builder.CreateShl(LHS: Builder.CreateZExt(V: Cmp, DestTy: PMV.WordType), RHS: PMV.ShiftAmt); |
| 1111 | |
| 1112 | // Load the entire current word, and mask into place the expected and new |
| 1113 | // values |
| 1114 | LoadInst *InitLoaded = Builder.CreateLoad(Ty: PMV.WordType, Ptr: PMV.AlignedAddr); |
| 1115 | InitLoaded->setVolatile(CI->isVolatile()); |
| 1116 | Value *InitLoaded_MaskOut = Builder.CreateAnd(LHS: InitLoaded, RHS: PMV.Inv_Mask); |
| 1117 | Builder.CreateBr(Dest: LoopBB); |
| 1118 | |
| 1119 | // partword.cmpxchg.loop: |
| 1120 | Builder.SetInsertPoint(LoopBB); |
| 1121 | PHINode *Loaded_MaskOut = Builder.CreatePHI(Ty: PMV.WordType, NumReservedValues: 2); |
| 1122 | Loaded_MaskOut->addIncoming(V: InitLoaded_MaskOut, BB); |
| 1123 | |
| 1124 | // Mask/Or the expected and new values into place in the loaded word. |
| 1125 | Value *FullWord_NewVal = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: NewVal_Shifted); |
| 1126 | Value *FullWord_Cmp = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: Cmp_Shifted); |
| 1127 | AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( |
| 1128 | Ptr: PMV.AlignedAddr, Cmp: FullWord_Cmp, New: FullWord_NewVal, Align: PMV.AlignedAddrAlignment, |
| 1129 | SuccessOrdering: CI->getSuccessOrdering(), FailureOrdering: CI->getFailureOrdering(), SSID: CI->getSyncScopeID()); |
| 1130 | NewCI->setVolatile(CI->isVolatile()); |
| 1131 | // When we're building a strong cmpxchg, we need a loop, so you |
| 1132 | // might think we could use a weak cmpxchg inside. But, using strong |
| 1133 | // allows the below comparison for ShouldContinue, and we're |
| 1134 | // expecting the underlying cmpxchg to be a machine instruction, |
| 1135 | // which is strong anyways. |
| 1136 | NewCI->setWeak(CI->isWeak()); |
| 1137 | |
| 1138 | Value *OldVal = Builder.CreateExtractValue(Agg: NewCI, Idxs: 0); |
| 1139 | Value *Success = Builder.CreateExtractValue(Agg: NewCI, Idxs: 1); |
| 1140 | |
| 1141 | if (CI->isWeak()) |
| 1142 | Builder.CreateBr(Dest: EndBB); |
| 1143 | else |
| 1144 | Builder.CreateCondBr(Cond: Success, True: EndBB, False: FailureBB); |
| 1145 | |
| 1146 | // partword.cmpxchg.failure: |
| 1147 | Builder.SetInsertPoint(FailureBB); |
| 1148 | // Upon failure, verify that the masked-out part of the loaded value |
| 1149 | // has been modified. If it didn't, abort the cmpxchg, since the |
| 1150 | // masked-in part must've. |
| 1151 | Value *OldVal_MaskOut = Builder.CreateAnd(LHS: OldVal, RHS: PMV.Inv_Mask); |
| 1152 | Value *ShouldContinue = Builder.CreateICmpNE(LHS: Loaded_MaskOut, RHS: OldVal_MaskOut); |
| 1153 | Builder.CreateCondBr(Cond: ShouldContinue, True: LoopBB, False: EndBB); |
| 1154 | |
| 1155 | // Add the second value to the phi from above |
| 1156 | Loaded_MaskOut->addIncoming(V: OldVal_MaskOut, BB: FailureBB); |
| 1157 | |
| 1158 | // partword.cmpxchg.end: |
| 1159 | Builder.SetInsertPoint(CI); |
| 1160 | |
| 1161 | Value *FinalOldVal = extractMaskedValue(Builder, WideWord: OldVal, PMV); |
| 1162 | Value *Res = PoisonValue::get(T: CI->getType()); |
| 1163 | Res = Builder.CreateInsertValue(Agg: Res, Val: FinalOldVal, Idxs: 0); |
| 1164 | Res = Builder.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
| 1165 | |
| 1166 | CI->replaceAllUsesWith(V: Res); |
| 1167 | CI->eraseFromParent(); |
| 1168 | return true; |
| 1169 | } |
| 1170 | |
| 1171 | void AtomicExpandImpl::expandAtomicOpToLLSC( |
| 1172 | Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, |
| 1173 | AtomicOrdering MemOpOrder, |
| 1174 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { |
| 1175 | ReplacementIRBuilder Builder(I, *DL); |
| 1176 | Value *Loaded = insertRMWLLSCLoop(Builder, ResultTy: ResultType, Addr, AddrAlign, |
| 1177 | MemOpOrder, PerformOp); |
| 1178 | |
| 1179 | I->replaceAllUsesWith(V: Loaded); |
| 1180 | I->eraseFromParent(); |
| 1181 | } |
| 1182 | |
| 1183 | void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { |
| 1184 | ReplacementIRBuilder Builder(AI, *DL); |
| 1185 | |
| 1186 | PartwordMaskValues PMV = |
| 1187 | createMaskInstrs(Builder, I: AI, ValueType: AI->getType(), Addr: AI->getPointerOperand(), |
| 1188 | AddrAlign: AI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
| 1189 | |
| 1190 | // The value operand must be sign-extended for signed min/max so that the |
| 1191 | // target's signed comparison instructions can be used. Otherwise, just |
| 1192 | // zero-ext. |
| 1193 | Instruction::CastOps CastOp = Instruction::ZExt; |
| 1194 | AtomicRMWInst::BinOp RMWOp = AI->getOperation(); |
| 1195 | if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) |
| 1196 | CastOp = Instruction::SExt; |
| 1197 | |
| 1198 | Value *ValOperand_Shifted = Builder.CreateShl( |
| 1199 | LHS: Builder.CreateCast(Op: CastOp, V: AI->getValOperand(), DestTy: PMV.WordType), |
| 1200 | RHS: PMV.ShiftAmt, Name: "ValOperand_Shifted" ); |
| 1201 | Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( |
| 1202 | Builder, AI, AlignedAddr: PMV.AlignedAddr, Incr: ValOperand_Shifted, Mask: PMV.Mask, ShiftAmt: PMV.ShiftAmt, |
| 1203 | Ord: AI->getOrdering()); |
| 1204 | Value *FinalOldResult = extractMaskedValue(Builder, WideWord: OldResult, PMV); |
| 1205 | AI->replaceAllUsesWith(V: FinalOldResult); |
| 1206 | AI->eraseFromParent(); |
| 1207 | } |
| 1208 | |
| 1209 | void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( |
| 1210 | AtomicCmpXchgInst *CI) { |
| 1211 | ReplacementIRBuilder Builder(CI, *DL); |
| 1212 | |
| 1213 | PartwordMaskValues PMV = createMaskInstrs( |
| 1214 | Builder, I: CI, ValueType: CI->getCompareOperand()->getType(), Addr: CI->getPointerOperand(), |
| 1215 | AddrAlign: CI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
| 1216 | |
| 1217 | Value *CmpVal_Shifted = Builder.CreateShl( |
| 1218 | LHS: Builder.CreateZExt(V: CI->getCompareOperand(), DestTy: PMV.WordType), RHS: PMV.ShiftAmt, |
| 1219 | Name: "CmpVal_Shifted" ); |
| 1220 | Value *NewVal_Shifted = Builder.CreateShl( |
| 1221 | LHS: Builder.CreateZExt(V: CI->getNewValOperand(), DestTy: PMV.WordType), RHS: PMV.ShiftAmt, |
| 1222 | Name: "NewVal_Shifted" ); |
| 1223 | Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( |
| 1224 | Builder, CI, AlignedAddr: PMV.AlignedAddr, CmpVal: CmpVal_Shifted, NewVal: NewVal_Shifted, Mask: PMV.Mask, |
| 1225 | Ord: CI->getMergedOrdering()); |
| 1226 | Value *FinalOldVal = extractMaskedValue(Builder, WideWord: OldVal, PMV); |
| 1227 | Value *Res = PoisonValue::get(T: CI->getType()); |
| 1228 | Res = Builder.CreateInsertValue(Agg: Res, Val: FinalOldVal, Idxs: 0); |
| 1229 | Value *Success = Builder.CreateICmpEQ( |
| 1230 | LHS: CmpVal_Shifted, RHS: Builder.CreateAnd(LHS: OldVal, RHS: PMV.Mask), Name: "Success" ); |
| 1231 | Res = Builder.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
| 1232 | |
| 1233 | CI->replaceAllUsesWith(V: Res); |
| 1234 | CI->eraseFromParent(); |
| 1235 | } |
| 1236 | |
| 1237 | Value *AtomicExpandImpl::insertRMWLLSCLoop( |
| 1238 | IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, |
| 1239 | AtomicOrdering MemOpOrder, |
| 1240 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { |
| 1241 | LLVMContext &Ctx = Builder.getContext(); |
| 1242 | BasicBlock *BB = Builder.GetInsertBlock(); |
| 1243 | Function *F = BB->getParent(); |
| 1244 | |
| 1245 | assert(AddrAlign >= |
| 1246 | F->getDataLayout().getTypeStoreSize(ResultTy) && |
| 1247 | "Expected at least natural alignment at this point." ); |
| 1248 | |
| 1249 | // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
| 1250 | // |
| 1251 | // The standard expansion we produce is: |
| 1252 | // [...] |
| 1253 | // atomicrmw.start: |
| 1254 | // %loaded = @load.linked(%addr) |
| 1255 | // %new = some_op iN %loaded, %incr |
| 1256 | // %stored = @store_conditional(%new, %addr) |
| 1257 | // %try_again = icmp i32 ne %stored, 0 |
| 1258 | // br i1 %try_again, label %loop, label %atomicrmw.end |
| 1259 | // atomicrmw.end: |
| 1260 | // [...] |
| 1261 | BasicBlock *ExitBB = |
| 1262 | BB->splitBasicBlock(I: Builder.GetInsertPoint(), BBName: "atomicrmw.end" ); |
| 1263 | BasicBlock *LoopBB = BasicBlock::Create(Context&: Ctx, Name: "atomicrmw.start" , Parent: F, InsertBefore: ExitBB); |
| 1264 | |
| 1265 | // The split call above "helpfully" added a branch at the end of BB (to the |
| 1266 | // wrong place). |
| 1267 | std::prev(x: BB->end())->eraseFromParent(); |
| 1268 | Builder.SetInsertPoint(BB); |
| 1269 | Builder.CreateBr(Dest: LoopBB); |
| 1270 | |
| 1271 | // Start the main loop block now that we've taken care of the preliminaries. |
| 1272 | Builder.SetInsertPoint(LoopBB); |
| 1273 | Value *Loaded = TLI->emitLoadLinked(Builder, ValueTy: ResultTy, Addr, Ord: MemOpOrder); |
| 1274 | |
| 1275 | Value *NewVal = PerformOp(Builder, Loaded); |
| 1276 | |
| 1277 | Value *StoreSuccess = |
| 1278 | TLI->emitStoreConditional(Builder, Val: NewVal, Addr, Ord: MemOpOrder); |
| 1279 | Value *TryAgain = Builder.CreateICmpNE( |
| 1280 | LHS: StoreSuccess, RHS: ConstantInt::get(Ty: IntegerType::get(C&: Ctx, NumBits: 32), V: 0), Name: "tryagain" ); |
| 1281 | Builder.CreateCondBr(Cond: TryAgain, True: LoopBB, False: ExitBB); |
| 1282 | |
| 1283 | Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin()); |
| 1284 | return Loaded; |
| 1285 | } |
| 1286 | |
| 1287 | /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of |
| 1288 | /// the equivalent bitwidth. We used to not support pointer cmpxchg in the |
| 1289 | /// IR. As a migration step, we convert back to what use to be the standard |
| 1290 | /// way to represent a pointer cmpxchg so that we can update backends one by |
| 1291 | /// one. |
| 1292 | AtomicCmpXchgInst * |
| 1293 | AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { |
| 1294 | auto *M = CI->getModule(); |
| 1295 | Type *NewTy = getCorrespondingIntegerType(T: CI->getCompareOperand()->getType(), |
| 1296 | DL: M->getDataLayout()); |
| 1297 | |
| 1298 | ReplacementIRBuilder Builder(CI, *DL); |
| 1299 | |
| 1300 | Value *Addr = CI->getPointerOperand(); |
| 1301 | |
| 1302 | Value *NewCmp = Builder.CreatePtrToInt(V: CI->getCompareOperand(), DestTy: NewTy); |
| 1303 | Value *NewNewVal = Builder.CreatePtrToInt(V: CI->getNewValOperand(), DestTy: NewTy); |
| 1304 | |
| 1305 | auto *NewCI = Builder.CreateAtomicCmpXchg( |
| 1306 | Ptr: Addr, Cmp: NewCmp, New: NewNewVal, Align: CI->getAlign(), SuccessOrdering: CI->getSuccessOrdering(), |
| 1307 | FailureOrdering: CI->getFailureOrdering(), SSID: CI->getSyncScopeID()); |
| 1308 | NewCI->setVolatile(CI->isVolatile()); |
| 1309 | NewCI->setWeak(CI->isWeak()); |
| 1310 | LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n" ); |
| 1311 | |
| 1312 | Value *OldVal = Builder.CreateExtractValue(Agg: NewCI, Idxs: 0); |
| 1313 | Value *Succ = Builder.CreateExtractValue(Agg: NewCI, Idxs: 1); |
| 1314 | |
| 1315 | OldVal = Builder.CreateIntToPtr(V: OldVal, DestTy: CI->getCompareOperand()->getType()); |
| 1316 | |
| 1317 | Value *Res = PoisonValue::get(T: CI->getType()); |
| 1318 | Res = Builder.CreateInsertValue(Agg: Res, Val: OldVal, Idxs: 0); |
| 1319 | Res = Builder.CreateInsertValue(Agg: Res, Val: Succ, Idxs: 1); |
| 1320 | |
| 1321 | CI->replaceAllUsesWith(V: Res); |
| 1322 | CI->eraseFromParent(); |
| 1323 | return NewCI; |
| 1324 | } |
| 1325 | |
| 1326 | bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
| 1327 | AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); |
| 1328 | AtomicOrdering FailureOrder = CI->getFailureOrdering(); |
| 1329 | Value *Addr = CI->getPointerOperand(); |
| 1330 | BasicBlock *BB = CI->getParent(); |
| 1331 | Function *F = BB->getParent(); |
| 1332 | LLVMContext &Ctx = F->getContext(); |
| 1333 | // If shouldInsertFencesForAtomic() returns true, then the target does not |
| 1334 | // want to deal with memory orders, and emitLeading/TrailingFence should take |
| 1335 | // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we |
| 1336 | // should preserve the ordering. |
| 1337 | bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(I: CI); |
| 1338 | AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic |
| 1339 | ? AtomicOrdering::Monotonic |
| 1340 | : CI->getMergedOrdering(); |
| 1341 | |
| 1342 | // In implementations which use a barrier to achieve release semantics, we can |
| 1343 | // delay emitting this barrier until we know a store is actually going to be |
| 1344 | // attempted. The cost of this delay is that we need 2 copies of the block |
| 1345 | // emitting the load-linked, affecting code size. |
| 1346 | // |
| 1347 | // Ideally, this logic would be unconditional except for the minsize check |
| 1348 | // since in other cases the extra blocks naturally collapse down to the |
| 1349 | // minimal loop. Unfortunately, this puts too much stress on later |
| 1350 | // optimisations so we avoid emitting the extra logic in those cases too. |
| 1351 | bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && |
| 1352 | SuccessOrder != AtomicOrdering::Monotonic && |
| 1353 | SuccessOrder != AtomicOrdering::Acquire && |
| 1354 | !F->hasMinSize(); |
| 1355 | |
| 1356 | // There's no overhead for sinking the release barrier in a weak cmpxchg, so |
| 1357 | // do it even on minsize. |
| 1358 | bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); |
| 1359 | |
| 1360 | // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord |
| 1361 | // |
| 1362 | // The full expansion we produce is: |
| 1363 | // [...] |
| 1364 | // %aligned.addr = ... |
| 1365 | // cmpxchg.start: |
| 1366 | // %unreleasedload = @load.linked(%aligned.addr) |
| 1367 | // %unreleasedload.extract = extract value from %unreleasedload |
| 1368 | // %should_store = icmp eq %unreleasedload.extract, %desired |
| 1369 | // br i1 %should_store, label %cmpxchg.releasingstore, |
| 1370 | // label %cmpxchg.nostore |
| 1371 | // cmpxchg.releasingstore: |
| 1372 | // fence? |
| 1373 | // br label cmpxchg.trystore |
| 1374 | // cmpxchg.trystore: |
| 1375 | // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], |
| 1376 | // [%releasedload, %cmpxchg.releasedload] |
| 1377 | // %updated.new = insert %new into %loaded.trystore |
| 1378 | // %stored = @store_conditional(%updated.new, %aligned.addr) |
| 1379 | // %success = icmp eq i32 %stored, 0 |
| 1380 | // br i1 %success, label %cmpxchg.success, |
| 1381 | // label %cmpxchg.releasedload/%cmpxchg.failure |
| 1382 | // cmpxchg.releasedload: |
| 1383 | // %releasedload = @load.linked(%aligned.addr) |
| 1384 | // %releasedload.extract = extract value from %releasedload |
| 1385 | // %should_store = icmp eq %releasedload.extract, %desired |
| 1386 | // br i1 %should_store, label %cmpxchg.trystore, |
| 1387 | // label %cmpxchg.failure |
| 1388 | // cmpxchg.success: |
| 1389 | // fence? |
| 1390 | // br label %cmpxchg.end |
| 1391 | // cmpxchg.nostore: |
| 1392 | // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], |
| 1393 | // [%releasedload, |
| 1394 | // %cmpxchg.releasedload/%cmpxchg.trystore] |
| 1395 | // @load_linked_fail_balance()? |
| 1396 | // br label %cmpxchg.failure |
| 1397 | // cmpxchg.failure: |
| 1398 | // fence? |
| 1399 | // br label %cmpxchg.end |
| 1400 | // cmpxchg.end: |
| 1401 | // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], |
| 1402 | // [%loaded.trystore, %cmpxchg.trystore] |
| 1403 | // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] |
| 1404 | // %loaded = extract value from %loaded.exit |
| 1405 | // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 |
| 1406 | // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 |
| 1407 | // [...] |
| 1408 | BasicBlock *ExitBB = BB->splitBasicBlock(I: CI->getIterator(), BBName: "cmpxchg.end" ); |
| 1409 | auto FailureBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.failure" , Parent: F, InsertBefore: ExitBB); |
| 1410 | auto NoStoreBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.nostore" , Parent: F, InsertBefore: FailureBB); |
| 1411 | auto SuccessBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.success" , Parent: F, InsertBefore: NoStoreBB); |
| 1412 | auto ReleasedLoadBB = |
| 1413 | BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.releasedload" , Parent: F, InsertBefore: SuccessBB); |
| 1414 | auto TryStoreBB = |
| 1415 | BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.trystore" , Parent: F, InsertBefore: ReleasedLoadBB); |
| 1416 | auto ReleasingStoreBB = |
| 1417 | BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.fencedstore" , Parent: F, InsertBefore: TryStoreBB); |
| 1418 | auto StartBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.start" , Parent: F, InsertBefore: ReleasingStoreBB); |
| 1419 | |
| 1420 | ReplacementIRBuilder Builder(CI, *DL); |
| 1421 | |
| 1422 | // The split call above "helpfully" added a branch at the end of BB (to the |
| 1423 | // wrong place), but we might want a fence too. It's easiest to just remove |
| 1424 | // the branch entirely. |
| 1425 | std::prev(x: BB->end())->eraseFromParent(); |
| 1426 | Builder.SetInsertPoint(BB); |
| 1427 | if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) |
| 1428 | TLI->emitLeadingFence(Builder, Inst: CI, Ord: SuccessOrder); |
| 1429 | |
| 1430 | PartwordMaskValues PMV = |
| 1431 | createMaskInstrs(Builder, I: CI, ValueType: CI->getCompareOperand()->getType(), Addr, |
| 1432 | AddrAlign: CI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
| 1433 | Builder.CreateBr(Dest: StartBB); |
| 1434 | |
| 1435 | // Start the main loop block now that we've taken care of the preliminaries. |
| 1436 | Builder.SetInsertPoint(StartBB); |
| 1437 | Value *UnreleasedLoad = |
| 1438 | TLI->emitLoadLinked(Builder, ValueTy: PMV.WordType, Addr: PMV.AlignedAddr, Ord: MemOpOrder); |
| 1439 | Value * = |
| 1440 | extractMaskedValue(Builder, WideWord: UnreleasedLoad, PMV); |
| 1441 | Value *ShouldStore = Builder.CreateICmpEQ( |
| 1442 | LHS: UnreleasedLoadExtract, RHS: CI->getCompareOperand(), Name: "should_store" ); |
| 1443 | |
| 1444 | // If the cmpxchg doesn't actually need any ordering when it fails, we can |
| 1445 | // jump straight past that fence instruction (if it exists). |
| 1446 | Builder.CreateCondBr(Cond: ShouldStore, True: ReleasingStoreBB, False: NoStoreBB); |
| 1447 | |
| 1448 | Builder.SetInsertPoint(ReleasingStoreBB); |
| 1449 | if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) |
| 1450 | TLI->emitLeadingFence(Builder, Inst: CI, Ord: SuccessOrder); |
| 1451 | Builder.CreateBr(Dest: TryStoreBB); |
| 1452 | |
| 1453 | Builder.SetInsertPoint(TryStoreBB); |
| 1454 | PHINode *LoadedTryStore = |
| 1455 | Builder.CreatePHI(Ty: PMV.WordType, NumReservedValues: 2, Name: "loaded.trystore" ); |
| 1456 | LoadedTryStore->addIncoming(V: UnreleasedLoad, BB: ReleasingStoreBB); |
| 1457 | Value *NewValueInsert = |
| 1458 | insertMaskedValue(Builder, WideWord: LoadedTryStore, Updated: CI->getNewValOperand(), PMV); |
| 1459 | Value *StoreSuccess = TLI->emitStoreConditional(Builder, Val: NewValueInsert, |
| 1460 | Addr: PMV.AlignedAddr, Ord: MemOpOrder); |
| 1461 | StoreSuccess = Builder.CreateICmpEQ( |
| 1462 | LHS: StoreSuccess, RHS: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0), Name: "success" ); |
| 1463 | BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; |
| 1464 | Builder.CreateCondBr(Cond: StoreSuccess, True: SuccessBB, |
| 1465 | False: CI->isWeak() ? FailureBB : RetryBB); |
| 1466 | |
| 1467 | Builder.SetInsertPoint(ReleasedLoadBB); |
| 1468 | Value *SecondLoad; |
| 1469 | if (HasReleasedLoadBB) { |
| 1470 | SecondLoad = |
| 1471 | TLI->emitLoadLinked(Builder, ValueTy: PMV.WordType, Addr: PMV.AlignedAddr, Ord: MemOpOrder); |
| 1472 | Value * = extractMaskedValue(Builder, WideWord: SecondLoad, PMV); |
| 1473 | ShouldStore = Builder.CreateICmpEQ(LHS: SecondLoadExtract, |
| 1474 | RHS: CI->getCompareOperand(), Name: "should_store" ); |
| 1475 | |
| 1476 | // If the cmpxchg doesn't actually need any ordering when it fails, we can |
| 1477 | // jump straight past that fence instruction (if it exists). |
| 1478 | Builder.CreateCondBr(Cond: ShouldStore, True: TryStoreBB, False: NoStoreBB); |
| 1479 | // Update PHI node in TryStoreBB. |
| 1480 | LoadedTryStore->addIncoming(V: SecondLoad, BB: ReleasedLoadBB); |
| 1481 | } else |
| 1482 | Builder.CreateUnreachable(); |
| 1483 | |
| 1484 | // Make sure later instructions don't get reordered with a fence if |
| 1485 | // necessary. |
| 1486 | Builder.SetInsertPoint(SuccessBB); |
| 1487 | if (ShouldInsertFencesForAtomic || |
| 1488 | TLI->shouldInsertTrailingFenceForAtomicStore(I: CI)) |
| 1489 | TLI->emitTrailingFence(Builder, Inst: CI, Ord: SuccessOrder); |
| 1490 | Builder.CreateBr(Dest: ExitBB); |
| 1491 | |
| 1492 | Builder.SetInsertPoint(NoStoreBB); |
| 1493 | PHINode *LoadedNoStore = |
| 1494 | Builder.CreatePHI(Ty: UnreleasedLoad->getType(), NumReservedValues: 2, Name: "loaded.nostore" ); |
| 1495 | LoadedNoStore->addIncoming(V: UnreleasedLoad, BB: StartBB); |
| 1496 | if (HasReleasedLoadBB) |
| 1497 | LoadedNoStore->addIncoming(V: SecondLoad, BB: ReleasedLoadBB); |
| 1498 | |
| 1499 | // In the failing case, where we don't execute the store-conditional, the |
| 1500 | // target might want to balance out the load-linked with a dedicated |
| 1501 | // instruction (e.g., on ARM, clearing the exclusive monitor). |
| 1502 | TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); |
| 1503 | Builder.CreateBr(Dest: FailureBB); |
| 1504 | |
| 1505 | Builder.SetInsertPoint(FailureBB); |
| 1506 | PHINode *LoadedFailure = |
| 1507 | Builder.CreatePHI(Ty: UnreleasedLoad->getType(), NumReservedValues: 2, Name: "loaded.failure" ); |
| 1508 | LoadedFailure->addIncoming(V: LoadedNoStore, BB: NoStoreBB); |
| 1509 | if (CI->isWeak()) |
| 1510 | LoadedFailure->addIncoming(V: LoadedTryStore, BB: TryStoreBB); |
| 1511 | if (ShouldInsertFencesForAtomic) |
| 1512 | TLI->emitTrailingFence(Builder, Inst: CI, Ord: FailureOrder); |
| 1513 | Builder.CreateBr(Dest: ExitBB); |
| 1514 | |
| 1515 | // Finally, we have control-flow based knowledge of whether the cmpxchg |
| 1516 | // succeeded or not. We expose this to later passes by converting any |
| 1517 | // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate |
| 1518 | // PHI. |
| 1519 | Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin()); |
| 1520 | PHINode *LoadedExit = |
| 1521 | Builder.CreatePHI(Ty: UnreleasedLoad->getType(), NumReservedValues: 2, Name: "loaded.exit" ); |
| 1522 | LoadedExit->addIncoming(V: LoadedTryStore, BB: SuccessBB); |
| 1523 | LoadedExit->addIncoming(V: LoadedFailure, BB: FailureBB); |
| 1524 | PHINode *Success = Builder.CreatePHI(Ty: Type::getInt1Ty(C&: Ctx), NumReservedValues: 2, Name: "success" ); |
| 1525 | Success->addIncoming(V: ConstantInt::getTrue(Context&: Ctx), BB: SuccessBB); |
| 1526 | Success->addIncoming(V: ConstantInt::getFalse(Context&: Ctx), BB: FailureBB); |
| 1527 | |
| 1528 | // This is the "exit value" from the cmpxchg expansion. It may be of |
| 1529 | // a type wider than the one in the cmpxchg instruction. |
| 1530 | Value *LoadedFull = LoadedExit; |
| 1531 | |
| 1532 | Builder.SetInsertPoint(TheBB: ExitBB, IP: std::next(x: Success->getIterator())); |
| 1533 | Value *Loaded = extractMaskedValue(Builder, WideWord: LoadedFull, PMV); |
| 1534 | |
| 1535 | // Look for any users of the cmpxchg that are just comparing the loaded value |
| 1536 | // against the desired one, and replace them with the CFG-derived version. |
| 1537 | SmallVector<ExtractValueInst *, 2> PrunedInsts; |
| 1538 | for (auto *User : CI->users()) { |
| 1539 | ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val: User); |
| 1540 | if (!EV) |
| 1541 | continue; |
| 1542 | |
| 1543 | assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && |
| 1544 | "weird extraction from { iN, i1 }" ); |
| 1545 | |
| 1546 | if (EV->getIndices()[0] == 0) |
| 1547 | EV->replaceAllUsesWith(V: Loaded); |
| 1548 | else |
| 1549 | EV->replaceAllUsesWith(V: Success); |
| 1550 | |
| 1551 | PrunedInsts.push_back(Elt: EV); |
| 1552 | } |
| 1553 | |
| 1554 | // We can remove the instructions now we're no longer iterating through them. |
| 1555 | for (auto *EV : PrunedInsts) |
| 1556 | EV->eraseFromParent(); |
| 1557 | |
| 1558 | if (!CI->use_empty()) { |
| 1559 | // Some use of the full struct return that we don't understand has happened, |
| 1560 | // so we've got to reconstruct it properly. |
| 1561 | Value *Res; |
| 1562 | Res = Builder.CreateInsertValue(Agg: PoisonValue::get(T: CI->getType()), Val: Loaded, Idxs: 0); |
| 1563 | Res = Builder.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
| 1564 | |
| 1565 | CI->replaceAllUsesWith(V: Res); |
| 1566 | } |
| 1567 | |
| 1568 | CI->eraseFromParent(); |
| 1569 | return true; |
| 1570 | } |
| 1571 | |
| 1572 | bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { |
| 1573 | // TODO: Add floating point support. |
| 1574 | auto C = dyn_cast<ConstantInt>(Val: RMWI->getValOperand()); |
| 1575 | if (!C) |
| 1576 | return false; |
| 1577 | |
| 1578 | switch (RMWI->getOperation()) { |
| 1579 | case AtomicRMWInst::Add: |
| 1580 | case AtomicRMWInst::Sub: |
| 1581 | case AtomicRMWInst::Or: |
| 1582 | case AtomicRMWInst::Xor: |
| 1583 | return C->isZero(); |
| 1584 | case AtomicRMWInst::And: |
| 1585 | return C->isMinusOne(); |
| 1586 | case AtomicRMWInst::Min: |
| 1587 | return C->isMaxValue(IsSigned: true); |
| 1588 | case AtomicRMWInst::Max: |
| 1589 | return C->isMinValue(IsSigned: true); |
| 1590 | case AtomicRMWInst::UMin: |
| 1591 | return C->isMaxValue(IsSigned: false); |
| 1592 | case AtomicRMWInst::UMax: |
| 1593 | return C->isMinValue(IsSigned: false); |
| 1594 | default: |
| 1595 | return false; |
| 1596 | } |
| 1597 | } |
| 1598 | |
| 1599 | bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { |
| 1600 | if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { |
| 1601 | tryExpandAtomicLoad(LI: ResultingLoad); |
| 1602 | return true; |
| 1603 | } |
| 1604 | return false; |
| 1605 | } |
| 1606 | |
| 1607 | Value *AtomicExpandImpl::insertRMWCmpXchgLoop( |
| 1608 | IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, |
| 1609 | AtomicOrdering MemOpOrder, SyncScope::ID SSID, |
| 1610 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, |
| 1611 | CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc) { |
| 1612 | LLVMContext &Ctx = Builder.getContext(); |
| 1613 | BasicBlock *BB = Builder.GetInsertBlock(); |
| 1614 | Function *F = BB->getParent(); |
| 1615 | |
| 1616 | // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
| 1617 | // |
| 1618 | // The standard expansion we produce is: |
| 1619 | // [...] |
| 1620 | // %init_loaded = load atomic iN* %addr |
| 1621 | // br label %loop |
| 1622 | // loop: |
| 1623 | // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] |
| 1624 | // %new = some_op iN %loaded, %incr |
| 1625 | // %pair = cmpxchg iN* %addr, iN %loaded, iN %new |
| 1626 | // %new_loaded = extractvalue { iN, i1 } %pair, 0 |
| 1627 | // %success = extractvalue { iN, i1 } %pair, 1 |
| 1628 | // br i1 %success, label %atomicrmw.end, label %loop |
| 1629 | // atomicrmw.end: |
| 1630 | // [...] |
| 1631 | BasicBlock *ExitBB = |
| 1632 | BB->splitBasicBlock(I: Builder.GetInsertPoint(), BBName: "atomicrmw.end" ); |
| 1633 | BasicBlock *LoopBB = BasicBlock::Create(Context&: Ctx, Name: "atomicrmw.start" , Parent: F, InsertBefore: ExitBB); |
| 1634 | |
| 1635 | // The split call above "helpfully" added a branch at the end of BB (to the |
| 1636 | // wrong place), but we want a load. It's easiest to just remove |
| 1637 | // the branch entirely. |
| 1638 | std::prev(x: BB->end())->eraseFromParent(); |
| 1639 | Builder.SetInsertPoint(BB); |
| 1640 | LoadInst *InitLoaded = Builder.CreateAlignedLoad(Ty: ResultTy, Ptr: Addr, Align: AddrAlign); |
| 1641 | Builder.CreateBr(Dest: LoopBB); |
| 1642 | |
| 1643 | // Start the main loop block now that we've taken care of the preliminaries. |
| 1644 | Builder.SetInsertPoint(LoopBB); |
| 1645 | PHINode *Loaded = Builder.CreatePHI(Ty: ResultTy, NumReservedValues: 2, Name: "loaded" ); |
| 1646 | Loaded->addIncoming(V: InitLoaded, BB); |
| 1647 | |
| 1648 | Value *NewVal = PerformOp(Builder, Loaded); |
| 1649 | |
| 1650 | Value *NewLoaded = nullptr; |
| 1651 | Value *Success = nullptr; |
| 1652 | |
| 1653 | CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, |
| 1654 | MemOpOrder == AtomicOrdering::Unordered |
| 1655 | ? AtomicOrdering::Monotonic |
| 1656 | : MemOpOrder, |
| 1657 | SSID, Success, NewLoaded, MetadataSrc); |
| 1658 | assert(Success && NewLoaded); |
| 1659 | |
| 1660 | Loaded->addIncoming(V: NewLoaded, BB: LoopBB); |
| 1661 | |
| 1662 | Builder.CreateCondBr(Cond: Success, True: ExitBB, False: LoopBB); |
| 1663 | |
| 1664 | Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin()); |
| 1665 | return NewLoaded; |
| 1666 | } |
| 1667 | |
| 1668 | bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
| 1669 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
| 1670 | unsigned ValueSize = getAtomicOpSize(CASI: CI); |
| 1671 | |
| 1672 | switch (TLI->shouldExpandAtomicCmpXchgInIR(AI: CI)) { |
| 1673 | default: |
| 1674 | llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg" ); |
| 1675 | case TargetLoweringBase::AtomicExpansionKind::None: |
| 1676 | if (ValueSize < MinCASSize) |
| 1677 | return expandPartwordCmpXchg(CI); |
| 1678 | return false; |
| 1679 | case TargetLoweringBase::AtomicExpansionKind::LLSC: { |
| 1680 | return expandAtomicCmpXchg(CI); |
| 1681 | } |
| 1682 | case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: |
| 1683 | expandAtomicCmpXchgToMaskedIntrinsic(CI); |
| 1684 | return true; |
| 1685 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
| 1686 | return lowerAtomicCmpXchgInst(CXI: CI); |
| 1687 | case TargetLoweringBase::AtomicExpansionKind::Expand: { |
| 1688 | TLI->emitExpandAtomicCmpXchg(CI); |
| 1689 | return true; |
| 1690 | } |
| 1691 | } |
| 1692 | } |
| 1693 | |
| 1694 | // Note: This function is exposed externally by AtomicExpandUtils.h |
| 1695 | bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, |
| 1696 | CreateCmpXchgInstFun CreateCmpXchg) { |
| 1697 | ReplacementIRBuilder Builder(AI, AI->getDataLayout()); |
| 1698 | Builder.setIsFPConstrained( |
| 1699 | AI->getFunction()->hasFnAttribute(Kind: Attribute::StrictFP)); |
| 1700 | |
| 1701 | // FIXME: If FP exceptions are observable, we should force them off for the |
| 1702 | // loop for the FP atomics. |
| 1703 | Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( |
| 1704 | Builder, ResultTy: AI->getType(), Addr: AI->getPointerOperand(), AddrAlign: AI->getAlign(), |
| 1705 | MemOpOrder: AI->getOrdering(), SSID: AI->getSyncScopeID(), |
| 1706 | PerformOp: [&](IRBuilderBase &Builder, Value *Loaded) { |
| 1707 | return buildAtomicRMWValue(Op: AI->getOperation(), Builder, Loaded, |
| 1708 | Val: AI->getValOperand()); |
| 1709 | }, |
| 1710 | CreateCmpXchg, /*MetadataSrc=*/AI); |
| 1711 | |
| 1712 | AI->replaceAllUsesWith(V: Loaded); |
| 1713 | AI->eraseFromParent(); |
| 1714 | return true; |
| 1715 | } |
| 1716 | |
| 1717 | // In order to use one of the sized library calls such as |
| 1718 | // __atomic_fetch_add_4, the alignment must be sufficient, the size |
| 1719 | // must be one of the potentially-specialized sizes, and the value |
| 1720 | // type must actually exist in C on the target (otherwise, the |
| 1721 | // function wouldn't actually be defined.) |
| 1722 | static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, |
| 1723 | const DataLayout &DL) { |
| 1724 | // TODO: "LargestSize" is an approximation for "largest type that |
| 1725 | // you can express in C". It seems to be the case that int128 is |
| 1726 | // supported on all 64-bit platforms, otherwise only up to 64-bit |
| 1727 | // integers are supported. If we get this wrong, then we'll try to |
| 1728 | // call a sized libcall that doesn't actually exist. There should |
| 1729 | // really be some more reliable way in LLVM of determining integer |
| 1730 | // sizes which are valid in the target's C ABI... |
| 1731 | unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; |
| 1732 | return Alignment >= Size && |
| 1733 | (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && |
| 1734 | Size <= LargestSize; |
| 1735 | } |
| 1736 | |
| 1737 | void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { |
| 1738 | static const RTLIB::Libcall Libcalls[6] = { |
| 1739 | RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, |
| 1740 | RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; |
| 1741 | unsigned Size = getAtomicOpSize(LI: I); |
| 1742 | |
| 1743 | bool expanded = expandAtomicOpToLibcall( |
| 1744 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: nullptr, CASExpected: nullptr, |
| 1745 | Ordering: I->getOrdering(), Ordering2: AtomicOrdering::NotAtomic, Libcalls); |
| 1746 | if (!expanded) |
| 1747 | report_fatal_error(reason: "expandAtomicOpToLibcall shouldn't fail for Load" ); |
| 1748 | } |
| 1749 | |
| 1750 | void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { |
| 1751 | static const RTLIB::Libcall Libcalls[6] = { |
| 1752 | RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, |
| 1753 | RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; |
| 1754 | unsigned Size = getAtomicOpSize(SI: I); |
| 1755 | |
| 1756 | bool expanded = expandAtomicOpToLibcall( |
| 1757 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: I->getValueOperand(), |
| 1758 | CASExpected: nullptr, Ordering: I->getOrdering(), Ordering2: AtomicOrdering::NotAtomic, Libcalls); |
| 1759 | if (!expanded) |
| 1760 | report_fatal_error(reason: "expandAtomicOpToLibcall shouldn't fail for Store" ); |
| 1761 | } |
| 1762 | |
| 1763 | void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { |
| 1764 | static const RTLIB::Libcall Libcalls[6] = { |
| 1765 | RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, |
| 1766 | RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, |
| 1767 | RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; |
| 1768 | unsigned Size = getAtomicOpSize(CASI: I); |
| 1769 | |
| 1770 | bool expanded = expandAtomicOpToLibcall( |
| 1771 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: I->getNewValOperand(), |
| 1772 | CASExpected: I->getCompareOperand(), Ordering: I->getSuccessOrdering(), Ordering2: I->getFailureOrdering(), |
| 1773 | Libcalls); |
| 1774 | if (!expanded) |
| 1775 | report_fatal_error(reason: "expandAtomicOpToLibcall shouldn't fail for CAS" ); |
| 1776 | } |
| 1777 | |
| 1778 | static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { |
| 1779 | static const RTLIB::Libcall LibcallsXchg[6] = { |
| 1780 | RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, |
| 1781 | RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, |
| 1782 | RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; |
| 1783 | static const RTLIB::Libcall LibcallsAdd[6] = { |
| 1784 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, |
| 1785 | RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, |
| 1786 | RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; |
| 1787 | static const RTLIB::Libcall LibcallsSub[6] = { |
| 1788 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, |
| 1789 | RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, |
| 1790 | RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; |
| 1791 | static const RTLIB::Libcall LibcallsAnd[6] = { |
| 1792 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, |
| 1793 | RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, |
| 1794 | RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; |
| 1795 | static const RTLIB::Libcall LibcallsOr[6] = { |
| 1796 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, |
| 1797 | RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, |
| 1798 | RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; |
| 1799 | static const RTLIB::Libcall LibcallsXor[6] = { |
| 1800 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, |
| 1801 | RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, |
| 1802 | RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; |
| 1803 | static const RTLIB::Libcall LibcallsNand[6] = { |
| 1804 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, |
| 1805 | RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, |
| 1806 | RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; |
| 1807 | |
| 1808 | switch (Op) { |
| 1809 | case AtomicRMWInst::BAD_BINOP: |
| 1810 | llvm_unreachable("Should not have BAD_BINOP." ); |
| 1811 | case AtomicRMWInst::Xchg: |
| 1812 | return ArrayRef(LibcallsXchg); |
| 1813 | case AtomicRMWInst::Add: |
| 1814 | return ArrayRef(LibcallsAdd); |
| 1815 | case AtomicRMWInst::Sub: |
| 1816 | return ArrayRef(LibcallsSub); |
| 1817 | case AtomicRMWInst::And: |
| 1818 | return ArrayRef(LibcallsAnd); |
| 1819 | case AtomicRMWInst::Or: |
| 1820 | return ArrayRef(LibcallsOr); |
| 1821 | case AtomicRMWInst::Xor: |
| 1822 | return ArrayRef(LibcallsXor); |
| 1823 | case AtomicRMWInst::Nand: |
| 1824 | return ArrayRef(LibcallsNand); |
| 1825 | case AtomicRMWInst::Max: |
| 1826 | case AtomicRMWInst::Min: |
| 1827 | case AtomicRMWInst::UMax: |
| 1828 | case AtomicRMWInst::UMin: |
| 1829 | case AtomicRMWInst::FMax: |
| 1830 | case AtomicRMWInst::FMin: |
| 1831 | case AtomicRMWInst::FMaximum: |
| 1832 | case AtomicRMWInst::FMinimum: |
| 1833 | case AtomicRMWInst::FAdd: |
| 1834 | case AtomicRMWInst::FSub: |
| 1835 | case AtomicRMWInst::UIncWrap: |
| 1836 | case AtomicRMWInst::UDecWrap: |
| 1837 | case AtomicRMWInst::USubCond: |
| 1838 | case AtomicRMWInst::USubSat: |
| 1839 | // No atomic libcalls are available for these. |
| 1840 | return {}; |
| 1841 | } |
| 1842 | llvm_unreachable("Unexpected AtomicRMW operation." ); |
| 1843 | } |
| 1844 | |
| 1845 | void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { |
| 1846 | ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(Op: I->getOperation()); |
| 1847 | |
| 1848 | unsigned Size = getAtomicOpSize(RMWI: I); |
| 1849 | |
| 1850 | bool Success = false; |
| 1851 | if (!Libcalls.empty()) |
| 1852 | Success = expandAtomicOpToLibcall( |
| 1853 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: I->getValOperand(), |
| 1854 | CASExpected: nullptr, Ordering: I->getOrdering(), Ordering2: AtomicOrdering::NotAtomic, Libcalls); |
| 1855 | |
| 1856 | // The expansion failed: either there were no libcalls at all for |
| 1857 | // the operation (min/max), or there were only size-specialized |
| 1858 | // libcalls (add/sub/etc) and we needed a generic. So, expand to a |
| 1859 | // CAS libcall, via a CAS loop, instead. |
| 1860 | if (!Success) { |
| 1861 | expandAtomicRMWToCmpXchg( |
| 1862 | AI: I, CreateCmpXchg: [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, |
| 1863 | Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, |
| 1864 | SyncScope::ID SSID, Value *&Success, Value *&NewLoaded, |
| 1865 | Instruction *MetadataSrc) { |
| 1866 | // Create the CAS instruction normally... |
| 1867 | AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( |
| 1868 | Ptr: Addr, Cmp: Loaded, New: NewVal, Align: Alignment, SuccessOrdering: MemOpOrder, |
| 1869 | FailureOrdering: AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: MemOpOrder), SSID); |
| 1870 | if (MetadataSrc) |
| 1871 | copyMetadataForAtomic(Dest&: *Pair, Source: *MetadataSrc); |
| 1872 | |
| 1873 | Success = Builder.CreateExtractValue(Agg: Pair, Idxs: 1, Name: "success" ); |
| 1874 | NewLoaded = Builder.CreateExtractValue(Agg: Pair, Idxs: 0, Name: "newloaded" ); |
| 1875 | |
| 1876 | // ...and then expand the CAS into a libcall. |
| 1877 | expandAtomicCASToLibcall(I: Pair); |
| 1878 | }); |
| 1879 | } |
| 1880 | } |
| 1881 | |
| 1882 | // A helper routine for the above expandAtomic*ToLibcall functions. |
| 1883 | // |
| 1884 | // 'Libcalls' contains an array of enum values for the particular |
| 1885 | // ATOMIC libcalls to be emitted. All of the other arguments besides |
| 1886 | // 'I' are extracted from the Instruction subclass by the |
| 1887 | // caller. Depending on the particular call, some will be null. |
| 1888 | bool AtomicExpandImpl::expandAtomicOpToLibcall( |
| 1889 | Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, |
| 1890 | Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, |
| 1891 | AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { |
| 1892 | assert(Libcalls.size() == 6); |
| 1893 | |
| 1894 | LLVMContext &Ctx = I->getContext(); |
| 1895 | Module *M = I->getModule(); |
| 1896 | const DataLayout &DL = M->getDataLayout(); |
| 1897 | IRBuilder<> Builder(I); |
| 1898 | IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); |
| 1899 | |
| 1900 | bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); |
| 1901 | Type *SizedIntTy = Type::getIntNTy(C&: Ctx, N: Size * 8); |
| 1902 | |
| 1903 | const Align AllocaAlignment = DL.getPrefTypeAlign(Ty: SizedIntTy); |
| 1904 | |
| 1905 | // TODO: the "order" argument type is "int", not int32. So |
| 1906 | // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. |
| 1907 | ConstantInt *SizeVal64 = ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: Size); |
| 1908 | assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO" ); |
| 1909 | Constant *OrderingVal = |
| 1910 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: (int)toCABI(AO: Ordering)); |
| 1911 | Constant *Ordering2Val = nullptr; |
| 1912 | if (CASExpected) { |
| 1913 | assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO" ); |
| 1914 | Ordering2Val = |
| 1915 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: (int)toCABI(AO: Ordering2)); |
| 1916 | } |
| 1917 | bool HasResult = I->getType() != Type::getVoidTy(C&: Ctx); |
| 1918 | |
| 1919 | RTLIB::Libcall RTLibType; |
| 1920 | if (UseSizedLibcall) { |
| 1921 | switch (Size) { |
| 1922 | case 1: |
| 1923 | RTLibType = Libcalls[1]; |
| 1924 | break; |
| 1925 | case 2: |
| 1926 | RTLibType = Libcalls[2]; |
| 1927 | break; |
| 1928 | case 4: |
| 1929 | RTLibType = Libcalls[3]; |
| 1930 | break; |
| 1931 | case 8: |
| 1932 | RTLibType = Libcalls[4]; |
| 1933 | break; |
| 1934 | case 16: |
| 1935 | RTLibType = Libcalls[5]; |
| 1936 | break; |
| 1937 | } |
| 1938 | } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { |
| 1939 | RTLibType = Libcalls[0]; |
| 1940 | } else { |
| 1941 | // Can't use sized function, and there's no generic for this |
| 1942 | // operation, so give up. |
| 1943 | return false; |
| 1944 | } |
| 1945 | |
| 1946 | if (!TLI->getLibcallName(Call: RTLibType)) { |
| 1947 | // This target does not implement the requested atomic libcall so give up. |
| 1948 | return false; |
| 1949 | } |
| 1950 | |
| 1951 | // Build up the function call. There's two kinds. First, the sized |
| 1952 | // variants. These calls are going to be one of the following (with |
| 1953 | // N=1,2,4,8,16): |
| 1954 | // iN __atomic_load_N(iN *ptr, int ordering) |
| 1955 | // void __atomic_store_N(iN *ptr, iN val, int ordering) |
| 1956 | // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) |
| 1957 | // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, |
| 1958 | // int success_order, int failure_order) |
| 1959 | // |
| 1960 | // Note that these functions can be used for non-integer atomic |
| 1961 | // operations, the values just need to be bitcast to integers on the |
| 1962 | // way in and out. |
| 1963 | // |
| 1964 | // And, then, the generic variants. They look like the following: |
| 1965 | // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) |
| 1966 | // void __atomic_store(size_t size, void *ptr, void *val, int ordering) |
| 1967 | // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, |
| 1968 | // int ordering) |
| 1969 | // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, |
| 1970 | // void *desired, int success_order, |
| 1971 | // int failure_order) |
| 1972 | // |
| 1973 | // The different signatures are built up depending on the |
| 1974 | // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' |
| 1975 | // variables. |
| 1976 | |
| 1977 | AllocaInst *AllocaCASExpected = nullptr; |
| 1978 | AllocaInst *AllocaValue = nullptr; |
| 1979 | AllocaInst *AllocaResult = nullptr; |
| 1980 | |
| 1981 | Type *ResultTy; |
| 1982 | SmallVector<Value *, 6> Args; |
| 1983 | AttributeList Attr; |
| 1984 | |
| 1985 | // 'size' argument. |
| 1986 | if (!UseSizedLibcall) { |
| 1987 | // Note, getIntPtrType is assumed equivalent to size_t. |
| 1988 | Args.push_back(Elt: ConstantInt::get(Ty: DL.getIntPtrType(C&: Ctx), V: Size)); |
| 1989 | } |
| 1990 | |
| 1991 | // 'ptr' argument. |
| 1992 | // note: This assumes all address spaces share a common libfunc |
| 1993 | // implementation and that addresses are convertable. For systems without |
| 1994 | // that property, we'd need to extend this mechanism to support AS-specific |
| 1995 | // families of atomic intrinsics. |
| 1996 | Value *PtrVal = PointerOperand; |
| 1997 | PtrVal = Builder.CreateAddrSpaceCast(V: PtrVal, DestTy: PointerType::getUnqual(C&: Ctx)); |
| 1998 | Args.push_back(Elt: PtrVal); |
| 1999 | |
| 2000 | // 'expected' argument, if present. |
| 2001 | if (CASExpected) { |
| 2002 | AllocaCASExpected = AllocaBuilder.CreateAlloca(Ty: CASExpected->getType()); |
| 2003 | AllocaCASExpected->setAlignment(AllocaAlignment); |
| 2004 | Builder.CreateLifetimeStart(Ptr: AllocaCASExpected, Size: SizeVal64); |
| 2005 | Builder.CreateAlignedStore(Val: CASExpected, Ptr: AllocaCASExpected, Align: AllocaAlignment); |
| 2006 | Args.push_back(Elt: AllocaCASExpected); |
| 2007 | } |
| 2008 | |
| 2009 | // 'val' argument ('desired' for cas), if present. |
| 2010 | if (ValueOperand) { |
| 2011 | if (UseSizedLibcall) { |
| 2012 | Value *IntValue = |
| 2013 | Builder.CreateBitOrPointerCast(V: ValueOperand, DestTy: SizedIntTy); |
| 2014 | Args.push_back(Elt: IntValue); |
| 2015 | } else { |
| 2016 | AllocaValue = AllocaBuilder.CreateAlloca(Ty: ValueOperand->getType()); |
| 2017 | AllocaValue->setAlignment(AllocaAlignment); |
| 2018 | Builder.CreateLifetimeStart(Ptr: AllocaValue, Size: SizeVal64); |
| 2019 | Builder.CreateAlignedStore(Val: ValueOperand, Ptr: AllocaValue, Align: AllocaAlignment); |
| 2020 | Args.push_back(Elt: AllocaValue); |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | // 'ret' argument. |
| 2025 | if (!CASExpected && HasResult && !UseSizedLibcall) { |
| 2026 | AllocaResult = AllocaBuilder.CreateAlloca(Ty: I->getType()); |
| 2027 | AllocaResult->setAlignment(AllocaAlignment); |
| 2028 | Builder.CreateLifetimeStart(Ptr: AllocaResult, Size: SizeVal64); |
| 2029 | Args.push_back(Elt: AllocaResult); |
| 2030 | } |
| 2031 | |
| 2032 | // 'ordering' ('success_order' for cas) argument. |
| 2033 | Args.push_back(Elt: OrderingVal); |
| 2034 | |
| 2035 | // 'failure_order' argument, if present. |
| 2036 | if (Ordering2Val) |
| 2037 | Args.push_back(Elt: Ordering2Val); |
| 2038 | |
| 2039 | // Now, the return type. |
| 2040 | if (CASExpected) { |
| 2041 | ResultTy = Type::getInt1Ty(C&: Ctx); |
| 2042 | Attr = Attr.addRetAttribute(C&: Ctx, Kind: Attribute::ZExt); |
| 2043 | } else if (HasResult && UseSizedLibcall) |
| 2044 | ResultTy = SizedIntTy; |
| 2045 | else |
| 2046 | ResultTy = Type::getVoidTy(C&: Ctx); |
| 2047 | |
| 2048 | // Done with setting up arguments and return types, create the call: |
| 2049 | SmallVector<Type *, 6> ArgTys; |
| 2050 | for (Value *Arg : Args) |
| 2051 | ArgTys.push_back(Elt: Arg->getType()); |
| 2052 | FunctionType *FnType = FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: false); |
| 2053 | FunctionCallee LibcallFn = |
| 2054 | M->getOrInsertFunction(Name: TLI->getLibcallName(Call: RTLibType), T: FnType, AttributeList: Attr); |
| 2055 | CallInst *Call = Builder.CreateCall(Callee: LibcallFn, Args); |
| 2056 | Call->setAttributes(Attr); |
| 2057 | Value *Result = Call; |
| 2058 | |
| 2059 | // And then, extract the results... |
| 2060 | if (ValueOperand && !UseSizedLibcall) |
| 2061 | Builder.CreateLifetimeEnd(Ptr: AllocaValue, Size: SizeVal64); |
| 2062 | |
| 2063 | if (CASExpected) { |
| 2064 | // The final result from the CAS is {load of 'expected' alloca, bool result |
| 2065 | // from call} |
| 2066 | Type *FinalResultTy = I->getType(); |
| 2067 | Value *V = PoisonValue::get(T: FinalResultTy); |
| 2068 | Value *ExpectedOut = Builder.CreateAlignedLoad( |
| 2069 | Ty: CASExpected->getType(), Ptr: AllocaCASExpected, Align: AllocaAlignment); |
| 2070 | Builder.CreateLifetimeEnd(Ptr: AllocaCASExpected, Size: SizeVal64); |
| 2071 | V = Builder.CreateInsertValue(Agg: V, Val: ExpectedOut, Idxs: 0); |
| 2072 | V = Builder.CreateInsertValue(Agg: V, Val: Result, Idxs: 1); |
| 2073 | I->replaceAllUsesWith(V); |
| 2074 | } else if (HasResult) { |
| 2075 | Value *V; |
| 2076 | if (UseSizedLibcall) |
| 2077 | V = Builder.CreateBitOrPointerCast(V: Result, DestTy: I->getType()); |
| 2078 | else { |
| 2079 | V = Builder.CreateAlignedLoad(Ty: I->getType(), Ptr: AllocaResult, |
| 2080 | Align: AllocaAlignment); |
| 2081 | Builder.CreateLifetimeEnd(Ptr: AllocaResult, Size: SizeVal64); |
| 2082 | } |
| 2083 | I->replaceAllUsesWith(V); |
| 2084 | } |
| 2085 | I->eraseFromParent(); |
| 2086 | return true; |
| 2087 | } |
| 2088 | |