1 | //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains a pass (at IR level) to replace atomic instructions with |
10 | // __atomic_* library calls, or target specific instruction which implement the |
11 | // same semantics in a way which better fits the target backend. This can |
12 | // include the use of (intrinsic-based) load-linked/store-conditional loops, |
13 | // AtomicCmpXchg, or type coercions. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/STLFunctionalExtras.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/Analysis/InstSimplifyFolder.h" |
21 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
22 | #include "llvm/CodeGen/AtomicExpand.h" |
23 | #include "llvm/CodeGen/AtomicExpandUtils.h" |
24 | #include "llvm/CodeGen/TargetLowering.h" |
25 | #include "llvm/CodeGen/TargetPassConfig.h" |
26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
27 | #include "llvm/CodeGen/ValueTypes.h" |
28 | #include "llvm/IR/Attributes.h" |
29 | #include "llvm/IR/BasicBlock.h" |
30 | #include "llvm/IR/Constant.h" |
31 | #include "llvm/IR/Constants.h" |
32 | #include "llvm/IR/DataLayout.h" |
33 | #include "llvm/IR/DerivedTypes.h" |
34 | #include "llvm/IR/Function.h" |
35 | #include "llvm/IR/IRBuilder.h" |
36 | #include "llvm/IR/Instruction.h" |
37 | #include "llvm/IR/Instructions.h" |
38 | #include "llvm/IR/MDBuilder.h" |
39 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
40 | #include "llvm/IR/Module.h" |
41 | #include "llvm/IR/Type.h" |
42 | #include "llvm/IR/User.h" |
43 | #include "llvm/IR/Value.h" |
44 | #include "llvm/InitializePasses.h" |
45 | #include "llvm/Pass.h" |
46 | #include "llvm/Support/AtomicOrdering.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/Debug.h" |
49 | #include "llvm/Support/ErrorHandling.h" |
50 | #include "llvm/Support/raw_ostream.h" |
51 | #include "llvm/Target/TargetMachine.h" |
52 | #include "llvm/Transforms/Utils/LowerAtomic.h" |
53 | #include <cassert> |
54 | #include <cstdint> |
55 | #include <iterator> |
56 | |
57 | using namespace llvm; |
58 | |
59 | #define DEBUG_TYPE "atomic-expand" |
60 | |
61 | namespace { |
62 | |
63 | class AtomicExpandImpl { |
64 | const TargetLowering *TLI = nullptr; |
65 | const DataLayout *DL = nullptr; |
66 | |
67 | private: |
68 | bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); |
69 | IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); |
70 | LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); |
71 | bool tryExpandAtomicLoad(LoadInst *LI); |
72 | bool expandAtomicLoadToLL(LoadInst *LI); |
73 | bool expandAtomicLoadToCmpXchg(LoadInst *LI); |
74 | StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); |
75 | bool tryExpandAtomicStore(StoreInst *SI); |
76 | void expandAtomicStore(StoreInst *SI); |
77 | bool tryExpandAtomicRMW(AtomicRMWInst *AI); |
78 | AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); |
79 | Value * |
80 | insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, |
81 | Align AddrAlign, AtomicOrdering MemOpOrder, |
82 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); |
83 | void expandAtomicOpToLLSC( |
84 | Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, |
85 | AtomicOrdering MemOpOrder, |
86 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); |
87 | void expandPartwordAtomicRMW( |
88 | AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); |
89 | AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); |
90 | bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); |
91 | void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); |
92 | void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); |
93 | |
94 | AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); |
95 | static Value *insertRMWCmpXchgLoop( |
96 | IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, |
97 | AtomicOrdering MemOpOrder, SyncScope::ID SSID, |
98 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, |
99 | CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc); |
100 | bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
101 | |
102 | bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
103 | bool isIdempotentRMW(AtomicRMWInst *RMWI); |
104 | bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); |
105 | |
106 | bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, |
107 | Value *PointerOperand, Value *ValueOperand, |
108 | Value *CASExpected, AtomicOrdering Ordering, |
109 | AtomicOrdering Ordering2, |
110 | ArrayRef<RTLIB::Libcall> Libcalls); |
111 | void expandAtomicLoadToLibcall(LoadInst *LI); |
112 | void expandAtomicStoreToLibcall(StoreInst *LI); |
113 | void expandAtomicRMWToLibcall(AtomicRMWInst *I); |
114 | void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); |
115 | |
116 | friend bool |
117 | llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, |
118 | CreateCmpXchgInstFun CreateCmpXchg); |
119 | |
120 | bool processAtomicInstr(Instruction *I); |
121 | |
122 | public: |
123 | bool run(Function &F, const TargetMachine *TM); |
124 | }; |
125 | |
126 | class AtomicExpandLegacy : public FunctionPass { |
127 | public: |
128 | static char ID; // Pass identification, replacement for typeid |
129 | |
130 | AtomicExpandLegacy() : FunctionPass(ID) { |
131 | initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); |
132 | } |
133 | |
134 | bool runOnFunction(Function &F) override; |
135 | }; |
136 | |
137 | // IRBuilder to be used for replacement atomic instructions. |
138 | struct ReplacementIRBuilder |
139 | : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { |
140 | MDNode *MMRAMD = nullptr; |
141 | |
142 | // Preserves the DebugLoc from I, and preserves still valid metadata. |
143 | // Enable StrictFP builder mode when appropriate. |
144 | explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) |
145 | : IRBuilder(I->getContext(), InstSimplifyFolder(DL), |
146 | IRBuilderCallbackInserter( |
147 | [this](Instruction *I) { addMMRAMD(I); })) { |
148 | SetInsertPoint(I); |
149 | this->CollectMetadataToCopy(Src: I, MetadataKinds: {LLVMContext::MD_pcsections}); |
150 | if (BB->getParent()->getAttributes().hasFnAttr(Kind: Attribute::StrictFP)) |
151 | this->setIsFPConstrained(true); |
152 | |
153 | MMRAMD = I->getMetadata(KindID: LLVMContext::MD_mmra); |
154 | } |
155 | |
156 | void addMMRAMD(Instruction *I) { |
157 | if (canInstructionHaveMMRAs(I: *I)) |
158 | I->setMetadata(KindID: LLVMContext::MD_mmra, Node: MMRAMD); |
159 | } |
160 | }; |
161 | |
162 | } // end anonymous namespace |
163 | |
164 | char AtomicExpandLegacy::ID = 0; |
165 | |
166 | char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; |
167 | |
168 | INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, |
169 | "Expand Atomic instructions" , false, false) |
170 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
171 | INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, |
172 | "Expand Atomic instructions" , false, false) |
173 | |
174 | // Helper functions to retrieve the size of atomic instructions. |
175 | static unsigned getAtomicOpSize(LoadInst *LI) { |
176 | const DataLayout &DL = LI->getDataLayout(); |
177 | return DL.getTypeStoreSize(Ty: LI->getType()); |
178 | } |
179 | |
180 | static unsigned getAtomicOpSize(StoreInst *SI) { |
181 | const DataLayout &DL = SI->getDataLayout(); |
182 | return DL.getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
183 | } |
184 | |
185 | static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { |
186 | const DataLayout &DL = RMWI->getDataLayout(); |
187 | return DL.getTypeStoreSize(Ty: RMWI->getValOperand()->getType()); |
188 | } |
189 | |
190 | static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { |
191 | const DataLayout &DL = CASI->getDataLayout(); |
192 | return DL.getTypeStoreSize(Ty: CASI->getCompareOperand()->getType()); |
193 | } |
194 | |
195 | /// Copy metadata that's safe to preserve when widening atomics. |
196 | static void copyMetadataForAtomic(Instruction &Dest, |
197 | const Instruction &Source) { |
198 | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; |
199 | Source.getAllMetadata(MDs&: MD); |
200 | LLVMContext &Ctx = Dest.getContext(); |
201 | MDBuilder MDB(Ctx); |
202 | |
203 | for (auto [ID, N] : MD) { |
204 | switch (ID) { |
205 | case LLVMContext::MD_dbg: |
206 | case LLVMContext::MD_tbaa: |
207 | case LLVMContext::MD_tbaa_struct: |
208 | case LLVMContext::MD_alias_scope: |
209 | case LLVMContext::MD_noalias: |
210 | case LLVMContext::MD_noalias_addrspace: |
211 | case LLVMContext::MD_access_group: |
212 | case LLVMContext::MD_mmra: |
213 | Dest.setMetadata(KindID: ID, Node: N); |
214 | break; |
215 | default: |
216 | if (ID == Ctx.getMDKindID(Name: "amdgpu.no.remote.memory" )) |
217 | Dest.setMetadata(KindID: ID, Node: N); |
218 | else if (ID == Ctx.getMDKindID(Name: "amdgpu.no.fine.grained.memory" )) |
219 | Dest.setMetadata(KindID: ID, Node: N); |
220 | |
221 | // Losing amdgpu.ignore.denormal.mode, but it doesn't matter for current |
222 | // uses. |
223 | break; |
224 | } |
225 | } |
226 | } |
227 | |
228 | // Determine if a particular atomic operation has a supported size, |
229 | // and is of appropriate alignment, to be passed through for target |
230 | // lowering. (Versus turning into a __atomic libcall) |
231 | template <typename Inst> |
232 | static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { |
233 | unsigned Size = getAtomicOpSize(I); |
234 | Align Alignment = I->getAlign(); |
235 | return Alignment >= Size && |
236 | Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; |
237 | } |
238 | |
239 | bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { |
240 | auto *LI = dyn_cast<LoadInst>(Val: I); |
241 | auto *SI = dyn_cast<StoreInst>(Val: I); |
242 | auto *RMWI = dyn_cast<AtomicRMWInst>(Val: I); |
243 | auto *CASI = dyn_cast<AtomicCmpXchgInst>(Val: I); |
244 | |
245 | bool MadeChange = false; |
246 | |
247 | // If the Size/Alignment is not supported, replace with a libcall. |
248 | if (LI) { |
249 | if (!LI->isAtomic()) |
250 | return false; |
251 | |
252 | if (!atomicSizeSupported(TLI, I: LI)) { |
253 | expandAtomicLoadToLibcall(LI); |
254 | return true; |
255 | } |
256 | |
257 | if (TLI->shouldCastAtomicLoadInIR(LI) == |
258 | TargetLoweringBase::AtomicExpansionKind::CastToInteger) { |
259 | I = LI = convertAtomicLoadToIntegerType(LI); |
260 | MadeChange = true; |
261 | } |
262 | } else if (SI) { |
263 | if (!SI->isAtomic()) |
264 | return false; |
265 | |
266 | if (!atomicSizeSupported(TLI, I: SI)) { |
267 | expandAtomicStoreToLibcall(LI: SI); |
268 | return true; |
269 | } |
270 | |
271 | if (TLI->shouldCastAtomicStoreInIR(SI) == |
272 | TargetLoweringBase::AtomicExpansionKind::CastToInteger) { |
273 | I = SI = convertAtomicStoreToIntegerType(SI); |
274 | MadeChange = true; |
275 | } |
276 | } else if (RMWI) { |
277 | if (!atomicSizeSupported(TLI, I: RMWI)) { |
278 | expandAtomicRMWToLibcall(I: RMWI); |
279 | return true; |
280 | } |
281 | |
282 | if (TLI->shouldCastAtomicRMWIInIR(RMWI) == |
283 | TargetLoweringBase::AtomicExpansionKind::CastToInteger) { |
284 | I = RMWI = convertAtomicXchgToIntegerType(RMWI); |
285 | MadeChange = true; |
286 | } |
287 | } else if (CASI) { |
288 | if (!atomicSizeSupported(TLI, I: CASI)) { |
289 | expandAtomicCASToLibcall(I: CASI); |
290 | return true; |
291 | } |
292 | |
293 | // TODO: when we're ready to make the change at the IR level, we can |
294 | // extend convertCmpXchgToInteger for floating point too. |
295 | if (CASI->getCompareOperand()->getType()->isPointerTy()) { |
296 | // TODO: add a TLI hook to control this so that each target can |
297 | // convert to lowering the original type one at a time. |
298 | I = CASI = convertCmpXchgToIntegerType(CI: CASI); |
299 | MadeChange = true; |
300 | } |
301 | } else |
302 | return false; |
303 | |
304 | if (TLI->shouldInsertFencesForAtomic(I)) { |
305 | auto FenceOrdering = AtomicOrdering::Monotonic; |
306 | if (LI && isAcquireOrStronger(AO: LI->getOrdering())) { |
307 | FenceOrdering = LI->getOrdering(); |
308 | LI->setOrdering(AtomicOrdering::Monotonic); |
309 | } else if (SI && isReleaseOrStronger(AO: SI->getOrdering())) { |
310 | FenceOrdering = SI->getOrdering(); |
311 | SI->setOrdering(AtomicOrdering::Monotonic); |
312 | } else if (RMWI && (isReleaseOrStronger(AO: RMWI->getOrdering()) || |
313 | isAcquireOrStronger(AO: RMWI->getOrdering()))) { |
314 | FenceOrdering = RMWI->getOrdering(); |
315 | RMWI->setOrdering(AtomicOrdering::Monotonic); |
316 | } else if (CASI && |
317 | TLI->shouldExpandAtomicCmpXchgInIR(AI: CASI) == |
318 | TargetLoweringBase::AtomicExpansionKind::None && |
319 | (isReleaseOrStronger(AO: CASI->getSuccessOrdering()) || |
320 | isAcquireOrStronger(AO: CASI->getSuccessOrdering()) || |
321 | isAcquireOrStronger(AO: CASI->getFailureOrdering()))) { |
322 | // If a compare and swap is lowered to LL/SC, we can do smarter fence |
323 | // insertion, with a stronger one on the success path than on the |
324 | // failure path. As a result, fence insertion is directly done by |
325 | // expandAtomicCmpXchg in that case. |
326 | FenceOrdering = CASI->getMergedOrdering(); |
327 | auto CASOrdering = TLI->atomicOperationOrderAfterFenceSplit(I: CASI); |
328 | |
329 | CASI->setSuccessOrdering(CASOrdering); |
330 | CASI->setFailureOrdering(CASOrdering); |
331 | } |
332 | |
333 | if (FenceOrdering != AtomicOrdering::Monotonic) { |
334 | MadeChange |= bracketInstWithFences(I, Order: FenceOrdering); |
335 | } |
336 | } else if (I->hasAtomicStore() && |
337 | TLI->shouldInsertTrailingFenceForAtomicStore(I)) { |
338 | auto FenceOrdering = AtomicOrdering::Monotonic; |
339 | if (SI) |
340 | FenceOrdering = SI->getOrdering(); |
341 | else if (RMWI) |
342 | FenceOrdering = RMWI->getOrdering(); |
343 | else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(AI: CASI) != |
344 | TargetLoweringBase::AtomicExpansionKind::LLSC) |
345 | // LLSC is handled in expandAtomicCmpXchg(). |
346 | FenceOrdering = CASI->getSuccessOrdering(); |
347 | |
348 | IRBuilder Builder(I); |
349 | if (auto TrailingFence = |
350 | TLI->emitTrailingFence(Builder, Inst: I, Ord: FenceOrdering)) { |
351 | TrailingFence->moveAfter(MovePos: I); |
352 | MadeChange = true; |
353 | } |
354 | } |
355 | |
356 | if (LI) |
357 | MadeChange |= tryExpandAtomicLoad(LI); |
358 | else if (SI) |
359 | MadeChange |= tryExpandAtomicStore(SI); |
360 | else if (RMWI) { |
361 | // There are two different ways of expanding RMW instructions: |
362 | // - into a load if it is idempotent |
363 | // - into a Cmpxchg/LL-SC loop otherwise |
364 | // we try them in that order. |
365 | |
366 | if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { |
367 | MadeChange = true; |
368 | |
369 | } else { |
370 | MadeChange |= tryExpandAtomicRMW(AI: RMWI); |
371 | } |
372 | } else if (CASI) |
373 | MadeChange |= tryExpandAtomicCmpXchg(CI: CASI); |
374 | |
375 | return MadeChange; |
376 | } |
377 | |
378 | bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { |
379 | const auto *Subtarget = TM->getSubtargetImpl(F); |
380 | if (!Subtarget->enableAtomicExpand()) |
381 | return false; |
382 | TLI = Subtarget->getTargetLowering(); |
383 | DL = &F.getDataLayout(); |
384 | |
385 | bool MadeChange = false; |
386 | |
387 | for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { |
388 | BasicBlock *BB = &*BBI; |
389 | |
390 | BasicBlock::reverse_iterator Next; |
391 | |
392 | for (BasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend(); I != E; |
393 | I = Next) { |
394 | Instruction &Inst = *I; |
395 | Next = std::next(x: I); |
396 | |
397 | if (processAtomicInstr(I: &Inst)) { |
398 | MadeChange = true; |
399 | |
400 | // New blocks may have been inserted. |
401 | BBE = F.end(); |
402 | } |
403 | } |
404 | } |
405 | |
406 | return MadeChange; |
407 | } |
408 | |
409 | bool AtomicExpandLegacy::runOnFunction(Function &F) { |
410 | |
411 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
412 | if (!TPC) |
413 | return false; |
414 | auto *TM = &TPC->getTM<TargetMachine>(); |
415 | AtomicExpandImpl AE; |
416 | return AE.run(F, TM); |
417 | } |
418 | |
419 | FunctionPass *llvm::createAtomicExpandLegacyPass() { |
420 | return new AtomicExpandLegacy(); |
421 | } |
422 | |
423 | PreservedAnalyses AtomicExpandPass::run(Function &F, |
424 | FunctionAnalysisManager &AM) { |
425 | AtomicExpandImpl AE; |
426 | |
427 | bool Changed = AE.run(F, TM); |
428 | if (!Changed) |
429 | return PreservedAnalyses::all(); |
430 | |
431 | return PreservedAnalyses::none(); |
432 | } |
433 | |
434 | bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, |
435 | AtomicOrdering Order) { |
436 | ReplacementIRBuilder Builder(I, *DL); |
437 | |
438 | auto LeadingFence = TLI->emitLeadingFence(Builder, Inst: I, Ord: Order); |
439 | |
440 | auto TrailingFence = TLI->emitTrailingFence(Builder, Inst: I, Ord: Order); |
441 | // We have a guard here because not every atomic operation generates a |
442 | // trailing fence. |
443 | if (TrailingFence) |
444 | TrailingFence->moveAfter(MovePos: I); |
445 | |
446 | return (LeadingFence || TrailingFence); |
447 | } |
448 | |
449 | /// Get the iX type with the same bitwidth as T. |
450 | IntegerType * |
451 | AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { |
452 | EVT VT = TLI->getMemValueType(DL, Ty: T); |
453 | unsigned BitWidth = VT.getStoreSizeInBits(); |
454 | assert(BitWidth == VT.getSizeInBits() && "must be a power of two" ); |
455 | return IntegerType::get(C&: T->getContext(), NumBits: BitWidth); |
456 | } |
457 | |
458 | /// Convert an atomic load of a non-integral type to an integer load of the |
459 | /// equivalent bitwidth. See the function comment on |
460 | /// convertAtomicStoreToIntegerType for background. |
461 | LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { |
462 | auto *M = LI->getModule(); |
463 | Type *NewTy = getCorrespondingIntegerType(T: LI->getType(), DL: M->getDataLayout()); |
464 | |
465 | ReplacementIRBuilder Builder(LI, *DL); |
466 | |
467 | Value *Addr = LI->getPointerOperand(); |
468 | |
469 | auto *NewLI = Builder.CreateLoad(Ty: NewTy, Ptr: Addr); |
470 | NewLI->setAlignment(LI->getAlign()); |
471 | NewLI->setVolatile(LI->isVolatile()); |
472 | NewLI->setAtomic(Ordering: LI->getOrdering(), SSID: LI->getSyncScopeID()); |
473 | LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n" ); |
474 | |
475 | Value *NewVal = Builder.CreateBitCast(V: NewLI, DestTy: LI->getType()); |
476 | LI->replaceAllUsesWith(V: NewVal); |
477 | LI->eraseFromParent(); |
478 | return NewLI; |
479 | } |
480 | |
481 | AtomicRMWInst * |
482 | AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { |
483 | assert(RMWI->getOperation() == AtomicRMWInst::Xchg); |
484 | |
485 | auto *M = RMWI->getModule(); |
486 | Type *NewTy = |
487 | getCorrespondingIntegerType(T: RMWI->getType(), DL: M->getDataLayout()); |
488 | |
489 | ReplacementIRBuilder Builder(RMWI, *DL); |
490 | |
491 | Value *Addr = RMWI->getPointerOperand(); |
492 | Value *Val = RMWI->getValOperand(); |
493 | Value *NewVal = Val->getType()->isPointerTy() |
494 | ? Builder.CreatePtrToInt(V: Val, DestTy: NewTy) |
495 | : Builder.CreateBitCast(V: Val, DestTy: NewTy); |
496 | |
497 | auto *NewRMWI = Builder.CreateAtomicRMW(Op: AtomicRMWInst::Xchg, Ptr: Addr, Val: NewVal, |
498 | Align: RMWI->getAlign(), Ordering: RMWI->getOrdering(), |
499 | SSID: RMWI->getSyncScopeID()); |
500 | NewRMWI->setVolatile(RMWI->isVolatile()); |
501 | copyMetadataForAtomic(Dest&: *NewRMWI, Source: *RMWI); |
502 | LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n" ); |
503 | |
504 | Value *NewRVal = RMWI->getType()->isPointerTy() |
505 | ? Builder.CreateIntToPtr(V: NewRMWI, DestTy: RMWI->getType()) |
506 | : Builder.CreateBitCast(V: NewRMWI, DestTy: RMWI->getType()); |
507 | RMWI->replaceAllUsesWith(V: NewRVal); |
508 | RMWI->eraseFromParent(); |
509 | return NewRMWI; |
510 | } |
511 | |
512 | bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { |
513 | switch (TLI->shouldExpandAtomicLoadInIR(LI)) { |
514 | case TargetLoweringBase::AtomicExpansionKind::None: |
515 | return false; |
516 | case TargetLoweringBase::AtomicExpansionKind::LLSC: |
517 | expandAtomicOpToLLSC( |
518 | I: LI, ResultTy: LI->getType(), Addr: LI->getPointerOperand(), AddrAlign: LI->getAlign(), |
519 | MemOpOrder: LI->getOrdering(), |
520 | PerformOp: [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); |
521 | return true; |
522 | case TargetLoweringBase::AtomicExpansionKind::LLOnly: |
523 | return expandAtomicLoadToLL(LI); |
524 | case TargetLoweringBase::AtomicExpansionKind::CmpXChg: |
525 | return expandAtomicLoadToCmpXchg(LI); |
526 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
527 | LI->setAtomic(Ordering: AtomicOrdering::NotAtomic); |
528 | return true; |
529 | default: |
530 | llvm_unreachable("Unhandled case in tryExpandAtomicLoad" ); |
531 | } |
532 | } |
533 | |
534 | bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { |
535 | switch (TLI->shouldExpandAtomicStoreInIR(SI)) { |
536 | case TargetLoweringBase::AtomicExpansionKind::None: |
537 | return false; |
538 | case TargetLoweringBase::AtomicExpansionKind::Expand: |
539 | expandAtomicStore(SI); |
540 | return true; |
541 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
542 | SI->setAtomic(Ordering: AtomicOrdering::NotAtomic); |
543 | return true; |
544 | default: |
545 | llvm_unreachable("Unhandled case in tryExpandAtomicStore" ); |
546 | } |
547 | } |
548 | |
549 | bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { |
550 | ReplacementIRBuilder Builder(LI, *DL); |
551 | |
552 | // On some architectures, load-linked instructions are atomic for larger |
553 | // sizes than normal loads. For example, the only 64-bit load guaranteed |
554 | // to be single-copy atomic by ARM is an ldrexd (A3.5.3). |
555 | Value *Val = TLI->emitLoadLinked(Builder, ValueTy: LI->getType(), |
556 | Addr: LI->getPointerOperand(), Ord: LI->getOrdering()); |
557 | TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); |
558 | |
559 | LI->replaceAllUsesWith(V: Val); |
560 | LI->eraseFromParent(); |
561 | |
562 | return true; |
563 | } |
564 | |
565 | bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { |
566 | ReplacementIRBuilder Builder(LI, *DL); |
567 | AtomicOrdering Order = LI->getOrdering(); |
568 | if (Order == AtomicOrdering::Unordered) |
569 | Order = AtomicOrdering::Monotonic; |
570 | |
571 | Value *Addr = LI->getPointerOperand(); |
572 | Type *Ty = LI->getType(); |
573 | Constant *DummyVal = Constant::getNullValue(Ty); |
574 | |
575 | Value *Pair = Builder.CreateAtomicCmpXchg( |
576 | Ptr: Addr, Cmp: DummyVal, New: DummyVal, Align: LI->getAlign(), SuccessOrdering: Order, |
577 | FailureOrdering: AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: Order)); |
578 | Value *Loaded = Builder.CreateExtractValue(Agg: Pair, Idxs: 0, Name: "loaded" ); |
579 | |
580 | LI->replaceAllUsesWith(V: Loaded); |
581 | LI->eraseFromParent(); |
582 | |
583 | return true; |
584 | } |
585 | |
586 | /// Convert an atomic store of a non-integral type to an integer store of the |
587 | /// equivalent bitwidth. We used to not support floating point or vector |
588 | /// atomics in the IR at all. The backends learned to deal with the bitcast |
589 | /// idiom because that was the only way of expressing the notion of a atomic |
590 | /// float or vector store. The long term plan is to teach each backend to |
591 | /// instruction select from the original atomic store, but as a migration |
592 | /// mechanism, we convert back to the old format which the backends understand. |
593 | /// Each backend will need individual work to recognize the new format. |
594 | StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { |
595 | ReplacementIRBuilder Builder(SI, *DL); |
596 | auto *M = SI->getModule(); |
597 | Type *NewTy = getCorrespondingIntegerType(T: SI->getValueOperand()->getType(), |
598 | DL: M->getDataLayout()); |
599 | Value *NewVal = Builder.CreateBitCast(V: SI->getValueOperand(), DestTy: NewTy); |
600 | |
601 | Value *Addr = SI->getPointerOperand(); |
602 | |
603 | StoreInst *NewSI = Builder.CreateStore(Val: NewVal, Ptr: Addr); |
604 | NewSI->setAlignment(SI->getAlign()); |
605 | NewSI->setVolatile(SI->isVolatile()); |
606 | NewSI->setAtomic(Ordering: SI->getOrdering(), SSID: SI->getSyncScopeID()); |
607 | LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n" ); |
608 | SI->eraseFromParent(); |
609 | return NewSI; |
610 | } |
611 | |
612 | void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { |
613 | // This function is only called on atomic stores that are too large to be |
614 | // atomic if implemented as a native store. So we replace them by an |
615 | // atomic swap, that can be implemented for example as a ldrex/strex on ARM |
616 | // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. |
617 | // It is the responsibility of the target to only signal expansion via |
618 | // shouldExpandAtomicRMW in cases where this is required and possible. |
619 | ReplacementIRBuilder Builder(SI, *DL); |
620 | AtomicOrdering Ordering = SI->getOrdering(); |
621 | assert(Ordering != AtomicOrdering::NotAtomic); |
622 | AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered |
623 | ? AtomicOrdering::Monotonic |
624 | : Ordering; |
625 | AtomicRMWInst *AI = Builder.CreateAtomicRMW( |
626 | Op: AtomicRMWInst::Xchg, Ptr: SI->getPointerOperand(), Val: SI->getValueOperand(), |
627 | Align: SI->getAlign(), Ordering: RMWOrdering); |
628 | SI->eraseFromParent(); |
629 | |
630 | // Now we have an appropriate swap instruction, lower it as usual. |
631 | tryExpandAtomicRMW(AI); |
632 | } |
633 | |
634 | static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, |
635 | Value *Loaded, Value *NewVal, Align AddrAlign, |
636 | AtomicOrdering MemOpOrder, SyncScope::ID SSID, |
637 | Value *&Success, Value *&NewLoaded, |
638 | Instruction *MetadataSrc) { |
639 | Type *OrigTy = NewVal->getType(); |
640 | |
641 | // This code can go away when cmpxchg supports FP and vector types. |
642 | assert(!OrigTy->isPointerTy()); |
643 | bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); |
644 | if (NeedBitcast) { |
645 | IntegerType *IntTy = Builder.getIntNTy(N: OrigTy->getPrimitiveSizeInBits()); |
646 | NewVal = Builder.CreateBitCast(V: NewVal, DestTy: IntTy); |
647 | Loaded = Builder.CreateBitCast(V: Loaded, DestTy: IntTy); |
648 | } |
649 | |
650 | AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( |
651 | Ptr: Addr, Cmp: Loaded, New: NewVal, Align: AddrAlign, SuccessOrdering: MemOpOrder, |
652 | FailureOrdering: AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: MemOpOrder), SSID); |
653 | if (MetadataSrc) |
654 | copyMetadataForAtomic(Dest&: *Pair, Source: *MetadataSrc); |
655 | |
656 | Success = Builder.CreateExtractValue(Agg: Pair, Idxs: 1, Name: "success" ); |
657 | NewLoaded = Builder.CreateExtractValue(Agg: Pair, Idxs: 0, Name: "newloaded" ); |
658 | |
659 | if (NeedBitcast) |
660 | NewLoaded = Builder.CreateBitCast(V: NewLoaded, DestTy: OrigTy); |
661 | } |
662 | |
663 | bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { |
664 | LLVMContext &Ctx = AI->getModule()->getContext(); |
665 | TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(RMW: AI); |
666 | switch (Kind) { |
667 | case TargetLoweringBase::AtomicExpansionKind::None: |
668 | return false; |
669 | case TargetLoweringBase::AtomicExpansionKind::LLSC: { |
670 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
671 | unsigned ValueSize = getAtomicOpSize(RMWI: AI); |
672 | if (ValueSize < MinCASSize) { |
673 | expandPartwordAtomicRMW(I: AI, |
674 | ExpansionKind: TargetLoweringBase::AtomicExpansionKind::LLSC); |
675 | } else { |
676 | auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { |
677 | return buildAtomicRMWValue(Op: AI->getOperation(), Builder, Loaded, |
678 | Val: AI->getValOperand()); |
679 | }; |
680 | expandAtomicOpToLLSC(I: AI, ResultTy: AI->getType(), Addr: AI->getPointerOperand(), |
681 | AddrAlign: AI->getAlign(), MemOpOrder: AI->getOrdering(), PerformOp); |
682 | } |
683 | return true; |
684 | } |
685 | case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { |
686 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
687 | unsigned ValueSize = getAtomicOpSize(RMWI: AI); |
688 | if (ValueSize < MinCASSize) { |
689 | expandPartwordAtomicRMW(I: AI, |
690 | ExpansionKind: TargetLoweringBase::AtomicExpansionKind::CmpXChg); |
691 | } else { |
692 | SmallVector<StringRef> SSNs; |
693 | Ctx.getSyncScopeNames(SSNs); |
694 | auto MemScope = SSNs[AI->getSyncScopeID()].empty() |
695 | ? "system" |
696 | : SSNs[AI->getSyncScopeID()]; |
697 | OptimizationRemarkEmitter ORE(AI->getFunction()); |
698 | ORE.emit(RemarkBuilder: [&]() { |
699 | return OptimizationRemark(DEBUG_TYPE, "Passed" , AI) |
700 | << "A compare and swap loop was generated for an atomic " |
701 | << AI->getOperationName(Op: AI->getOperation()) << " operation at " |
702 | << MemScope << " memory scope" ; |
703 | }); |
704 | expandAtomicRMWToCmpXchg(AI, CreateCmpXchg: createCmpXchgInstFun); |
705 | } |
706 | return true; |
707 | } |
708 | case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { |
709 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
710 | unsigned ValueSize = getAtomicOpSize(RMWI: AI); |
711 | if (ValueSize < MinCASSize) { |
712 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
713 | // Widen And/Or/Xor and give the target another chance at expanding it. |
714 | if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
715 | Op == AtomicRMWInst::And) { |
716 | tryExpandAtomicRMW(AI: widenPartwordAtomicRMW(AI)); |
717 | return true; |
718 | } |
719 | } |
720 | expandAtomicRMWToMaskedIntrinsic(AI); |
721 | return true; |
722 | } |
723 | case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { |
724 | TLI->emitBitTestAtomicRMWIntrinsic(AI); |
725 | return true; |
726 | } |
727 | case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { |
728 | TLI->emitCmpArithAtomicRMWIntrinsic(AI); |
729 | return true; |
730 | } |
731 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
732 | return lowerAtomicRMWInst(RMWI: AI); |
733 | case TargetLoweringBase::AtomicExpansionKind::Expand: |
734 | TLI->emitExpandAtomicRMW(AI); |
735 | return true; |
736 | default: |
737 | llvm_unreachable("Unhandled case in tryExpandAtomicRMW" ); |
738 | } |
739 | } |
740 | |
741 | namespace { |
742 | |
743 | struct PartwordMaskValues { |
744 | // These three fields are guaranteed to be set by createMaskInstrs. |
745 | Type *WordType = nullptr; |
746 | Type *ValueType = nullptr; |
747 | Type *IntValueType = nullptr; |
748 | Value *AlignedAddr = nullptr; |
749 | Align AlignedAddrAlignment; |
750 | // The remaining fields can be null. |
751 | Value *ShiftAmt = nullptr; |
752 | Value *Mask = nullptr; |
753 | Value *Inv_Mask = nullptr; |
754 | }; |
755 | |
756 | LLVM_ATTRIBUTE_UNUSED |
757 | raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { |
758 | auto PrintObj = [&O](auto *V) { |
759 | if (V) |
760 | O << *V; |
761 | else |
762 | O << "nullptr" ; |
763 | O << '\n'; |
764 | }; |
765 | O << "PartwordMaskValues {\n" ; |
766 | O << " WordType: " ; |
767 | PrintObj(PMV.WordType); |
768 | O << " ValueType: " ; |
769 | PrintObj(PMV.ValueType); |
770 | O << " AlignedAddr: " ; |
771 | PrintObj(PMV.AlignedAddr); |
772 | O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; |
773 | O << " ShiftAmt: " ; |
774 | PrintObj(PMV.ShiftAmt); |
775 | O << " Mask: " ; |
776 | PrintObj(PMV.Mask); |
777 | O << " Inv_Mask: " ; |
778 | PrintObj(PMV.Inv_Mask); |
779 | O << "}\n" ; |
780 | return O; |
781 | } |
782 | |
783 | } // end anonymous namespace |
784 | |
785 | /// This is a helper function which builds instructions to provide |
786 | /// values necessary for partword atomic operations. It takes an |
787 | /// incoming address, Addr, and ValueType, and constructs the address, |
788 | /// shift-amounts and masks needed to work with a larger value of size |
789 | /// WordSize. |
790 | /// |
791 | /// AlignedAddr: Addr rounded down to a multiple of WordSize |
792 | /// |
793 | /// ShiftAmt: Number of bits to right-shift a WordSize value loaded |
794 | /// from AlignAddr for it to have the same value as if |
795 | /// ValueType was loaded from Addr. |
796 | /// |
797 | /// Mask: Value to mask with the value loaded from AlignAddr to |
798 | /// include only the part that would've been loaded from Addr. |
799 | /// |
800 | /// Inv_Mask: The inverse of Mask. |
801 | static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, |
802 | Instruction *I, Type *ValueType, |
803 | Value *Addr, Align AddrAlign, |
804 | unsigned MinWordSize) { |
805 | PartwordMaskValues PMV; |
806 | |
807 | Module *M = I->getModule(); |
808 | LLVMContext &Ctx = M->getContext(); |
809 | const DataLayout &DL = M->getDataLayout(); |
810 | unsigned ValueSize = DL.getTypeStoreSize(Ty: ValueType); |
811 | |
812 | PMV.ValueType = PMV.IntValueType = ValueType; |
813 | if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) |
814 | PMV.IntValueType = |
815 | Type::getIntNTy(C&: Ctx, N: ValueType->getPrimitiveSizeInBits()); |
816 | |
817 | PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(C&: Ctx, N: MinWordSize * 8) |
818 | : ValueType; |
819 | if (PMV.ValueType == PMV.WordType) { |
820 | PMV.AlignedAddr = Addr; |
821 | PMV.AlignedAddrAlignment = AddrAlign; |
822 | PMV.ShiftAmt = ConstantInt::get(Ty: PMV.ValueType, V: 0); |
823 | PMV.Mask = ConstantInt::get(Ty: PMV.ValueType, V: ~0, /*isSigned*/ IsSigned: true); |
824 | return PMV; |
825 | } |
826 | |
827 | PMV.AlignedAddrAlignment = Align(MinWordSize); |
828 | |
829 | assert(ValueSize < MinWordSize); |
830 | |
831 | PointerType *PtrTy = cast<PointerType>(Val: Addr->getType()); |
832 | IntegerType *IntTy = DL.getIndexType(C&: Ctx, AddressSpace: PtrTy->getAddressSpace()); |
833 | Value *PtrLSB; |
834 | |
835 | if (AddrAlign < MinWordSize) { |
836 | PMV.AlignedAddr = Builder.CreateIntrinsic( |
837 | ID: Intrinsic::ptrmask, Types: {PtrTy, IntTy}, |
838 | Args: {Addr, ConstantInt::get(Ty: IntTy, V: ~(uint64_t)(MinWordSize - 1))}, FMFSource: nullptr, |
839 | Name: "AlignedAddr" ); |
840 | |
841 | Value *AddrInt = Builder.CreatePtrToInt(V: Addr, DestTy: IntTy); |
842 | PtrLSB = Builder.CreateAnd(LHS: AddrInt, RHS: MinWordSize - 1, Name: "PtrLSB" ); |
843 | } else { |
844 | // If the alignment is high enough, the LSB are known 0. |
845 | PMV.AlignedAddr = Addr; |
846 | PtrLSB = ConstantInt::getNullValue(Ty: IntTy); |
847 | } |
848 | |
849 | if (DL.isLittleEndian()) { |
850 | // turn bytes into bits |
851 | PMV.ShiftAmt = Builder.CreateShl(LHS: PtrLSB, RHS: 3); |
852 | } else { |
853 | // turn bytes into bits, and count from the other side. |
854 | PMV.ShiftAmt = Builder.CreateShl( |
855 | LHS: Builder.CreateXor(LHS: PtrLSB, RHS: MinWordSize - ValueSize), RHS: 3); |
856 | } |
857 | |
858 | PMV.ShiftAmt = Builder.CreateTrunc(V: PMV.ShiftAmt, DestTy: PMV.WordType, Name: "ShiftAmt" ); |
859 | PMV.Mask = Builder.CreateShl( |
860 | LHS: ConstantInt::get(Ty: PMV.WordType, V: (1 << (ValueSize * 8)) - 1), RHS: PMV.ShiftAmt, |
861 | Name: "Mask" ); |
862 | |
863 | PMV.Inv_Mask = Builder.CreateNot(V: PMV.Mask, Name: "Inv_Mask" ); |
864 | |
865 | return PMV; |
866 | } |
867 | |
868 | static Value *(IRBuilderBase &Builder, Value *WideWord, |
869 | const PartwordMaskValues &PMV) { |
870 | assert(WideWord->getType() == PMV.WordType && "Widened type mismatch" ); |
871 | if (PMV.WordType == PMV.ValueType) |
872 | return WideWord; |
873 | |
874 | Value *Shift = Builder.CreateLShr(LHS: WideWord, RHS: PMV.ShiftAmt, Name: "shifted" ); |
875 | Value *Trunc = Builder.CreateTrunc(V: Shift, DestTy: PMV.IntValueType, Name: "extracted" ); |
876 | return Builder.CreateBitCast(V: Trunc, DestTy: PMV.ValueType); |
877 | } |
878 | |
879 | static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, |
880 | Value *Updated, const PartwordMaskValues &PMV) { |
881 | assert(WideWord->getType() == PMV.WordType && "Widened type mismatch" ); |
882 | assert(Updated->getType() == PMV.ValueType && "Value type mismatch" ); |
883 | if (PMV.WordType == PMV.ValueType) |
884 | return Updated; |
885 | |
886 | Updated = Builder.CreateBitCast(V: Updated, DestTy: PMV.IntValueType); |
887 | |
888 | Value *ZExt = Builder.CreateZExt(V: Updated, DestTy: PMV.WordType, Name: "extended" ); |
889 | Value *Shift = |
890 | Builder.CreateShl(LHS: ZExt, RHS: PMV.ShiftAmt, Name: "shifted" , /*HasNUW*/ true); |
891 | Value *And = Builder.CreateAnd(LHS: WideWord, RHS: PMV.Inv_Mask, Name: "unmasked" ); |
892 | Value *Or = Builder.CreateOr(LHS: And, RHS: Shift, Name: "inserted" ); |
893 | return Or; |
894 | } |
895 | |
896 | /// Emit IR to implement a masked version of a given atomicrmw |
897 | /// operation. (That is, only the bits under the Mask should be |
898 | /// affected by the operation) |
899 | static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, |
900 | IRBuilderBase &Builder, Value *Loaded, |
901 | Value *Shifted_Inc, Value *Inc, |
902 | const PartwordMaskValues &PMV) { |
903 | // TODO: update to use |
904 | // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order |
905 | // to merge bits from two values without requiring PMV.Inv_Mask. |
906 | switch (Op) { |
907 | case AtomicRMWInst::Xchg: { |
908 | Value *Loaded_MaskOut = Builder.CreateAnd(LHS: Loaded, RHS: PMV.Inv_Mask); |
909 | Value *FinalVal = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: Shifted_Inc); |
910 | return FinalVal; |
911 | } |
912 | case AtomicRMWInst::Or: |
913 | case AtomicRMWInst::Xor: |
914 | case AtomicRMWInst::And: |
915 | llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW" ); |
916 | case AtomicRMWInst::Add: |
917 | case AtomicRMWInst::Sub: |
918 | case AtomicRMWInst::Nand: { |
919 | // The other arithmetic ops need to be masked into place. |
920 | Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Val: Shifted_Inc); |
921 | Value *NewVal_Masked = Builder.CreateAnd(LHS: NewVal, RHS: PMV.Mask); |
922 | Value *Loaded_MaskOut = Builder.CreateAnd(LHS: Loaded, RHS: PMV.Inv_Mask); |
923 | Value *FinalVal = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: NewVal_Masked); |
924 | return FinalVal; |
925 | } |
926 | case AtomicRMWInst::Max: |
927 | case AtomicRMWInst::Min: |
928 | case AtomicRMWInst::UMax: |
929 | case AtomicRMWInst::UMin: |
930 | case AtomicRMWInst::FAdd: |
931 | case AtomicRMWInst::FSub: |
932 | case AtomicRMWInst::FMin: |
933 | case AtomicRMWInst::FMax: |
934 | case AtomicRMWInst::FMaximum: |
935 | case AtomicRMWInst::FMinimum: |
936 | case AtomicRMWInst::UIncWrap: |
937 | case AtomicRMWInst::UDecWrap: |
938 | case AtomicRMWInst::USubCond: |
939 | case AtomicRMWInst::USubSat: { |
940 | // Finally, other ops will operate on the full value, so truncate down to |
941 | // the original size, and expand out again after doing the |
942 | // operation. Bitcasts will be inserted for FP values. |
943 | Value * = extractMaskedValue(Builder, WideWord: Loaded, PMV); |
944 | Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded: Loaded_Extract, Val: Inc); |
945 | Value *FinalVal = insertMaskedValue(Builder, WideWord: Loaded, Updated: NewVal, PMV); |
946 | return FinalVal; |
947 | } |
948 | default: |
949 | llvm_unreachable("Unknown atomic op" ); |
950 | } |
951 | } |
952 | |
953 | /// Expand a sub-word atomicrmw operation into an appropriate |
954 | /// word-sized operation. |
955 | /// |
956 | /// It will create an LL/SC or cmpxchg loop, as appropriate, the same |
957 | /// way as a typical atomicrmw expansion. The only difference here is |
958 | /// that the operation inside of the loop may operate upon only a |
959 | /// part of the value. |
960 | void AtomicExpandImpl::expandPartwordAtomicRMW( |
961 | AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { |
962 | // Widen And/Or/Xor and give the target another chance at expanding it. |
963 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
964 | if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
965 | Op == AtomicRMWInst::And) { |
966 | tryExpandAtomicRMW(AI: widenPartwordAtomicRMW(AI)); |
967 | return; |
968 | } |
969 | AtomicOrdering MemOpOrder = AI->getOrdering(); |
970 | SyncScope::ID SSID = AI->getSyncScopeID(); |
971 | |
972 | ReplacementIRBuilder Builder(AI, *DL); |
973 | |
974 | PartwordMaskValues PMV = |
975 | createMaskInstrs(Builder, I: AI, ValueType: AI->getType(), Addr: AI->getPointerOperand(), |
976 | AddrAlign: AI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
977 | |
978 | Value *ValOperand_Shifted = nullptr; |
979 | if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || |
980 | Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { |
981 | Value *ValOp = Builder.CreateBitCast(V: AI->getValOperand(), DestTy: PMV.IntValueType); |
982 | ValOperand_Shifted = |
983 | Builder.CreateShl(LHS: Builder.CreateZExt(V: ValOp, DestTy: PMV.WordType), RHS: PMV.ShiftAmt, |
984 | Name: "ValOperand_Shifted" ); |
985 | } |
986 | |
987 | auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { |
988 | return performMaskedAtomicOp(Op, Builder, Loaded, Shifted_Inc: ValOperand_Shifted, |
989 | Inc: AI->getValOperand(), PMV); |
990 | }; |
991 | |
992 | Value *OldResult; |
993 | if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { |
994 | OldResult = insertRMWCmpXchgLoop( |
995 | Builder, ResultType: PMV.WordType, Addr: PMV.AlignedAddr, AddrAlign: PMV.AlignedAddrAlignment, |
996 | MemOpOrder, SSID, PerformOp: PerformPartwordOp, CreateCmpXchg: createCmpXchgInstFun, MetadataSrc: AI); |
997 | } else { |
998 | assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); |
999 | OldResult = insertRMWLLSCLoop(Builder, ResultTy: PMV.WordType, Addr: PMV.AlignedAddr, |
1000 | AddrAlign: PMV.AlignedAddrAlignment, MemOpOrder, |
1001 | PerformOp: PerformPartwordOp); |
1002 | } |
1003 | |
1004 | Value *FinalOldResult = extractMaskedValue(Builder, WideWord: OldResult, PMV); |
1005 | AI->replaceAllUsesWith(V: FinalOldResult); |
1006 | AI->eraseFromParent(); |
1007 | } |
1008 | |
1009 | // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. |
1010 | AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { |
1011 | ReplacementIRBuilder Builder(AI, *DL); |
1012 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
1013 | |
1014 | assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
1015 | Op == AtomicRMWInst::And) && |
1016 | "Unable to widen operation" ); |
1017 | |
1018 | PartwordMaskValues PMV = |
1019 | createMaskInstrs(Builder, I: AI, ValueType: AI->getType(), Addr: AI->getPointerOperand(), |
1020 | AddrAlign: AI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
1021 | |
1022 | Value *ValOperand_Shifted = |
1023 | Builder.CreateShl(LHS: Builder.CreateZExt(V: AI->getValOperand(), DestTy: PMV.WordType), |
1024 | RHS: PMV.ShiftAmt, Name: "ValOperand_Shifted" ); |
1025 | |
1026 | Value *NewOperand; |
1027 | |
1028 | if (Op == AtomicRMWInst::And) |
1029 | NewOperand = |
1030 | Builder.CreateOr(LHS: ValOperand_Shifted, RHS: PMV.Inv_Mask, Name: "AndOperand" ); |
1031 | else |
1032 | NewOperand = ValOperand_Shifted; |
1033 | |
1034 | AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( |
1035 | Op, Ptr: PMV.AlignedAddr, Val: NewOperand, Align: PMV.AlignedAddrAlignment, |
1036 | Ordering: AI->getOrdering(), SSID: AI->getSyncScopeID()); |
1037 | |
1038 | copyMetadataForAtomic(Dest&: *NewAI, Source: *AI); |
1039 | |
1040 | Value *FinalOldResult = extractMaskedValue(Builder, WideWord: NewAI, PMV); |
1041 | AI->replaceAllUsesWith(V: FinalOldResult); |
1042 | AI->eraseFromParent(); |
1043 | return NewAI; |
1044 | } |
1045 | |
1046 | bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { |
1047 | // The basic idea here is that we're expanding a cmpxchg of a |
1048 | // smaller memory size up to a word-sized cmpxchg. To do this, we |
1049 | // need to add a retry-loop for strong cmpxchg, so that |
1050 | // modifications to other parts of the word don't cause a spurious |
1051 | // failure. |
1052 | |
1053 | // This generates code like the following: |
1054 | // [[Setup mask values PMV.*]] |
1055 | // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt |
1056 | // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt |
1057 | // %InitLoaded = load i32* %addr |
1058 | // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask |
1059 | // br partword.cmpxchg.loop |
1060 | // partword.cmpxchg.loop: |
1061 | // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], |
1062 | // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] |
1063 | // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted |
1064 | // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted |
1065 | // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, |
1066 | // i32 %FullWord_NewVal success_ordering failure_ordering |
1067 | // %OldVal = extractvalue { i32, i1 } %NewCI, 0 |
1068 | // %Success = extractvalue { i32, i1 } %NewCI, 1 |
1069 | // br i1 %Success, label %partword.cmpxchg.end, |
1070 | // label %partword.cmpxchg.failure |
1071 | // partword.cmpxchg.failure: |
1072 | // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask |
1073 | // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut |
1074 | // br i1 %ShouldContinue, label %partword.cmpxchg.loop, |
1075 | // label %partword.cmpxchg.end |
1076 | // partword.cmpxchg.end: |
1077 | // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt |
1078 | // %FinalOldVal = trunc i32 %tmp1 to i8 |
1079 | // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 |
1080 | // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 |
1081 | |
1082 | Value *Addr = CI->getPointerOperand(); |
1083 | Value *Cmp = CI->getCompareOperand(); |
1084 | Value *NewVal = CI->getNewValOperand(); |
1085 | |
1086 | BasicBlock *BB = CI->getParent(); |
1087 | Function *F = BB->getParent(); |
1088 | ReplacementIRBuilder Builder(CI, *DL); |
1089 | LLVMContext &Ctx = Builder.getContext(); |
1090 | |
1091 | BasicBlock *EndBB = |
1092 | BB->splitBasicBlock(I: CI->getIterator(), BBName: "partword.cmpxchg.end" ); |
1093 | auto FailureBB = |
1094 | BasicBlock::Create(Context&: Ctx, Name: "partword.cmpxchg.failure" , Parent: F, InsertBefore: EndBB); |
1095 | auto LoopBB = BasicBlock::Create(Context&: Ctx, Name: "partword.cmpxchg.loop" , Parent: F, InsertBefore: FailureBB); |
1096 | |
1097 | // The split call above "helpfully" added a branch at the end of BB |
1098 | // (to the wrong place). |
1099 | std::prev(x: BB->end())->eraseFromParent(); |
1100 | Builder.SetInsertPoint(BB); |
1101 | |
1102 | PartwordMaskValues PMV = |
1103 | createMaskInstrs(Builder, I: CI, ValueType: CI->getCompareOperand()->getType(), Addr, |
1104 | AddrAlign: CI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
1105 | |
1106 | // Shift the incoming values over, into the right location in the word. |
1107 | Value *NewVal_Shifted = |
1108 | Builder.CreateShl(LHS: Builder.CreateZExt(V: NewVal, DestTy: PMV.WordType), RHS: PMV.ShiftAmt); |
1109 | Value *Cmp_Shifted = |
1110 | Builder.CreateShl(LHS: Builder.CreateZExt(V: Cmp, DestTy: PMV.WordType), RHS: PMV.ShiftAmt); |
1111 | |
1112 | // Load the entire current word, and mask into place the expected and new |
1113 | // values |
1114 | LoadInst *InitLoaded = Builder.CreateLoad(Ty: PMV.WordType, Ptr: PMV.AlignedAddr); |
1115 | InitLoaded->setVolatile(CI->isVolatile()); |
1116 | Value *InitLoaded_MaskOut = Builder.CreateAnd(LHS: InitLoaded, RHS: PMV.Inv_Mask); |
1117 | Builder.CreateBr(Dest: LoopBB); |
1118 | |
1119 | // partword.cmpxchg.loop: |
1120 | Builder.SetInsertPoint(LoopBB); |
1121 | PHINode *Loaded_MaskOut = Builder.CreatePHI(Ty: PMV.WordType, NumReservedValues: 2); |
1122 | Loaded_MaskOut->addIncoming(V: InitLoaded_MaskOut, BB); |
1123 | |
1124 | // Mask/Or the expected and new values into place in the loaded word. |
1125 | Value *FullWord_NewVal = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: NewVal_Shifted); |
1126 | Value *FullWord_Cmp = Builder.CreateOr(LHS: Loaded_MaskOut, RHS: Cmp_Shifted); |
1127 | AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( |
1128 | Ptr: PMV.AlignedAddr, Cmp: FullWord_Cmp, New: FullWord_NewVal, Align: PMV.AlignedAddrAlignment, |
1129 | SuccessOrdering: CI->getSuccessOrdering(), FailureOrdering: CI->getFailureOrdering(), SSID: CI->getSyncScopeID()); |
1130 | NewCI->setVolatile(CI->isVolatile()); |
1131 | // When we're building a strong cmpxchg, we need a loop, so you |
1132 | // might think we could use a weak cmpxchg inside. But, using strong |
1133 | // allows the below comparison for ShouldContinue, and we're |
1134 | // expecting the underlying cmpxchg to be a machine instruction, |
1135 | // which is strong anyways. |
1136 | NewCI->setWeak(CI->isWeak()); |
1137 | |
1138 | Value *OldVal = Builder.CreateExtractValue(Agg: NewCI, Idxs: 0); |
1139 | Value *Success = Builder.CreateExtractValue(Agg: NewCI, Idxs: 1); |
1140 | |
1141 | if (CI->isWeak()) |
1142 | Builder.CreateBr(Dest: EndBB); |
1143 | else |
1144 | Builder.CreateCondBr(Cond: Success, True: EndBB, False: FailureBB); |
1145 | |
1146 | // partword.cmpxchg.failure: |
1147 | Builder.SetInsertPoint(FailureBB); |
1148 | // Upon failure, verify that the masked-out part of the loaded value |
1149 | // has been modified. If it didn't, abort the cmpxchg, since the |
1150 | // masked-in part must've. |
1151 | Value *OldVal_MaskOut = Builder.CreateAnd(LHS: OldVal, RHS: PMV.Inv_Mask); |
1152 | Value *ShouldContinue = Builder.CreateICmpNE(LHS: Loaded_MaskOut, RHS: OldVal_MaskOut); |
1153 | Builder.CreateCondBr(Cond: ShouldContinue, True: LoopBB, False: EndBB); |
1154 | |
1155 | // Add the second value to the phi from above |
1156 | Loaded_MaskOut->addIncoming(V: OldVal_MaskOut, BB: FailureBB); |
1157 | |
1158 | // partword.cmpxchg.end: |
1159 | Builder.SetInsertPoint(CI); |
1160 | |
1161 | Value *FinalOldVal = extractMaskedValue(Builder, WideWord: OldVal, PMV); |
1162 | Value *Res = PoisonValue::get(T: CI->getType()); |
1163 | Res = Builder.CreateInsertValue(Agg: Res, Val: FinalOldVal, Idxs: 0); |
1164 | Res = Builder.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
1165 | |
1166 | CI->replaceAllUsesWith(V: Res); |
1167 | CI->eraseFromParent(); |
1168 | return true; |
1169 | } |
1170 | |
1171 | void AtomicExpandImpl::expandAtomicOpToLLSC( |
1172 | Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, |
1173 | AtomicOrdering MemOpOrder, |
1174 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { |
1175 | ReplacementIRBuilder Builder(I, *DL); |
1176 | Value *Loaded = insertRMWLLSCLoop(Builder, ResultTy: ResultType, Addr, AddrAlign, |
1177 | MemOpOrder, PerformOp); |
1178 | |
1179 | I->replaceAllUsesWith(V: Loaded); |
1180 | I->eraseFromParent(); |
1181 | } |
1182 | |
1183 | void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { |
1184 | ReplacementIRBuilder Builder(AI, *DL); |
1185 | |
1186 | PartwordMaskValues PMV = |
1187 | createMaskInstrs(Builder, I: AI, ValueType: AI->getType(), Addr: AI->getPointerOperand(), |
1188 | AddrAlign: AI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
1189 | |
1190 | // The value operand must be sign-extended for signed min/max so that the |
1191 | // target's signed comparison instructions can be used. Otherwise, just |
1192 | // zero-ext. |
1193 | Instruction::CastOps CastOp = Instruction::ZExt; |
1194 | AtomicRMWInst::BinOp RMWOp = AI->getOperation(); |
1195 | if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) |
1196 | CastOp = Instruction::SExt; |
1197 | |
1198 | Value *ValOperand_Shifted = Builder.CreateShl( |
1199 | LHS: Builder.CreateCast(Op: CastOp, V: AI->getValOperand(), DestTy: PMV.WordType), |
1200 | RHS: PMV.ShiftAmt, Name: "ValOperand_Shifted" ); |
1201 | Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( |
1202 | Builder, AI, AlignedAddr: PMV.AlignedAddr, Incr: ValOperand_Shifted, Mask: PMV.Mask, ShiftAmt: PMV.ShiftAmt, |
1203 | Ord: AI->getOrdering()); |
1204 | Value *FinalOldResult = extractMaskedValue(Builder, WideWord: OldResult, PMV); |
1205 | AI->replaceAllUsesWith(V: FinalOldResult); |
1206 | AI->eraseFromParent(); |
1207 | } |
1208 | |
1209 | void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( |
1210 | AtomicCmpXchgInst *CI) { |
1211 | ReplacementIRBuilder Builder(CI, *DL); |
1212 | |
1213 | PartwordMaskValues PMV = createMaskInstrs( |
1214 | Builder, I: CI, ValueType: CI->getCompareOperand()->getType(), Addr: CI->getPointerOperand(), |
1215 | AddrAlign: CI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
1216 | |
1217 | Value *CmpVal_Shifted = Builder.CreateShl( |
1218 | LHS: Builder.CreateZExt(V: CI->getCompareOperand(), DestTy: PMV.WordType), RHS: PMV.ShiftAmt, |
1219 | Name: "CmpVal_Shifted" ); |
1220 | Value *NewVal_Shifted = Builder.CreateShl( |
1221 | LHS: Builder.CreateZExt(V: CI->getNewValOperand(), DestTy: PMV.WordType), RHS: PMV.ShiftAmt, |
1222 | Name: "NewVal_Shifted" ); |
1223 | Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( |
1224 | Builder, CI, AlignedAddr: PMV.AlignedAddr, CmpVal: CmpVal_Shifted, NewVal: NewVal_Shifted, Mask: PMV.Mask, |
1225 | Ord: CI->getMergedOrdering()); |
1226 | Value *FinalOldVal = extractMaskedValue(Builder, WideWord: OldVal, PMV); |
1227 | Value *Res = PoisonValue::get(T: CI->getType()); |
1228 | Res = Builder.CreateInsertValue(Agg: Res, Val: FinalOldVal, Idxs: 0); |
1229 | Value *Success = Builder.CreateICmpEQ( |
1230 | LHS: CmpVal_Shifted, RHS: Builder.CreateAnd(LHS: OldVal, RHS: PMV.Mask), Name: "Success" ); |
1231 | Res = Builder.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
1232 | |
1233 | CI->replaceAllUsesWith(V: Res); |
1234 | CI->eraseFromParent(); |
1235 | } |
1236 | |
1237 | Value *AtomicExpandImpl::insertRMWLLSCLoop( |
1238 | IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, |
1239 | AtomicOrdering MemOpOrder, |
1240 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { |
1241 | LLVMContext &Ctx = Builder.getContext(); |
1242 | BasicBlock *BB = Builder.GetInsertBlock(); |
1243 | Function *F = BB->getParent(); |
1244 | |
1245 | assert(AddrAlign >= |
1246 | F->getDataLayout().getTypeStoreSize(ResultTy) && |
1247 | "Expected at least natural alignment at this point." ); |
1248 | |
1249 | // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
1250 | // |
1251 | // The standard expansion we produce is: |
1252 | // [...] |
1253 | // atomicrmw.start: |
1254 | // %loaded = @load.linked(%addr) |
1255 | // %new = some_op iN %loaded, %incr |
1256 | // %stored = @store_conditional(%new, %addr) |
1257 | // %try_again = icmp i32 ne %stored, 0 |
1258 | // br i1 %try_again, label %loop, label %atomicrmw.end |
1259 | // atomicrmw.end: |
1260 | // [...] |
1261 | BasicBlock *ExitBB = |
1262 | BB->splitBasicBlock(I: Builder.GetInsertPoint(), BBName: "atomicrmw.end" ); |
1263 | BasicBlock *LoopBB = BasicBlock::Create(Context&: Ctx, Name: "atomicrmw.start" , Parent: F, InsertBefore: ExitBB); |
1264 | |
1265 | // The split call above "helpfully" added a branch at the end of BB (to the |
1266 | // wrong place). |
1267 | std::prev(x: BB->end())->eraseFromParent(); |
1268 | Builder.SetInsertPoint(BB); |
1269 | Builder.CreateBr(Dest: LoopBB); |
1270 | |
1271 | // Start the main loop block now that we've taken care of the preliminaries. |
1272 | Builder.SetInsertPoint(LoopBB); |
1273 | Value *Loaded = TLI->emitLoadLinked(Builder, ValueTy: ResultTy, Addr, Ord: MemOpOrder); |
1274 | |
1275 | Value *NewVal = PerformOp(Builder, Loaded); |
1276 | |
1277 | Value *StoreSuccess = |
1278 | TLI->emitStoreConditional(Builder, Val: NewVal, Addr, Ord: MemOpOrder); |
1279 | Value *TryAgain = Builder.CreateICmpNE( |
1280 | LHS: StoreSuccess, RHS: ConstantInt::get(Ty: IntegerType::get(C&: Ctx, NumBits: 32), V: 0), Name: "tryagain" ); |
1281 | Builder.CreateCondBr(Cond: TryAgain, True: LoopBB, False: ExitBB); |
1282 | |
1283 | Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin()); |
1284 | return Loaded; |
1285 | } |
1286 | |
1287 | /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of |
1288 | /// the equivalent bitwidth. We used to not support pointer cmpxchg in the |
1289 | /// IR. As a migration step, we convert back to what use to be the standard |
1290 | /// way to represent a pointer cmpxchg so that we can update backends one by |
1291 | /// one. |
1292 | AtomicCmpXchgInst * |
1293 | AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { |
1294 | auto *M = CI->getModule(); |
1295 | Type *NewTy = getCorrespondingIntegerType(T: CI->getCompareOperand()->getType(), |
1296 | DL: M->getDataLayout()); |
1297 | |
1298 | ReplacementIRBuilder Builder(CI, *DL); |
1299 | |
1300 | Value *Addr = CI->getPointerOperand(); |
1301 | |
1302 | Value *NewCmp = Builder.CreatePtrToInt(V: CI->getCompareOperand(), DestTy: NewTy); |
1303 | Value *NewNewVal = Builder.CreatePtrToInt(V: CI->getNewValOperand(), DestTy: NewTy); |
1304 | |
1305 | auto *NewCI = Builder.CreateAtomicCmpXchg( |
1306 | Ptr: Addr, Cmp: NewCmp, New: NewNewVal, Align: CI->getAlign(), SuccessOrdering: CI->getSuccessOrdering(), |
1307 | FailureOrdering: CI->getFailureOrdering(), SSID: CI->getSyncScopeID()); |
1308 | NewCI->setVolatile(CI->isVolatile()); |
1309 | NewCI->setWeak(CI->isWeak()); |
1310 | LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n" ); |
1311 | |
1312 | Value *OldVal = Builder.CreateExtractValue(Agg: NewCI, Idxs: 0); |
1313 | Value *Succ = Builder.CreateExtractValue(Agg: NewCI, Idxs: 1); |
1314 | |
1315 | OldVal = Builder.CreateIntToPtr(V: OldVal, DestTy: CI->getCompareOperand()->getType()); |
1316 | |
1317 | Value *Res = PoisonValue::get(T: CI->getType()); |
1318 | Res = Builder.CreateInsertValue(Agg: Res, Val: OldVal, Idxs: 0); |
1319 | Res = Builder.CreateInsertValue(Agg: Res, Val: Succ, Idxs: 1); |
1320 | |
1321 | CI->replaceAllUsesWith(V: Res); |
1322 | CI->eraseFromParent(); |
1323 | return NewCI; |
1324 | } |
1325 | |
1326 | bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
1327 | AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); |
1328 | AtomicOrdering FailureOrder = CI->getFailureOrdering(); |
1329 | Value *Addr = CI->getPointerOperand(); |
1330 | BasicBlock *BB = CI->getParent(); |
1331 | Function *F = BB->getParent(); |
1332 | LLVMContext &Ctx = F->getContext(); |
1333 | // If shouldInsertFencesForAtomic() returns true, then the target does not |
1334 | // want to deal with memory orders, and emitLeading/TrailingFence should take |
1335 | // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we |
1336 | // should preserve the ordering. |
1337 | bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(I: CI); |
1338 | AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic |
1339 | ? AtomicOrdering::Monotonic |
1340 | : CI->getMergedOrdering(); |
1341 | |
1342 | // In implementations which use a barrier to achieve release semantics, we can |
1343 | // delay emitting this barrier until we know a store is actually going to be |
1344 | // attempted. The cost of this delay is that we need 2 copies of the block |
1345 | // emitting the load-linked, affecting code size. |
1346 | // |
1347 | // Ideally, this logic would be unconditional except for the minsize check |
1348 | // since in other cases the extra blocks naturally collapse down to the |
1349 | // minimal loop. Unfortunately, this puts too much stress on later |
1350 | // optimisations so we avoid emitting the extra logic in those cases too. |
1351 | bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && |
1352 | SuccessOrder != AtomicOrdering::Monotonic && |
1353 | SuccessOrder != AtomicOrdering::Acquire && |
1354 | !F->hasMinSize(); |
1355 | |
1356 | // There's no overhead for sinking the release barrier in a weak cmpxchg, so |
1357 | // do it even on minsize. |
1358 | bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); |
1359 | |
1360 | // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord |
1361 | // |
1362 | // The full expansion we produce is: |
1363 | // [...] |
1364 | // %aligned.addr = ... |
1365 | // cmpxchg.start: |
1366 | // %unreleasedload = @load.linked(%aligned.addr) |
1367 | // %unreleasedload.extract = extract value from %unreleasedload |
1368 | // %should_store = icmp eq %unreleasedload.extract, %desired |
1369 | // br i1 %should_store, label %cmpxchg.releasingstore, |
1370 | // label %cmpxchg.nostore |
1371 | // cmpxchg.releasingstore: |
1372 | // fence? |
1373 | // br label cmpxchg.trystore |
1374 | // cmpxchg.trystore: |
1375 | // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], |
1376 | // [%releasedload, %cmpxchg.releasedload] |
1377 | // %updated.new = insert %new into %loaded.trystore |
1378 | // %stored = @store_conditional(%updated.new, %aligned.addr) |
1379 | // %success = icmp eq i32 %stored, 0 |
1380 | // br i1 %success, label %cmpxchg.success, |
1381 | // label %cmpxchg.releasedload/%cmpxchg.failure |
1382 | // cmpxchg.releasedload: |
1383 | // %releasedload = @load.linked(%aligned.addr) |
1384 | // %releasedload.extract = extract value from %releasedload |
1385 | // %should_store = icmp eq %releasedload.extract, %desired |
1386 | // br i1 %should_store, label %cmpxchg.trystore, |
1387 | // label %cmpxchg.failure |
1388 | // cmpxchg.success: |
1389 | // fence? |
1390 | // br label %cmpxchg.end |
1391 | // cmpxchg.nostore: |
1392 | // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], |
1393 | // [%releasedload, |
1394 | // %cmpxchg.releasedload/%cmpxchg.trystore] |
1395 | // @load_linked_fail_balance()? |
1396 | // br label %cmpxchg.failure |
1397 | // cmpxchg.failure: |
1398 | // fence? |
1399 | // br label %cmpxchg.end |
1400 | // cmpxchg.end: |
1401 | // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], |
1402 | // [%loaded.trystore, %cmpxchg.trystore] |
1403 | // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] |
1404 | // %loaded = extract value from %loaded.exit |
1405 | // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 |
1406 | // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 |
1407 | // [...] |
1408 | BasicBlock *ExitBB = BB->splitBasicBlock(I: CI->getIterator(), BBName: "cmpxchg.end" ); |
1409 | auto FailureBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.failure" , Parent: F, InsertBefore: ExitBB); |
1410 | auto NoStoreBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.nostore" , Parent: F, InsertBefore: FailureBB); |
1411 | auto SuccessBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.success" , Parent: F, InsertBefore: NoStoreBB); |
1412 | auto ReleasedLoadBB = |
1413 | BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.releasedload" , Parent: F, InsertBefore: SuccessBB); |
1414 | auto TryStoreBB = |
1415 | BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.trystore" , Parent: F, InsertBefore: ReleasedLoadBB); |
1416 | auto ReleasingStoreBB = |
1417 | BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.fencedstore" , Parent: F, InsertBefore: TryStoreBB); |
1418 | auto StartBB = BasicBlock::Create(Context&: Ctx, Name: "cmpxchg.start" , Parent: F, InsertBefore: ReleasingStoreBB); |
1419 | |
1420 | ReplacementIRBuilder Builder(CI, *DL); |
1421 | |
1422 | // The split call above "helpfully" added a branch at the end of BB (to the |
1423 | // wrong place), but we might want a fence too. It's easiest to just remove |
1424 | // the branch entirely. |
1425 | std::prev(x: BB->end())->eraseFromParent(); |
1426 | Builder.SetInsertPoint(BB); |
1427 | if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) |
1428 | TLI->emitLeadingFence(Builder, Inst: CI, Ord: SuccessOrder); |
1429 | |
1430 | PartwordMaskValues PMV = |
1431 | createMaskInstrs(Builder, I: CI, ValueType: CI->getCompareOperand()->getType(), Addr, |
1432 | AddrAlign: CI->getAlign(), MinWordSize: TLI->getMinCmpXchgSizeInBits() / 8); |
1433 | Builder.CreateBr(Dest: StartBB); |
1434 | |
1435 | // Start the main loop block now that we've taken care of the preliminaries. |
1436 | Builder.SetInsertPoint(StartBB); |
1437 | Value *UnreleasedLoad = |
1438 | TLI->emitLoadLinked(Builder, ValueTy: PMV.WordType, Addr: PMV.AlignedAddr, Ord: MemOpOrder); |
1439 | Value * = |
1440 | extractMaskedValue(Builder, WideWord: UnreleasedLoad, PMV); |
1441 | Value *ShouldStore = Builder.CreateICmpEQ( |
1442 | LHS: UnreleasedLoadExtract, RHS: CI->getCompareOperand(), Name: "should_store" ); |
1443 | |
1444 | // If the cmpxchg doesn't actually need any ordering when it fails, we can |
1445 | // jump straight past that fence instruction (if it exists). |
1446 | Builder.CreateCondBr(Cond: ShouldStore, True: ReleasingStoreBB, False: NoStoreBB); |
1447 | |
1448 | Builder.SetInsertPoint(ReleasingStoreBB); |
1449 | if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) |
1450 | TLI->emitLeadingFence(Builder, Inst: CI, Ord: SuccessOrder); |
1451 | Builder.CreateBr(Dest: TryStoreBB); |
1452 | |
1453 | Builder.SetInsertPoint(TryStoreBB); |
1454 | PHINode *LoadedTryStore = |
1455 | Builder.CreatePHI(Ty: PMV.WordType, NumReservedValues: 2, Name: "loaded.trystore" ); |
1456 | LoadedTryStore->addIncoming(V: UnreleasedLoad, BB: ReleasingStoreBB); |
1457 | Value *NewValueInsert = |
1458 | insertMaskedValue(Builder, WideWord: LoadedTryStore, Updated: CI->getNewValOperand(), PMV); |
1459 | Value *StoreSuccess = TLI->emitStoreConditional(Builder, Val: NewValueInsert, |
1460 | Addr: PMV.AlignedAddr, Ord: MemOpOrder); |
1461 | StoreSuccess = Builder.CreateICmpEQ( |
1462 | LHS: StoreSuccess, RHS: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0), Name: "success" ); |
1463 | BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; |
1464 | Builder.CreateCondBr(Cond: StoreSuccess, True: SuccessBB, |
1465 | False: CI->isWeak() ? FailureBB : RetryBB); |
1466 | |
1467 | Builder.SetInsertPoint(ReleasedLoadBB); |
1468 | Value *SecondLoad; |
1469 | if (HasReleasedLoadBB) { |
1470 | SecondLoad = |
1471 | TLI->emitLoadLinked(Builder, ValueTy: PMV.WordType, Addr: PMV.AlignedAddr, Ord: MemOpOrder); |
1472 | Value * = extractMaskedValue(Builder, WideWord: SecondLoad, PMV); |
1473 | ShouldStore = Builder.CreateICmpEQ(LHS: SecondLoadExtract, |
1474 | RHS: CI->getCompareOperand(), Name: "should_store" ); |
1475 | |
1476 | // If the cmpxchg doesn't actually need any ordering when it fails, we can |
1477 | // jump straight past that fence instruction (if it exists). |
1478 | Builder.CreateCondBr(Cond: ShouldStore, True: TryStoreBB, False: NoStoreBB); |
1479 | // Update PHI node in TryStoreBB. |
1480 | LoadedTryStore->addIncoming(V: SecondLoad, BB: ReleasedLoadBB); |
1481 | } else |
1482 | Builder.CreateUnreachable(); |
1483 | |
1484 | // Make sure later instructions don't get reordered with a fence if |
1485 | // necessary. |
1486 | Builder.SetInsertPoint(SuccessBB); |
1487 | if (ShouldInsertFencesForAtomic || |
1488 | TLI->shouldInsertTrailingFenceForAtomicStore(I: CI)) |
1489 | TLI->emitTrailingFence(Builder, Inst: CI, Ord: SuccessOrder); |
1490 | Builder.CreateBr(Dest: ExitBB); |
1491 | |
1492 | Builder.SetInsertPoint(NoStoreBB); |
1493 | PHINode *LoadedNoStore = |
1494 | Builder.CreatePHI(Ty: UnreleasedLoad->getType(), NumReservedValues: 2, Name: "loaded.nostore" ); |
1495 | LoadedNoStore->addIncoming(V: UnreleasedLoad, BB: StartBB); |
1496 | if (HasReleasedLoadBB) |
1497 | LoadedNoStore->addIncoming(V: SecondLoad, BB: ReleasedLoadBB); |
1498 | |
1499 | // In the failing case, where we don't execute the store-conditional, the |
1500 | // target might want to balance out the load-linked with a dedicated |
1501 | // instruction (e.g., on ARM, clearing the exclusive monitor). |
1502 | TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); |
1503 | Builder.CreateBr(Dest: FailureBB); |
1504 | |
1505 | Builder.SetInsertPoint(FailureBB); |
1506 | PHINode *LoadedFailure = |
1507 | Builder.CreatePHI(Ty: UnreleasedLoad->getType(), NumReservedValues: 2, Name: "loaded.failure" ); |
1508 | LoadedFailure->addIncoming(V: LoadedNoStore, BB: NoStoreBB); |
1509 | if (CI->isWeak()) |
1510 | LoadedFailure->addIncoming(V: LoadedTryStore, BB: TryStoreBB); |
1511 | if (ShouldInsertFencesForAtomic) |
1512 | TLI->emitTrailingFence(Builder, Inst: CI, Ord: FailureOrder); |
1513 | Builder.CreateBr(Dest: ExitBB); |
1514 | |
1515 | // Finally, we have control-flow based knowledge of whether the cmpxchg |
1516 | // succeeded or not. We expose this to later passes by converting any |
1517 | // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate |
1518 | // PHI. |
1519 | Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin()); |
1520 | PHINode *LoadedExit = |
1521 | Builder.CreatePHI(Ty: UnreleasedLoad->getType(), NumReservedValues: 2, Name: "loaded.exit" ); |
1522 | LoadedExit->addIncoming(V: LoadedTryStore, BB: SuccessBB); |
1523 | LoadedExit->addIncoming(V: LoadedFailure, BB: FailureBB); |
1524 | PHINode *Success = Builder.CreatePHI(Ty: Type::getInt1Ty(C&: Ctx), NumReservedValues: 2, Name: "success" ); |
1525 | Success->addIncoming(V: ConstantInt::getTrue(Context&: Ctx), BB: SuccessBB); |
1526 | Success->addIncoming(V: ConstantInt::getFalse(Context&: Ctx), BB: FailureBB); |
1527 | |
1528 | // This is the "exit value" from the cmpxchg expansion. It may be of |
1529 | // a type wider than the one in the cmpxchg instruction. |
1530 | Value *LoadedFull = LoadedExit; |
1531 | |
1532 | Builder.SetInsertPoint(TheBB: ExitBB, IP: std::next(x: Success->getIterator())); |
1533 | Value *Loaded = extractMaskedValue(Builder, WideWord: LoadedFull, PMV); |
1534 | |
1535 | // Look for any users of the cmpxchg that are just comparing the loaded value |
1536 | // against the desired one, and replace them with the CFG-derived version. |
1537 | SmallVector<ExtractValueInst *, 2> PrunedInsts; |
1538 | for (auto *User : CI->users()) { |
1539 | ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val: User); |
1540 | if (!EV) |
1541 | continue; |
1542 | |
1543 | assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && |
1544 | "weird extraction from { iN, i1 }" ); |
1545 | |
1546 | if (EV->getIndices()[0] == 0) |
1547 | EV->replaceAllUsesWith(V: Loaded); |
1548 | else |
1549 | EV->replaceAllUsesWith(V: Success); |
1550 | |
1551 | PrunedInsts.push_back(Elt: EV); |
1552 | } |
1553 | |
1554 | // We can remove the instructions now we're no longer iterating through them. |
1555 | for (auto *EV : PrunedInsts) |
1556 | EV->eraseFromParent(); |
1557 | |
1558 | if (!CI->use_empty()) { |
1559 | // Some use of the full struct return that we don't understand has happened, |
1560 | // so we've got to reconstruct it properly. |
1561 | Value *Res; |
1562 | Res = Builder.CreateInsertValue(Agg: PoisonValue::get(T: CI->getType()), Val: Loaded, Idxs: 0); |
1563 | Res = Builder.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
1564 | |
1565 | CI->replaceAllUsesWith(V: Res); |
1566 | } |
1567 | |
1568 | CI->eraseFromParent(); |
1569 | return true; |
1570 | } |
1571 | |
1572 | bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { |
1573 | // TODO: Add floating point support. |
1574 | auto C = dyn_cast<ConstantInt>(Val: RMWI->getValOperand()); |
1575 | if (!C) |
1576 | return false; |
1577 | |
1578 | switch (RMWI->getOperation()) { |
1579 | case AtomicRMWInst::Add: |
1580 | case AtomicRMWInst::Sub: |
1581 | case AtomicRMWInst::Or: |
1582 | case AtomicRMWInst::Xor: |
1583 | return C->isZero(); |
1584 | case AtomicRMWInst::And: |
1585 | return C->isMinusOne(); |
1586 | case AtomicRMWInst::Min: |
1587 | return C->isMaxValue(IsSigned: true); |
1588 | case AtomicRMWInst::Max: |
1589 | return C->isMinValue(IsSigned: true); |
1590 | case AtomicRMWInst::UMin: |
1591 | return C->isMaxValue(IsSigned: false); |
1592 | case AtomicRMWInst::UMax: |
1593 | return C->isMinValue(IsSigned: false); |
1594 | default: |
1595 | return false; |
1596 | } |
1597 | } |
1598 | |
1599 | bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { |
1600 | if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { |
1601 | tryExpandAtomicLoad(LI: ResultingLoad); |
1602 | return true; |
1603 | } |
1604 | return false; |
1605 | } |
1606 | |
1607 | Value *AtomicExpandImpl::insertRMWCmpXchgLoop( |
1608 | IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, |
1609 | AtomicOrdering MemOpOrder, SyncScope::ID SSID, |
1610 | function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, |
1611 | CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc) { |
1612 | LLVMContext &Ctx = Builder.getContext(); |
1613 | BasicBlock *BB = Builder.GetInsertBlock(); |
1614 | Function *F = BB->getParent(); |
1615 | |
1616 | // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
1617 | // |
1618 | // The standard expansion we produce is: |
1619 | // [...] |
1620 | // %init_loaded = load atomic iN* %addr |
1621 | // br label %loop |
1622 | // loop: |
1623 | // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] |
1624 | // %new = some_op iN %loaded, %incr |
1625 | // %pair = cmpxchg iN* %addr, iN %loaded, iN %new |
1626 | // %new_loaded = extractvalue { iN, i1 } %pair, 0 |
1627 | // %success = extractvalue { iN, i1 } %pair, 1 |
1628 | // br i1 %success, label %atomicrmw.end, label %loop |
1629 | // atomicrmw.end: |
1630 | // [...] |
1631 | BasicBlock *ExitBB = |
1632 | BB->splitBasicBlock(I: Builder.GetInsertPoint(), BBName: "atomicrmw.end" ); |
1633 | BasicBlock *LoopBB = BasicBlock::Create(Context&: Ctx, Name: "atomicrmw.start" , Parent: F, InsertBefore: ExitBB); |
1634 | |
1635 | // The split call above "helpfully" added a branch at the end of BB (to the |
1636 | // wrong place), but we want a load. It's easiest to just remove |
1637 | // the branch entirely. |
1638 | std::prev(x: BB->end())->eraseFromParent(); |
1639 | Builder.SetInsertPoint(BB); |
1640 | LoadInst *InitLoaded = Builder.CreateAlignedLoad(Ty: ResultTy, Ptr: Addr, Align: AddrAlign); |
1641 | Builder.CreateBr(Dest: LoopBB); |
1642 | |
1643 | // Start the main loop block now that we've taken care of the preliminaries. |
1644 | Builder.SetInsertPoint(LoopBB); |
1645 | PHINode *Loaded = Builder.CreatePHI(Ty: ResultTy, NumReservedValues: 2, Name: "loaded" ); |
1646 | Loaded->addIncoming(V: InitLoaded, BB); |
1647 | |
1648 | Value *NewVal = PerformOp(Builder, Loaded); |
1649 | |
1650 | Value *NewLoaded = nullptr; |
1651 | Value *Success = nullptr; |
1652 | |
1653 | CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, |
1654 | MemOpOrder == AtomicOrdering::Unordered |
1655 | ? AtomicOrdering::Monotonic |
1656 | : MemOpOrder, |
1657 | SSID, Success, NewLoaded, MetadataSrc); |
1658 | assert(Success && NewLoaded); |
1659 | |
1660 | Loaded->addIncoming(V: NewLoaded, BB: LoopBB); |
1661 | |
1662 | Builder.CreateCondBr(Cond: Success, True: ExitBB, False: LoopBB); |
1663 | |
1664 | Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin()); |
1665 | return NewLoaded; |
1666 | } |
1667 | |
1668 | bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
1669 | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; |
1670 | unsigned ValueSize = getAtomicOpSize(CASI: CI); |
1671 | |
1672 | switch (TLI->shouldExpandAtomicCmpXchgInIR(AI: CI)) { |
1673 | default: |
1674 | llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg" ); |
1675 | case TargetLoweringBase::AtomicExpansionKind::None: |
1676 | if (ValueSize < MinCASSize) |
1677 | return expandPartwordCmpXchg(CI); |
1678 | return false; |
1679 | case TargetLoweringBase::AtomicExpansionKind::LLSC: { |
1680 | return expandAtomicCmpXchg(CI); |
1681 | } |
1682 | case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: |
1683 | expandAtomicCmpXchgToMaskedIntrinsic(CI); |
1684 | return true; |
1685 | case TargetLoweringBase::AtomicExpansionKind::NotAtomic: |
1686 | return lowerAtomicCmpXchgInst(CXI: CI); |
1687 | case TargetLoweringBase::AtomicExpansionKind::Expand: { |
1688 | TLI->emitExpandAtomicCmpXchg(CI); |
1689 | return true; |
1690 | } |
1691 | } |
1692 | } |
1693 | |
1694 | // Note: This function is exposed externally by AtomicExpandUtils.h |
1695 | bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, |
1696 | CreateCmpXchgInstFun CreateCmpXchg) { |
1697 | ReplacementIRBuilder Builder(AI, AI->getDataLayout()); |
1698 | Builder.setIsFPConstrained( |
1699 | AI->getFunction()->hasFnAttribute(Kind: Attribute::StrictFP)); |
1700 | |
1701 | // FIXME: If FP exceptions are observable, we should force them off for the |
1702 | // loop for the FP atomics. |
1703 | Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( |
1704 | Builder, ResultTy: AI->getType(), Addr: AI->getPointerOperand(), AddrAlign: AI->getAlign(), |
1705 | MemOpOrder: AI->getOrdering(), SSID: AI->getSyncScopeID(), |
1706 | PerformOp: [&](IRBuilderBase &Builder, Value *Loaded) { |
1707 | return buildAtomicRMWValue(Op: AI->getOperation(), Builder, Loaded, |
1708 | Val: AI->getValOperand()); |
1709 | }, |
1710 | CreateCmpXchg, /*MetadataSrc=*/AI); |
1711 | |
1712 | AI->replaceAllUsesWith(V: Loaded); |
1713 | AI->eraseFromParent(); |
1714 | return true; |
1715 | } |
1716 | |
1717 | // In order to use one of the sized library calls such as |
1718 | // __atomic_fetch_add_4, the alignment must be sufficient, the size |
1719 | // must be one of the potentially-specialized sizes, and the value |
1720 | // type must actually exist in C on the target (otherwise, the |
1721 | // function wouldn't actually be defined.) |
1722 | static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, |
1723 | const DataLayout &DL) { |
1724 | // TODO: "LargestSize" is an approximation for "largest type that |
1725 | // you can express in C". It seems to be the case that int128 is |
1726 | // supported on all 64-bit platforms, otherwise only up to 64-bit |
1727 | // integers are supported. If we get this wrong, then we'll try to |
1728 | // call a sized libcall that doesn't actually exist. There should |
1729 | // really be some more reliable way in LLVM of determining integer |
1730 | // sizes which are valid in the target's C ABI... |
1731 | unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; |
1732 | return Alignment >= Size && |
1733 | (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && |
1734 | Size <= LargestSize; |
1735 | } |
1736 | |
1737 | void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { |
1738 | static const RTLIB::Libcall Libcalls[6] = { |
1739 | RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, |
1740 | RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; |
1741 | unsigned Size = getAtomicOpSize(LI: I); |
1742 | |
1743 | bool expanded = expandAtomicOpToLibcall( |
1744 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: nullptr, CASExpected: nullptr, |
1745 | Ordering: I->getOrdering(), Ordering2: AtomicOrdering::NotAtomic, Libcalls); |
1746 | if (!expanded) |
1747 | report_fatal_error(reason: "expandAtomicOpToLibcall shouldn't fail for Load" ); |
1748 | } |
1749 | |
1750 | void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { |
1751 | static const RTLIB::Libcall Libcalls[6] = { |
1752 | RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, |
1753 | RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; |
1754 | unsigned Size = getAtomicOpSize(SI: I); |
1755 | |
1756 | bool expanded = expandAtomicOpToLibcall( |
1757 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: I->getValueOperand(), |
1758 | CASExpected: nullptr, Ordering: I->getOrdering(), Ordering2: AtomicOrdering::NotAtomic, Libcalls); |
1759 | if (!expanded) |
1760 | report_fatal_error(reason: "expandAtomicOpToLibcall shouldn't fail for Store" ); |
1761 | } |
1762 | |
1763 | void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { |
1764 | static const RTLIB::Libcall Libcalls[6] = { |
1765 | RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, |
1766 | RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, |
1767 | RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; |
1768 | unsigned Size = getAtomicOpSize(CASI: I); |
1769 | |
1770 | bool expanded = expandAtomicOpToLibcall( |
1771 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: I->getNewValOperand(), |
1772 | CASExpected: I->getCompareOperand(), Ordering: I->getSuccessOrdering(), Ordering2: I->getFailureOrdering(), |
1773 | Libcalls); |
1774 | if (!expanded) |
1775 | report_fatal_error(reason: "expandAtomicOpToLibcall shouldn't fail for CAS" ); |
1776 | } |
1777 | |
1778 | static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { |
1779 | static const RTLIB::Libcall LibcallsXchg[6] = { |
1780 | RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, |
1781 | RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, |
1782 | RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; |
1783 | static const RTLIB::Libcall LibcallsAdd[6] = { |
1784 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, |
1785 | RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, |
1786 | RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; |
1787 | static const RTLIB::Libcall LibcallsSub[6] = { |
1788 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, |
1789 | RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, |
1790 | RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; |
1791 | static const RTLIB::Libcall LibcallsAnd[6] = { |
1792 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, |
1793 | RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, |
1794 | RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; |
1795 | static const RTLIB::Libcall LibcallsOr[6] = { |
1796 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, |
1797 | RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, |
1798 | RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; |
1799 | static const RTLIB::Libcall LibcallsXor[6] = { |
1800 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, |
1801 | RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, |
1802 | RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; |
1803 | static const RTLIB::Libcall LibcallsNand[6] = { |
1804 | RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, |
1805 | RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, |
1806 | RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; |
1807 | |
1808 | switch (Op) { |
1809 | case AtomicRMWInst::BAD_BINOP: |
1810 | llvm_unreachable("Should not have BAD_BINOP." ); |
1811 | case AtomicRMWInst::Xchg: |
1812 | return ArrayRef(LibcallsXchg); |
1813 | case AtomicRMWInst::Add: |
1814 | return ArrayRef(LibcallsAdd); |
1815 | case AtomicRMWInst::Sub: |
1816 | return ArrayRef(LibcallsSub); |
1817 | case AtomicRMWInst::And: |
1818 | return ArrayRef(LibcallsAnd); |
1819 | case AtomicRMWInst::Or: |
1820 | return ArrayRef(LibcallsOr); |
1821 | case AtomicRMWInst::Xor: |
1822 | return ArrayRef(LibcallsXor); |
1823 | case AtomicRMWInst::Nand: |
1824 | return ArrayRef(LibcallsNand); |
1825 | case AtomicRMWInst::Max: |
1826 | case AtomicRMWInst::Min: |
1827 | case AtomicRMWInst::UMax: |
1828 | case AtomicRMWInst::UMin: |
1829 | case AtomicRMWInst::FMax: |
1830 | case AtomicRMWInst::FMin: |
1831 | case AtomicRMWInst::FMaximum: |
1832 | case AtomicRMWInst::FMinimum: |
1833 | case AtomicRMWInst::FAdd: |
1834 | case AtomicRMWInst::FSub: |
1835 | case AtomicRMWInst::UIncWrap: |
1836 | case AtomicRMWInst::UDecWrap: |
1837 | case AtomicRMWInst::USubCond: |
1838 | case AtomicRMWInst::USubSat: |
1839 | // No atomic libcalls are available for these. |
1840 | return {}; |
1841 | } |
1842 | llvm_unreachable("Unexpected AtomicRMW operation." ); |
1843 | } |
1844 | |
1845 | void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { |
1846 | ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(Op: I->getOperation()); |
1847 | |
1848 | unsigned Size = getAtomicOpSize(RMWI: I); |
1849 | |
1850 | bool Success = false; |
1851 | if (!Libcalls.empty()) |
1852 | Success = expandAtomicOpToLibcall( |
1853 | I, Size, Alignment: I->getAlign(), PointerOperand: I->getPointerOperand(), ValueOperand: I->getValOperand(), |
1854 | CASExpected: nullptr, Ordering: I->getOrdering(), Ordering2: AtomicOrdering::NotAtomic, Libcalls); |
1855 | |
1856 | // The expansion failed: either there were no libcalls at all for |
1857 | // the operation (min/max), or there were only size-specialized |
1858 | // libcalls (add/sub/etc) and we needed a generic. So, expand to a |
1859 | // CAS libcall, via a CAS loop, instead. |
1860 | if (!Success) { |
1861 | expandAtomicRMWToCmpXchg( |
1862 | AI: I, CreateCmpXchg: [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, |
1863 | Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, |
1864 | SyncScope::ID SSID, Value *&Success, Value *&NewLoaded, |
1865 | Instruction *MetadataSrc) { |
1866 | // Create the CAS instruction normally... |
1867 | AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( |
1868 | Ptr: Addr, Cmp: Loaded, New: NewVal, Align: Alignment, SuccessOrdering: MemOpOrder, |
1869 | FailureOrdering: AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: MemOpOrder), SSID); |
1870 | if (MetadataSrc) |
1871 | copyMetadataForAtomic(Dest&: *Pair, Source: *MetadataSrc); |
1872 | |
1873 | Success = Builder.CreateExtractValue(Agg: Pair, Idxs: 1, Name: "success" ); |
1874 | NewLoaded = Builder.CreateExtractValue(Agg: Pair, Idxs: 0, Name: "newloaded" ); |
1875 | |
1876 | // ...and then expand the CAS into a libcall. |
1877 | expandAtomicCASToLibcall(I: Pair); |
1878 | }); |
1879 | } |
1880 | } |
1881 | |
1882 | // A helper routine for the above expandAtomic*ToLibcall functions. |
1883 | // |
1884 | // 'Libcalls' contains an array of enum values for the particular |
1885 | // ATOMIC libcalls to be emitted. All of the other arguments besides |
1886 | // 'I' are extracted from the Instruction subclass by the |
1887 | // caller. Depending on the particular call, some will be null. |
1888 | bool AtomicExpandImpl::expandAtomicOpToLibcall( |
1889 | Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, |
1890 | Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, |
1891 | AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { |
1892 | assert(Libcalls.size() == 6); |
1893 | |
1894 | LLVMContext &Ctx = I->getContext(); |
1895 | Module *M = I->getModule(); |
1896 | const DataLayout &DL = M->getDataLayout(); |
1897 | IRBuilder<> Builder(I); |
1898 | IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); |
1899 | |
1900 | bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); |
1901 | Type *SizedIntTy = Type::getIntNTy(C&: Ctx, N: Size * 8); |
1902 | |
1903 | const Align AllocaAlignment = DL.getPrefTypeAlign(Ty: SizedIntTy); |
1904 | |
1905 | // TODO: the "order" argument type is "int", not int32. So |
1906 | // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. |
1907 | ConstantInt *SizeVal64 = ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: Size); |
1908 | assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO" ); |
1909 | Constant *OrderingVal = |
1910 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: (int)toCABI(AO: Ordering)); |
1911 | Constant *Ordering2Val = nullptr; |
1912 | if (CASExpected) { |
1913 | assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO" ); |
1914 | Ordering2Val = |
1915 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: (int)toCABI(AO: Ordering2)); |
1916 | } |
1917 | bool HasResult = I->getType() != Type::getVoidTy(C&: Ctx); |
1918 | |
1919 | RTLIB::Libcall RTLibType; |
1920 | if (UseSizedLibcall) { |
1921 | switch (Size) { |
1922 | case 1: |
1923 | RTLibType = Libcalls[1]; |
1924 | break; |
1925 | case 2: |
1926 | RTLibType = Libcalls[2]; |
1927 | break; |
1928 | case 4: |
1929 | RTLibType = Libcalls[3]; |
1930 | break; |
1931 | case 8: |
1932 | RTLibType = Libcalls[4]; |
1933 | break; |
1934 | case 16: |
1935 | RTLibType = Libcalls[5]; |
1936 | break; |
1937 | } |
1938 | } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { |
1939 | RTLibType = Libcalls[0]; |
1940 | } else { |
1941 | // Can't use sized function, and there's no generic for this |
1942 | // operation, so give up. |
1943 | return false; |
1944 | } |
1945 | |
1946 | if (!TLI->getLibcallName(Call: RTLibType)) { |
1947 | // This target does not implement the requested atomic libcall so give up. |
1948 | return false; |
1949 | } |
1950 | |
1951 | // Build up the function call. There's two kinds. First, the sized |
1952 | // variants. These calls are going to be one of the following (with |
1953 | // N=1,2,4,8,16): |
1954 | // iN __atomic_load_N(iN *ptr, int ordering) |
1955 | // void __atomic_store_N(iN *ptr, iN val, int ordering) |
1956 | // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) |
1957 | // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, |
1958 | // int success_order, int failure_order) |
1959 | // |
1960 | // Note that these functions can be used for non-integer atomic |
1961 | // operations, the values just need to be bitcast to integers on the |
1962 | // way in and out. |
1963 | // |
1964 | // And, then, the generic variants. They look like the following: |
1965 | // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) |
1966 | // void __atomic_store(size_t size, void *ptr, void *val, int ordering) |
1967 | // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, |
1968 | // int ordering) |
1969 | // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, |
1970 | // void *desired, int success_order, |
1971 | // int failure_order) |
1972 | // |
1973 | // The different signatures are built up depending on the |
1974 | // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' |
1975 | // variables. |
1976 | |
1977 | AllocaInst *AllocaCASExpected = nullptr; |
1978 | AllocaInst *AllocaValue = nullptr; |
1979 | AllocaInst *AllocaResult = nullptr; |
1980 | |
1981 | Type *ResultTy; |
1982 | SmallVector<Value *, 6> Args; |
1983 | AttributeList Attr; |
1984 | |
1985 | // 'size' argument. |
1986 | if (!UseSizedLibcall) { |
1987 | // Note, getIntPtrType is assumed equivalent to size_t. |
1988 | Args.push_back(Elt: ConstantInt::get(Ty: DL.getIntPtrType(C&: Ctx), V: Size)); |
1989 | } |
1990 | |
1991 | // 'ptr' argument. |
1992 | // note: This assumes all address spaces share a common libfunc |
1993 | // implementation and that addresses are convertable. For systems without |
1994 | // that property, we'd need to extend this mechanism to support AS-specific |
1995 | // families of atomic intrinsics. |
1996 | Value *PtrVal = PointerOperand; |
1997 | PtrVal = Builder.CreateAddrSpaceCast(V: PtrVal, DestTy: PointerType::getUnqual(C&: Ctx)); |
1998 | Args.push_back(Elt: PtrVal); |
1999 | |
2000 | // 'expected' argument, if present. |
2001 | if (CASExpected) { |
2002 | AllocaCASExpected = AllocaBuilder.CreateAlloca(Ty: CASExpected->getType()); |
2003 | AllocaCASExpected->setAlignment(AllocaAlignment); |
2004 | Builder.CreateLifetimeStart(Ptr: AllocaCASExpected, Size: SizeVal64); |
2005 | Builder.CreateAlignedStore(Val: CASExpected, Ptr: AllocaCASExpected, Align: AllocaAlignment); |
2006 | Args.push_back(Elt: AllocaCASExpected); |
2007 | } |
2008 | |
2009 | // 'val' argument ('desired' for cas), if present. |
2010 | if (ValueOperand) { |
2011 | if (UseSizedLibcall) { |
2012 | Value *IntValue = |
2013 | Builder.CreateBitOrPointerCast(V: ValueOperand, DestTy: SizedIntTy); |
2014 | Args.push_back(Elt: IntValue); |
2015 | } else { |
2016 | AllocaValue = AllocaBuilder.CreateAlloca(Ty: ValueOperand->getType()); |
2017 | AllocaValue->setAlignment(AllocaAlignment); |
2018 | Builder.CreateLifetimeStart(Ptr: AllocaValue, Size: SizeVal64); |
2019 | Builder.CreateAlignedStore(Val: ValueOperand, Ptr: AllocaValue, Align: AllocaAlignment); |
2020 | Args.push_back(Elt: AllocaValue); |
2021 | } |
2022 | } |
2023 | |
2024 | // 'ret' argument. |
2025 | if (!CASExpected && HasResult && !UseSizedLibcall) { |
2026 | AllocaResult = AllocaBuilder.CreateAlloca(Ty: I->getType()); |
2027 | AllocaResult->setAlignment(AllocaAlignment); |
2028 | Builder.CreateLifetimeStart(Ptr: AllocaResult, Size: SizeVal64); |
2029 | Args.push_back(Elt: AllocaResult); |
2030 | } |
2031 | |
2032 | // 'ordering' ('success_order' for cas) argument. |
2033 | Args.push_back(Elt: OrderingVal); |
2034 | |
2035 | // 'failure_order' argument, if present. |
2036 | if (Ordering2Val) |
2037 | Args.push_back(Elt: Ordering2Val); |
2038 | |
2039 | // Now, the return type. |
2040 | if (CASExpected) { |
2041 | ResultTy = Type::getInt1Ty(C&: Ctx); |
2042 | Attr = Attr.addRetAttribute(C&: Ctx, Kind: Attribute::ZExt); |
2043 | } else if (HasResult && UseSizedLibcall) |
2044 | ResultTy = SizedIntTy; |
2045 | else |
2046 | ResultTy = Type::getVoidTy(C&: Ctx); |
2047 | |
2048 | // Done with setting up arguments and return types, create the call: |
2049 | SmallVector<Type *, 6> ArgTys; |
2050 | for (Value *Arg : Args) |
2051 | ArgTys.push_back(Elt: Arg->getType()); |
2052 | FunctionType *FnType = FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: false); |
2053 | FunctionCallee LibcallFn = |
2054 | M->getOrInsertFunction(Name: TLI->getLibcallName(Call: RTLibType), T: FnType, AttributeList: Attr); |
2055 | CallInst *Call = Builder.CreateCall(Callee: LibcallFn, Args); |
2056 | Call->setAttributes(Attr); |
2057 | Value *Result = Call; |
2058 | |
2059 | // And then, extract the results... |
2060 | if (ValueOperand && !UseSizedLibcall) |
2061 | Builder.CreateLifetimeEnd(Ptr: AllocaValue, Size: SizeVal64); |
2062 | |
2063 | if (CASExpected) { |
2064 | // The final result from the CAS is {load of 'expected' alloca, bool result |
2065 | // from call} |
2066 | Type *FinalResultTy = I->getType(); |
2067 | Value *V = PoisonValue::get(T: FinalResultTy); |
2068 | Value *ExpectedOut = Builder.CreateAlignedLoad( |
2069 | Ty: CASExpected->getType(), Ptr: AllocaCASExpected, Align: AllocaAlignment); |
2070 | Builder.CreateLifetimeEnd(Ptr: AllocaCASExpected, Size: SizeVal64); |
2071 | V = Builder.CreateInsertValue(Agg: V, Val: ExpectedOut, Idxs: 0); |
2072 | V = Builder.CreateInsertValue(Agg: V, Val: Result, Idxs: 1); |
2073 | I->replaceAllUsesWith(V); |
2074 | } else if (HasResult) { |
2075 | Value *V; |
2076 | if (UseSizedLibcall) |
2077 | V = Builder.CreateBitOrPointerCast(V: Result, DestTy: I->getType()); |
2078 | else { |
2079 | V = Builder.CreateAlignedLoad(Ty: I->getType(), Ptr: AllocaResult, |
2080 | Align: AllocaAlignment); |
2081 | Builder.CreateLifetimeEnd(Ptr: AllocaResult, Size: SizeVal64); |
2082 | } |
2083 | I->replaceAllUsesWith(V); |
2084 | } |
2085 | I->eraseFromParent(); |
2086 | return true; |
2087 | } |
2088 | |