| 1 | //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the CCState class, used for lowering and implementing |
| 10 | // calling conventions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/CodeGen/CallingConvLower.h" |
| 15 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 16 | #include "llvm/CodeGen/MachineFunction.h" |
| 17 | #include "llvm/CodeGen/TargetLowering.h" |
| 18 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 19 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 20 | #include "llvm/MC/MCRegisterInfo.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Support/ErrorHandling.h" |
| 23 | #include "llvm/Support/SaveAndRestore.h" |
| 24 | #include "llvm/Support/raw_ostream.h" |
| 25 | |
| 26 | using namespace llvm; |
| 27 | |
| 28 | CCState::CCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, |
| 29 | SmallVectorImpl<CCValAssign> &Locs, LLVMContext &Context, |
| 30 | bool NegativeOffsets) |
| 31 | : CallingConv(CC), IsVarArg(IsVarArg), MF(MF), |
| 32 | TRI(*MF.getSubtarget().getRegisterInfo()), Locs(Locs), Context(Context), |
| 33 | NegativeOffsets(NegativeOffsets) { |
| 34 | |
| 35 | // No stack is used. |
| 36 | StackSize = 0; |
| 37 | |
| 38 | clearByValRegsInfo(); |
| 39 | UsedRegs.resize(N: (TRI.getNumRegs()+31)/32); |
| 40 | } |
| 41 | |
| 42 | /// Allocate space on the stack large enough to pass an argument by value. |
| 43 | /// The size and alignment information of the argument is encoded in |
| 44 | /// its parameter attribute. |
| 45 | void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 46 | CCValAssign::LocInfo LocInfo, int MinSize, |
| 47 | Align MinAlign, ISD::ArgFlagsTy ArgFlags) { |
| 48 | Align Alignment = ArgFlags.getNonZeroByValAlign(); |
| 49 | unsigned Size = ArgFlags.getByValSize(); |
| 50 | if (MinSize > (int)Size) |
| 51 | Size = MinSize; |
| 52 | if (MinAlign > Alignment) |
| 53 | Alignment = MinAlign; |
| 54 | ensureMaxAlignment(Alignment); |
| 55 | MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment); |
| 56 | Size = unsigned(alignTo(Size, A: MinAlign)); |
| 57 | uint64_t Offset = AllocateStack(Size, Alignment); |
| 58 | addLoc(V: CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, HTP: LocInfo)); |
| 59 | } |
| 60 | |
| 61 | /// Mark a register and all of its aliases as allocated. |
| 62 | void CCState::MarkAllocated(MCPhysReg Reg) { |
| 63 | for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) |
| 64 | UsedRegs[(*AI).id() / 32] |= 1 << ((*AI).id() & 31); |
| 65 | } |
| 66 | |
| 67 | void CCState::MarkUnallocated(MCPhysReg Reg) { |
| 68 | for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) |
| 69 | UsedRegs[(*AI).id() / 32] &= ~(1 << ((*AI).id() & 31)); |
| 70 | } |
| 71 | |
| 72 | bool CCState::IsShadowAllocatedReg(MCRegister Reg) const { |
| 73 | if (!isAllocated(Reg)) |
| 74 | return false; |
| 75 | |
| 76 | for (auto const &ValAssign : Locs) |
| 77 | if (ValAssign.isRegLoc() && TRI.regsOverlap(RegA: ValAssign.getLocReg(), RegB: Reg)) |
| 78 | return false; |
| 79 | return true; |
| 80 | } |
| 81 | |
| 82 | /// Analyze an array of argument values, |
| 83 | /// incorporating info about the formals into this state. |
| 84 | void |
| 85 | CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, |
| 86 | CCAssignFn Fn) { |
| 87 | unsigned NumArgs = Ins.size(); |
| 88 | |
| 89 | for (unsigned i = 0; i != NumArgs; ++i) { |
| 90 | MVT ArgVT = Ins[i].VT; |
| 91 | ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; |
| 92 | if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) |
| 93 | report_fatal_error(reason: "unable to allocate function argument #" + Twine(i)); |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | /// Analyze the return values of a function, returning true if the return can |
| 98 | /// be performed without sret-demotion and false otherwise. |
| 99 | bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 100 | CCAssignFn Fn) { |
| 101 | // Determine which register each value should be copied into. |
| 102 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| 103 | MVT VT = Outs[i].VT; |
| 104 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| 105 | if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) |
| 106 | return false; |
| 107 | } |
| 108 | return true; |
| 109 | } |
| 110 | |
| 111 | /// Analyze the returned values of a return, |
| 112 | /// incorporating info about the result values into this state. |
| 113 | void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 114 | CCAssignFn Fn) { |
| 115 | // Determine which register each value should be copied into. |
| 116 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| 117 | MVT VT = Outs[i].VT; |
| 118 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| 119 | if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) |
| 120 | report_fatal_error(reason: "unable to allocate function return #" + Twine(i)); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /// Analyze the outgoing arguments to a call, |
| 125 | /// incorporating info about the passed values into this state. |
| 126 | void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 127 | CCAssignFn Fn) { |
| 128 | unsigned NumOps = Outs.size(); |
| 129 | for (unsigned i = 0; i != NumOps; ++i) { |
| 130 | MVT ArgVT = Outs[i].VT; |
| 131 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| 132 | if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
| 133 | #ifndef NDEBUG |
| 134 | dbgs() << "Call operand #" << i << " has unhandled type " |
| 135 | << ArgVT << '\n'; |
| 136 | #endif |
| 137 | llvm_unreachable(nullptr); |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | /// Same as above except it takes vectors of types and argument flags. |
| 143 | void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, |
| 144 | SmallVectorImpl<ISD::ArgFlagsTy> &Flags, |
| 145 | CCAssignFn Fn) { |
| 146 | unsigned NumOps = ArgVTs.size(); |
| 147 | for (unsigned i = 0; i != NumOps; ++i) { |
| 148 | MVT ArgVT = ArgVTs[i]; |
| 149 | ISD::ArgFlagsTy ArgFlags = Flags[i]; |
| 150 | if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
| 151 | #ifndef NDEBUG |
| 152 | dbgs() << "Call operand #" << i << " has unhandled type " |
| 153 | << ArgVT << '\n'; |
| 154 | #endif |
| 155 | llvm_unreachable(nullptr); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | /// Analyze the return values of a call, incorporating info about the passed |
| 161 | /// values into this state. |
| 162 | void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, |
| 163 | CCAssignFn Fn) { |
| 164 | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| 165 | MVT VT = Ins[i].VT; |
| 166 | ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| 167 | if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { |
| 168 | #ifndef NDEBUG |
| 169 | dbgs() << "Call result #" << i << " has unhandled type " |
| 170 | << VT << '\n'; |
| 171 | #endif |
| 172 | llvm_unreachable(nullptr); |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | /// Same as above except it's specialized for calls that produce a single value. |
| 178 | void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { |
| 179 | if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { |
| 180 | #ifndef NDEBUG |
| 181 | dbgs() << "Call result has unhandled type " |
| 182 | << VT << '\n'; |
| 183 | #endif |
| 184 | llvm_unreachable(nullptr); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | void CCState::ensureMaxAlignment(Align Alignment) { |
| 189 | if (!AnalyzingMustTailForwardedRegs) |
| 190 | MF.getFrameInfo().ensureMaxAlignment(Alignment); |
| 191 | } |
| 192 | |
| 193 | static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { |
| 194 | if (VT.isVector()) |
| 195 | return true; // Assume -msse-regparm might be in effect. |
| 196 | if (!VT.isInteger()) |
| 197 | return false; |
| 198 | return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall); |
| 199 | } |
| 200 | |
| 201 | void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCRegister> &Regs, |
| 202 | MVT VT, CCAssignFn Fn) { |
| 203 | uint64_t SavedStackSize = StackSize; |
| 204 | Align SavedMaxStackArgAlign = MaxStackArgAlign; |
| 205 | unsigned NumLocs = Locs.size(); |
| 206 | |
| 207 | // Set the 'inreg' flag if it is used for this calling convention. |
| 208 | ISD::ArgFlagsTy Flags; |
| 209 | if (isValueTypeInRegForCC(CC: CallingConv, VT)) |
| 210 | Flags.setInReg(); |
| 211 | |
| 212 | // Allocate something of this value type repeatedly until we get assigned a |
| 213 | // location in memory. |
| 214 | bool HaveRegParm; |
| 215 | do { |
| 216 | if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { |
| 217 | #ifndef NDEBUG |
| 218 | dbgs() << "Call has unhandled type " << VT |
| 219 | << " while computing remaining regparms\n" ; |
| 220 | #endif |
| 221 | llvm_unreachable(nullptr); |
| 222 | } |
| 223 | HaveRegParm = Locs.back().isRegLoc(); |
| 224 | } while (HaveRegParm); |
| 225 | |
| 226 | // Copy all the registers from the value locations we added. |
| 227 | assert(NumLocs < Locs.size() && "CC assignment failed to add location" ); |
| 228 | for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) |
| 229 | if (Locs[I].isRegLoc()) |
| 230 | Regs.push_back(Elt: Locs[I].getLocReg()); |
| 231 | |
| 232 | // Clear the assigned values and stack memory. We leave the registers marked |
| 233 | // as allocated so that future queries don't return the same registers, i.e. |
| 234 | // when i64 and f64 are both passed in GPRs. |
| 235 | StackSize = SavedStackSize; |
| 236 | MaxStackArgAlign = SavedMaxStackArgAlign; |
| 237 | Locs.truncate(N: NumLocs); |
| 238 | } |
| 239 | |
| 240 | void CCState::analyzeMustTailForwardedRegisters( |
| 241 | SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, |
| 242 | CCAssignFn Fn) { |
| 243 | // Oftentimes calling conventions will not user register parameters for |
| 244 | // variadic functions, so we need to assume we're not variadic so that we get |
| 245 | // all the registers that might be used in a non-variadic call. |
| 246 | SaveAndRestore SavedVarArg(IsVarArg, false); |
| 247 | SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true); |
| 248 | |
| 249 | for (MVT RegVT : RegParmTypes) { |
| 250 | SmallVector<MCRegister, 8> RemainingRegs; |
| 251 | getRemainingRegParmsForType(Regs&: RemainingRegs, VT: RegVT, Fn); |
| 252 | const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); |
| 253 | const TargetRegisterClass *RC = TL->getRegClassFor(VT: RegVT); |
| 254 | for (MCRegister PReg : RemainingRegs) { |
| 255 | Register VReg = MF.addLiveIn(PReg, RC); |
| 256 | Forwards.push_back(Elt: ForwardedRegister(VReg, PReg, RegVT)); |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | bool CCState::resultsCompatible(CallingConv::ID CalleeCC, |
| 262 | CallingConv::ID CallerCC, MachineFunction &MF, |
| 263 | LLVMContext &C, |
| 264 | const SmallVectorImpl<ISD::InputArg> &Ins, |
| 265 | CCAssignFn CalleeFn, CCAssignFn CallerFn) { |
| 266 | if (CalleeCC == CallerCC) |
| 267 | return true; |
| 268 | SmallVector<CCValAssign, 4> RVLocs1; |
| 269 | CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); |
| 270 | CCInfo1.AnalyzeCallResult(Ins, Fn: CalleeFn); |
| 271 | |
| 272 | SmallVector<CCValAssign, 4> RVLocs2; |
| 273 | CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); |
| 274 | CCInfo2.AnalyzeCallResult(Ins, Fn: CallerFn); |
| 275 | |
| 276 | auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) { |
| 277 | assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() && |
| 278 | "The location must have been decided by now" ); |
| 279 | // Must fill the same part of their locations. |
| 280 | if (Loc1.getLocInfo() != Loc2.getLocInfo()) |
| 281 | return false; |
| 282 | // Must both be in the same registers, or both in memory at the same offset. |
| 283 | if (Loc1.isRegLoc() && Loc2.isRegLoc()) |
| 284 | return Loc1.getLocReg() == Loc2.getLocReg(); |
| 285 | if (Loc1.isMemLoc() && Loc2.isMemLoc()) |
| 286 | return Loc1.getLocMemOffset() == Loc2.getLocMemOffset(); |
| 287 | llvm_unreachable("Unknown location kind" ); |
| 288 | }; |
| 289 | |
| 290 | return std::equal(first1: RVLocs1.begin(), last1: RVLocs1.end(), first2: RVLocs2.begin(), |
| 291 | last2: RVLocs2.end(), binary_pred: AreCompatible); |
| 292 | } |
| 293 | |