| 1 | //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file Implements the ScheduleDAG class, which is a base class used by |
| 10 | /// scheduling implementation classes. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/CodeGen/MachineFunction.h" |
| 19 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| 20 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 21 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 22 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 23 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 24 | #include "llvm/Config/llvm-config.h" |
| 25 | #include "llvm/Support/CommandLine.h" |
| 26 | #include "llvm/Support/Compiler.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | #include "llvm/Support/raw_ostream.h" |
| 29 | #include <algorithm> |
| 30 | #include <cassert> |
| 31 | #include <iterator> |
| 32 | #include <limits> |
| 33 | #include <utility> |
| 34 | #include <vector> |
| 35 | |
| 36 | using namespace llvm; |
| 37 | |
| 38 | #define DEBUG_TYPE "pre-RA-sched" |
| 39 | |
| 40 | STATISTIC(NumNewPredsAdded, "Number of times a single predecessor was added" ); |
| 41 | STATISTIC(NumTopoInits, |
| 42 | "Number of times the topological order has been recomputed" ); |
| 43 | |
| 44 | #ifndef NDEBUG |
| 45 | static cl::opt<bool> StressSchedOpt( |
| 46 | "stress-sched" , cl::Hidden, cl::init(false), |
| 47 | cl::desc("Stress test instruction scheduling" )); |
| 48 | #endif |
| 49 | |
| 50 | void SchedulingPriorityQueue::anchor() {} |
| 51 | |
| 52 | ScheduleDAG::ScheduleDAG(MachineFunction &mf) |
| 53 | : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), |
| 54 | TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), |
| 55 | MRI(mf.getRegInfo()) { |
| 56 | #ifndef NDEBUG |
| 57 | StressSched = StressSchedOpt; |
| 58 | #endif |
| 59 | } |
| 60 | |
| 61 | ScheduleDAG::~ScheduleDAG() = default; |
| 62 | |
| 63 | void ScheduleDAG::clearDAG() { |
| 64 | SUnits.clear(); |
| 65 | EntrySU = SUnit(); |
| 66 | ExitSU = SUnit(); |
| 67 | } |
| 68 | |
| 69 | const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { |
| 70 | if (!Node || !Node->isMachineOpcode()) return nullptr; |
| 71 | return &TII->get(Opcode: Node->getMachineOpcode()); |
| 72 | } |
| 73 | |
| 74 | LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const { |
| 75 | switch (getKind()) { |
| 76 | case Data: dbgs() << "Data" ; break; |
| 77 | case Anti: dbgs() << "Anti" ; break; |
| 78 | case Output: dbgs() << "Out " ; break; |
| 79 | case Order: dbgs() << "Ord " ; break; |
| 80 | } |
| 81 | |
| 82 | switch (getKind()) { |
| 83 | case Data: |
| 84 | dbgs() << " Latency=" << getLatency(); |
| 85 | if (TRI && isAssignedRegDep()) |
| 86 | dbgs() << " Reg=" << printReg(Reg: getReg(), TRI); |
| 87 | break; |
| 88 | case Anti: |
| 89 | case Output: |
| 90 | dbgs() << " Latency=" << getLatency(); |
| 91 | break; |
| 92 | case Order: |
| 93 | dbgs() << " Latency=" << getLatency(); |
| 94 | switch(Contents.OrdKind) { |
| 95 | case Barrier: dbgs() << " Barrier" ; break; |
| 96 | case MayAliasMem: |
| 97 | case MustAliasMem: dbgs() << " Memory" ; break; |
| 98 | case Artificial: dbgs() << " Artificial" ; break; |
| 99 | case Weak: dbgs() << " Weak" ; break; |
| 100 | case Cluster: dbgs() << " Cluster" ; break; |
| 101 | } |
| 102 | break; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | bool SUnit::addPred(const SDep &D, bool Required) { |
| 107 | // If this node already has this dependence, don't add a redundant one. |
| 108 | for (SDep &PredDep : Preds) { |
| 109 | // Zero-latency weak edges may be added purely for heuristic ordering. Don't |
| 110 | // add them if another kind of edge already exists. |
| 111 | if (!Required && PredDep.getSUnit() == D.getSUnit()) |
| 112 | return false; |
| 113 | if (PredDep.overlaps(Other: D)) { |
| 114 | // Extend the latency if needed. Equivalent to |
| 115 | // removePred(PredDep) + addPred(D). |
| 116 | if (PredDep.getLatency() < D.getLatency()) { |
| 117 | SUnit *PredSU = PredDep.getSUnit(); |
| 118 | // Find the corresponding successor in N. |
| 119 | SDep ForwardD = PredDep; |
| 120 | ForwardD.setSUnit(this); |
| 121 | for (SDep &SuccDep : PredSU->Succs) { |
| 122 | if (SuccDep == ForwardD) { |
| 123 | SuccDep.setLatency(D.getLatency()); |
| 124 | break; |
| 125 | } |
| 126 | } |
| 127 | PredDep.setLatency(D.getLatency()); |
| 128 | // Changing latency, dirty the involved SUnits. |
| 129 | this->setDepthDirty(); |
| 130 | D.getSUnit()->setHeightDirty(); |
| 131 | } |
| 132 | return false; |
| 133 | } |
| 134 | } |
| 135 | // Now add a corresponding succ to N. |
| 136 | SDep P = D; |
| 137 | P.setSUnit(this); |
| 138 | SUnit *N = D.getSUnit(); |
| 139 | // Update the bookkeeping. |
| 140 | if (D.getKind() == SDep::Data) { |
| 141 | assert(NumPreds < std::numeric_limits<unsigned>::max() && |
| 142 | "NumPreds will overflow!" ); |
| 143 | assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && |
| 144 | "NumSuccs will overflow!" ); |
| 145 | ++NumPreds; |
| 146 | ++N->NumSuccs; |
| 147 | } |
| 148 | if (!N->isScheduled) { |
| 149 | if (D.isWeak()) { |
| 150 | ++WeakPredsLeft; |
| 151 | } |
| 152 | else { |
| 153 | assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && |
| 154 | "NumPredsLeft will overflow!" ); |
| 155 | ++NumPredsLeft; |
| 156 | } |
| 157 | } |
| 158 | if (!isScheduled) { |
| 159 | if (D.isWeak()) { |
| 160 | ++N->WeakSuccsLeft; |
| 161 | } |
| 162 | else { |
| 163 | assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && |
| 164 | "NumSuccsLeft will overflow!" ); |
| 165 | ++N->NumSuccsLeft; |
| 166 | } |
| 167 | } |
| 168 | Preds.push_back(Elt: D); |
| 169 | N->Succs.push_back(Elt: P); |
| 170 | this->setDepthDirty(); |
| 171 | N->setHeightDirty(); |
| 172 | return true; |
| 173 | } |
| 174 | |
| 175 | void SUnit::removePred(const SDep &D) { |
| 176 | // Find the matching predecessor. |
| 177 | SmallVectorImpl<SDep>::iterator I = llvm::find(Range&: Preds, Val: D); |
| 178 | if (I == Preds.end()) |
| 179 | return; |
| 180 | // Find the corresponding successor in N. |
| 181 | SDep P = D; |
| 182 | P.setSUnit(this); |
| 183 | SUnit *N = D.getSUnit(); |
| 184 | SmallVectorImpl<SDep>::iterator Succ = llvm::find(Range&: N->Succs, Val: P); |
| 185 | assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!" ); |
| 186 | // Update the bookkeeping. |
| 187 | if (P.getKind() == SDep::Data) { |
| 188 | assert(NumPreds > 0 && "NumPreds will underflow!" ); |
| 189 | assert(N->NumSuccs > 0 && "NumSuccs will underflow!" ); |
| 190 | --NumPreds; |
| 191 | --N->NumSuccs; |
| 192 | } |
| 193 | if (!N->isScheduled) { |
| 194 | if (D.isWeak()) { |
| 195 | assert(WeakPredsLeft > 0 && "WeakPredsLeft will underflow!" ); |
| 196 | --WeakPredsLeft; |
| 197 | } else { |
| 198 | assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!" ); |
| 199 | --NumPredsLeft; |
| 200 | } |
| 201 | } |
| 202 | if (!isScheduled) { |
| 203 | if (D.isWeak()) { |
| 204 | assert(N->WeakSuccsLeft > 0 && "WeakSuccsLeft will underflow!" ); |
| 205 | --N->WeakSuccsLeft; |
| 206 | } else { |
| 207 | assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!" ); |
| 208 | --N->NumSuccsLeft; |
| 209 | } |
| 210 | } |
| 211 | N->Succs.erase(CI: Succ); |
| 212 | Preds.erase(CI: I); |
| 213 | this->setDepthDirty(); |
| 214 | N->setHeightDirty(); |
| 215 | } |
| 216 | |
| 217 | void SUnit::setDepthDirty() { |
| 218 | if (!isDepthCurrent) return; |
| 219 | SmallVector<SUnit*, 8> WorkList; |
| 220 | WorkList.push_back(Elt: this); |
| 221 | do { |
| 222 | SUnit *SU = WorkList.pop_back_val(); |
| 223 | SU->isDepthCurrent = false; |
| 224 | for (SDep &SuccDep : SU->Succs) { |
| 225 | SUnit *SuccSU = SuccDep.getSUnit(); |
| 226 | if (SuccSU->isDepthCurrent) |
| 227 | WorkList.push_back(Elt: SuccSU); |
| 228 | } |
| 229 | } while (!WorkList.empty()); |
| 230 | } |
| 231 | |
| 232 | void SUnit::setHeightDirty() { |
| 233 | if (!isHeightCurrent) return; |
| 234 | SmallVector<SUnit*, 8> WorkList; |
| 235 | WorkList.push_back(Elt: this); |
| 236 | do { |
| 237 | SUnit *SU = WorkList.pop_back_val(); |
| 238 | SU->isHeightCurrent = false; |
| 239 | for (SDep &PredDep : SU->Preds) { |
| 240 | SUnit *PredSU = PredDep.getSUnit(); |
| 241 | if (PredSU->isHeightCurrent) |
| 242 | WorkList.push_back(Elt: PredSU); |
| 243 | } |
| 244 | } while (!WorkList.empty()); |
| 245 | } |
| 246 | |
| 247 | void SUnit::setDepthToAtLeast(unsigned NewDepth) { |
| 248 | if (NewDepth <= getDepth()) |
| 249 | return; |
| 250 | setDepthDirty(); |
| 251 | Depth = NewDepth; |
| 252 | isDepthCurrent = true; |
| 253 | } |
| 254 | |
| 255 | void SUnit::setHeightToAtLeast(unsigned NewHeight) { |
| 256 | if (NewHeight <= getHeight()) |
| 257 | return; |
| 258 | setHeightDirty(); |
| 259 | Height = NewHeight; |
| 260 | isHeightCurrent = true; |
| 261 | } |
| 262 | |
| 263 | /// Calculates the maximal path from the node to the exit. |
| 264 | void SUnit::ComputeDepth() { |
| 265 | SmallVector<SUnit*, 8> WorkList; |
| 266 | WorkList.push_back(Elt: this); |
| 267 | do { |
| 268 | SUnit *Cur = WorkList.back(); |
| 269 | |
| 270 | bool Done = true; |
| 271 | unsigned MaxPredDepth = 0; |
| 272 | for (const SDep &PredDep : Cur->Preds) { |
| 273 | SUnit *PredSU = PredDep.getSUnit(); |
| 274 | if (PredSU->isDepthCurrent) |
| 275 | MaxPredDepth = std::max(a: MaxPredDepth, |
| 276 | b: PredSU->Depth + PredDep.getLatency()); |
| 277 | else { |
| 278 | Done = false; |
| 279 | WorkList.push_back(Elt: PredSU); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | if (Done) { |
| 284 | WorkList.pop_back(); |
| 285 | if (MaxPredDepth != Cur->Depth) { |
| 286 | Cur->setDepthDirty(); |
| 287 | Cur->Depth = MaxPredDepth; |
| 288 | } |
| 289 | Cur->isDepthCurrent = true; |
| 290 | } |
| 291 | } while (!WorkList.empty()); |
| 292 | } |
| 293 | |
| 294 | /// Calculates the maximal path from the node to the entry. |
| 295 | void SUnit::ComputeHeight() { |
| 296 | SmallVector<SUnit*, 8> WorkList; |
| 297 | WorkList.push_back(Elt: this); |
| 298 | do { |
| 299 | SUnit *Cur = WorkList.back(); |
| 300 | |
| 301 | bool Done = true; |
| 302 | unsigned MaxSuccHeight = 0; |
| 303 | for (const SDep &SuccDep : Cur->Succs) { |
| 304 | SUnit *SuccSU = SuccDep.getSUnit(); |
| 305 | if (SuccSU->isHeightCurrent) |
| 306 | MaxSuccHeight = std::max(a: MaxSuccHeight, |
| 307 | b: SuccSU->Height + SuccDep.getLatency()); |
| 308 | else { |
| 309 | Done = false; |
| 310 | WorkList.push_back(Elt: SuccSU); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | if (Done) { |
| 315 | WorkList.pop_back(); |
| 316 | if (MaxSuccHeight != Cur->Height) { |
| 317 | Cur->setHeightDirty(); |
| 318 | Cur->Height = MaxSuccHeight; |
| 319 | } |
| 320 | Cur->isHeightCurrent = true; |
| 321 | } |
| 322 | } while (!WorkList.empty()); |
| 323 | } |
| 324 | |
| 325 | void SUnit::biasCriticalPath() { |
| 326 | if (NumPreds < 2) |
| 327 | return; |
| 328 | |
| 329 | SUnit::pred_iterator BestI = Preds.begin(); |
| 330 | unsigned MaxDepth = BestI->getSUnit()->getDepth(); |
| 331 | for (SUnit::pred_iterator I = std::next(x: BestI), E = Preds.end(); I != E; |
| 332 | ++I) { |
| 333 | if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) { |
| 334 | MaxDepth = I->getSUnit()->getDepth(); |
| 335 | BestI = I; |
| 336 | } |
| 337 | } |
| 338 | if (BestI != Preds.begin()) |
| 339 | std::swap(a&: *Preds.begin(), b&: *BestI); |
| 340 | } |
| 341 | |
| 342 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 343 | LLVM_DUMP_METHOD void SUnit::dumpAttributes() const { |
| 344 | dbgs() << " # preds left : " << NumPredsLeft << "\n" ; |
| 345 | dbgs() << " # succs left : " << NumSuccsLeft << "\n" ; |
| 346 | if (WeakPredsLeft) |
| 347 | dbgs() << " # weak preds left : " << WeakPredsLeft << "\n" ; |
| 348 | if (WeakSuccsLeft) |
| 349 | dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n" ; |
| 350 | dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n" ; |
| 351 | dbgs() << " Latency : " << Latency << "\n" ; |
| 352 | dbgs() << " Depth : " << getDepth() << "\n" ; |
| 353 | dbgs() << " Height : " << getHeight() << "\n" ; |
| 354 | } |
| 355 | |
| 356 | LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const { |
| 357 | if (&SU == &EntrySU) |
| 358 | dbgs() << "EntrySU" ; |
| 359 | else if (&SU == &ExitSU) |
| 360 | dbgs() << "ExitSU" ; |
| 361 | else |
| 362 | dbgs() << "SU(" << SU.NodeNum << ")" ; |
| 363 | } |
| 364 | |
| 365 | LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const { |
| 366 | dumpNode(SU); |
| 367 | SU.dumpAttributes(); |
| 368 | if (SU.ParentClusterIdx != InvalidClusterId) |
| 369 | dbgs() << " Parent Cluster Index: " << SU.ParentClusterIdx << '\n'; |
| 370 | |
| 371 | if (SU.Preds.size() > 0) { |
| 372 | dbgs() << " Predecessors:\n" ; |
| 373 | for (const SDep &Dep : SU.Preds) { |
| 374 | dbgs() << " " ; |
| 375 | dumpNodeName(*Dep.getSUnit()); |
| 376 | dbgs() << ": " ; |
| 377 | Dep.dump(TRI); |
| 378 | dbgs() << '\n'; |
| 379 | } |
| 380 | } |
| 381 | if (SU.Succs.size() > 0) { |
| 382 | dbgs() << " Successors:\n" ; |
| 383 | for (const SDep &Dep : SU.Succs) { |
| 384 | dbgs() << " " ; |
| 385 | dumpNodeName(*Dep.getSUnit()); |
| 386 | dbgs() << ": " ; |
| 387 | Dep.dump(TRI); |
| 388 | dbgs() << '\n'; |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | #endif |
| 393 | |
| 394 | #ifndef NDEBUG |
| 395 | unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { |
| 396 | bool AnyNotSched = false; |
| 397 | unsigned DeadNodes = 0; |
| 398 | for (const SUnit &SUnit : SUnits) { |
| 399 | if (!SUnit.isScheduled) { |
| 400 | if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { |
| 401 | ++DeadNodes; |
| 402 | continue; |
| 403 | } |
| 404 | if (!AnyNotSched) |
| 405 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 406 | dumpNode(SUnit); |
| 407 | dbgs() << "has not been scheduled!\n" ; |
| 408 | AnyNotSched = true; |
| 409 | } |
| 410 | if (SUnit.isScheduled && |
| 411 | (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > |
| 412 | unsigned(std::numeric_limits<int>::max())) { |
| 413 | if (!AnyNotSched) |
| 414 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 415 | dumpNode(SUnit); |
| 416 | dbgs() << "has an unexpected " |
| 417 | << (isBottomUp ? "Height" : "Depth" ) << " value!\n" ; |
| 418 | AnyNotSched = true; |
| 419 | } |
| 420 | if (isBottomUp) { |
| 421 | if (SUnit.NumSuccsLeft != 0) { |
| 422 | if (!AnyNotSched) |
| 423 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 424 | dumpNode(SUnit); |
| 425 | dbgs() << "has successors left!\n" ; |
| 426 | AnyNotSched = true; |
| 427 | } |
| 428 | } else { |
| 429 | if (SUnit.NumPredsLeft != 0) { |
| 430 | if (!AnyNotSched) |
| 431 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 432 | dumpNode(SUnit); |
| 433 | dbgs() << "has predecessors left!\n" ; |
| 434 | AnyNotSched = true; |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | assert(!AnyNotSched); |
| 439 | return SUnits.size() - DeadNodes; |
| 440 | } |
| 441 | #endif |
| 442 | |
| 443 | void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { |
| 444 | // The idea of the algorithm is taken from |
| 445 | // "Online algorithms for managing the topological order of |
| 446 | // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly |
| 447 | // This is the MNR algorithm, which was first introduced by |
| 448 | // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in |
| 449 | // "Maintaining a topological order under edge insertions". |
| 450 | // |
| 451 | // Short description of the algorithm: |
| 452 | // |
| 453 | // Topological ordering, ord, of a DAG maps each node to a topological |
| 454 | // index so that for all edges X->Y it is the case that ord(X) < ord(Y). |
| 455 | // |
| 456 | // This means that if there is a path from the node X to the node Z, |
| 457 | // then ord(X) < ord(Z). |
| 458 | // |
| 459 | // This property can be used to check for reachability of nodes: |
| 460 | // if Z is reachable from X, then an insertion of the edge Z->X would |
| 461 | // create a cycle. |
| 462 | // |
| 463 | // The algorithm first computes a topological ordering for the DAG by |
| 464 | // initializing the Index2Node and Node2Index arrays and then tries to keep |
| 465 | // the ordering up-to-date after edge insertions by reordering the DAG. |
| 466 | // |
| 467 | // On insertion of the edge X->Y, the algorithm first marks by calling DFS |
| 468 | // the nodes reachable from Y, and then shifts them using Shift to lie |
| 469 | // immediately after X in Index2Node. |
| 470 | |
| 471 | // Cancel pending updates, mark as valid. |
| 472 | Dirty = false; |
| 473 | Updates.clear(); |
| 474 | |
| 475 | unsigned DAGSize = SUnits.size(); |
| 476 | std::vector<SUnit*> WorkList; |
| 477 | WorkList.reserve(n: DAGSize); |
| 478 | |
| 479 | Index2Node.resize(new_size: DAGSize); |
| 480 | Node2Index.resize(new_size: DAGSize); |
| 481 | |
| 482 | // Initialize the data structures. |
| 483 | if (ExitSU) |
| 484 | WorkList.push_back(x: ExitSU); |
| 485 | for (SUnit &SU : SUnits) { |
| 486 | int NodeNum = SU.NodeNum; |
| 487 | unsigned Degree = SU.Succs.size(); |
| 488 | // Temporarily use the Node2Index array as scratch space for degree counts. |
| 489 | Node2Index[NodeNum] = Degree; |
| 490 | |
| 491 | // Is it a node without dependencies? |
| 492 | if (Degree == 0) { |
| 493 | assert(SU.Succs.empty() && "SUnit should have no successors" ); |
| 494 | // Collect leaf nodes. |
| 495 | WorkList.push_back(x: &SU); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | int Id = DAGSize; |
| 500 | while (!WorkList.empty()) { |
| 501 | SUnit *SU = WorkList.back(); |
| 502 | WorkList.pop_back(); |
| 503 | if (SU->NodeNum < DAGSize) |
| 504 | Allocate(n: SU->NodeNum, index: --Id); |
| 505 | for (const SDep &PredDep : SU->Preds) { |
| 506 | SUnit *SU = PredDep.getSUnit(); |
| 507 | if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) |
| 508 | // If all dependencies of the node are processed already, |
| 509 | // then the node can be computed now. |
| 510 | WorkList.push_back(x: SU); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | Visited.resize(N: DAGSize); |
| 515 | NumTopoInits++; |
| 516 | |
| 517 | #ifndef NDEBUG |
| 518 | // Check correctness of the ordering |
| 519 | for (SUnit &SU : SUnits) { |
| 520 | for (const SDep &PD : SU.Preds) { |
| 521 | assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && |
| 522 | "Wrong topological sorting" ); |
| 523 | } |
| 524 | } |
| 525 | #endif |
| 526 | } |
| 527 | |
| 528 | void ScheduleDAGTopologicalSort::FixOrder() { |
| 529 | // Recompute from scratch after new nodes have been added. |
| 530 | if (Dirty) { |
| 531 | InitDAGTopologicalSorting(); |
| 532 | return; |
| 533 | } |
| 534 | |
| 535 | // Otherwise apply updates one-by-one. |
| 536 | for (auto &U : Updates) |
| 537 | AddPred(Y: U.first, X: U.second); |
| 538 | Updates.clear(); |
| 539 | } |
| 540 | |
| 541 | void ScheduleDAGTopologicalSort::AddPredQueued(SUnit *Y, SUnit *X) { |
| 542 | // Recomputing the order from scratch is likely more efficient than applying |
| 543 | // updates one-by-one for too many updates. The current cut-off is arbitrarily |
| 544 | // chosen. |
| 545 | Dirty = Dirty || Updates.size() > 10; |
| 546 | |
| 547 | if (Dirty) |
| 548 | return; |
| 549 | |
| 550 | Updates.emplace_back(Args&: Y, Args&: X); |
| 551 | } |
| 552 | |
| 553 | void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { |
| 554 | int UpperBound, LowerBound; |
| 555 | LowerBound = Node2Index[Y->NodeNum]; |
| 556 | UpperBound = Node2Index[X->NodeNum]; |
| 557 | bool HasLoop = false; |
| 558 | // Is Ord(X) < Ord(Y) ? |
| 559 | if (LowerBound < UpperBound) { |
| 560 | // Update the topological order. |
| 561 | Visited.reset(); |
| 562 | DFS(SU: Y, UpperBound, HasLoop); |
| 563 | assert(!HasLoop && "Inserted edge creates a loop!" ); |
| 564 | // Recompute topological indexes. |
| 565 | Shift(Visited, LowerBound, UpperBound); |
| 566 | } |
| 567 | |
| 568 | NumNewPredsAdded++; |
| 569 | } |
| 570 | |
| 571 | void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { |
| 572 | // InitDAGTopologicalSorting(); |
| 573 | } |
| 574 | |
| 575 | void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, |
| 576 | bool &HasLoop) { |
| 577 | std::vector<const SUnit*> WorkList; |
| 578 | WorkList.reserve(n: SUnits.size()); |
| 579 | |
| 580 | WorkList.push_back(x: SU); |
| 581 | do { |
| 582 | SU = WorkList.back(); |
| 583 | WorkList.pop_back(); |
| 584 | Visited.set(SU->NodeNum); |
| 585 | for (const SDep &SuccDep : llvm::reverse(C: SU->Succs)) { |
| 586 | unsigned s = SuccDep.getSUnit()->NodeNum; |
| 587 | // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). |
| 588 | if (s >= Node2Index.size()) |
| 589 | continue; |
| 590 | if (Node2Index[s] == UpperBound) { |
| 591 | HasLoop = true; |
| 592 | return; |
| 593 | } |
| 594 | // Visit successors if not already and in affected region. |
| 595 | if (!Visited.test(Idx: s) && Node2Index[s] < UpperBound) { |
| 596 | WorkList.push_back(x: SuccDep.getSUnit()); |
| 597 | } |
| 598 | } |
| 599 | } while (!WorkList.empty()); |
| 600 | } |
| 601 | |
| 602 | std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, |
| 603 | const SUnit &TargetSU, |
| 604 | bool &Success) { |
| 605 | std::vector<const SUnit*> WorkList; |
| 606 | int LowerBound = Node2Index[StartSU.NodeNum]; |
| 607 | int UpperBound = Node2Index[TargetSU.NodeNum]; |
| 608 | bool Found = false; |
| 609 | BitVector VisitedBack; |
| 610 | std::vector<int> Nodes; |
| 611 | |
| 612 | if (LowerBound > UpperBound) { |
| 613 | Success = false; |
| 614 | return Nodes; |
| 615 | } |
| 616 | |
| 617 | WorkList.reserve(n: SUnits.size()); |
| 618 | Visited.reset(); |
| 619 | |
| 620 | // Starting from StartSU, visit all successors up |
| 621 | // to UpperBound. |
| 622 | WorkList.push_back(x: &StartSU); |
| 623 | do { |
| 624 | const SUnit *SU = WorkList.back(); |
| 625 | WorkList.pop_back(); |
| 626 | for (const SDep &SD : llvm::reverse(C: SU->Succs)) { |
| 627 | const SUnit *Succ = SD.getSUnit(); |
| 628 | unsigned s = Succ->NodeNum; |
| 629 | // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). |
| 630 | if (Succ->isBoundaryNode()) |
| 631 | continue; |
| 632 | if (Node2Index[s] == UpperBound) { |
| 633 | Found = true; |
| 634 | continue; |
| 635 | } |
| 636 | // Visit successors if not already and in affected region. |
| 637 | if (!Visited.test(Idx: s) && Node2Index[s] < UpperBound) { |
| 638 | Visited.set(s); |
| 639 | WorkList.push_back(x: Succ); |
| 640 | } |
| 641 | } |
| 642 | } while (!WorkList.empty()); |
| 643 | |
| 644 | if (!Found) { |
| 645 | Success = false; |
| 646 | return Nodes; |
| 647 | } |
| 648 | |
| 649 | WorkList.clear(); |
| 650 | VisitedBack.resize(N: SUnits.size()); |
| 651 | Found = false; |
| 652 | |
| 653 | // Starting from TargetSU, visit all predecessors up |
| 654 | // to LowerBound. SUs that are visited by the two |
| 655 | // passes are added to Nodes. |
| 656 | WorkList.push_back(x: &TargetSU); |
| 657 | do { |
| 658 | const SUnit *SU = WorkList.back(); |
| 659 | WorkList.pop_back(); |
| 660 | for (const SDep &SD : llvm::reverse(C: SU->Preds)) { |
| 661 | const SUnit *Pred = SD.getSUnit(); |
| 662 | unsigned s = Pred->NodeNum; |
| 663 | // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). |
| 664 | if (Pred->isBoundaryNode()) |
| 665 | continue; |
| 666 | if (Node2Index[s] == LowerBound) { |
| 667 | Found = true; |
| 668 | continue; |
| 669 | } |
| 670 | if (!VisitedBack.test(Idx: s) && Visited.test(Idx: s)) { |
| 671 | VisitedBack.set(s); |
| 672 | WorkList.push_back(x: Pred); |
| 673 | Nodes.push_back(x: s); |
| 674 | } |
| 675 | } |
| 676 | } while (!WorkList.empty()); |
| 677 | |
| 678 | assert(Found && "Error in SUnit Graph!" ); |
| 679 | Success = true; |
| 680 | return Nodes; |
| 681 | } |
| 682 | |
| 683 | void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, |
| 684 | int UpperBound) { |
| 685 | std::vector<int> L; |
| 686 | int shift = 0; |
| 687 | int i; |
| 688 | |
| 689 | for (i = LowerBound; i <= UpperBound; ++i) { |
| 690 | // w is node at topological index i. |
| 691 | int w = Index2Node[i]; |
| 692 | if (Visited.test(Idx: w)) { |
| 693 | // Unmark. |
| 694 | Visited.reset(Idx: w); |
| 695 | L.push_back(x: w); |
| 696 | shift = shift + 1; |
| 697 | } else { |
| 698 | Allocate(n: w, index: i - shift); |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | for (unsigned LI : L) { |
| 703 | Allocate(n: LI, index: i - shift); |
| 704 | i = i + 1; |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { |
| 709 | FixOrder(); |
| 710 | // Is SU reachable from TargetSU via successor edges? |
| 711 | if (IsReachable(SU, TargetSU)) |
| 712 | return true; |
| 713 | for (const SDep &PredDep : TargetSU->Preds) |
| 714 | if (PredDep.isAssignedRegDep() && |
| 715 | IsReachable(SU, TargetSU: PredDep.getSUnit())) |
| 716 | return true; |
| 717 | return false; |
| 718 | } |
| 719 | |
| 720 | void ScheduleDAGTopologicalSort::AddSUnitWithoutPredecessors(const SUnit *SU) { |
| 721 | assert(SU->NodeNum == Index2Node.size() && "Node cannot be added at the end" ); |
| 722 | assert(SU->NumPreds == 0 && "Can only add SU's with no predecessors" ); |
| 723 | Node2Index.push_back(x: Index2Node.size()); |
| 724 | Index2Node.push_back(x: SU->NodeNum); |
| 725 | Visited.resize(N: Node2Index.size()); |
| 726 | } |
| 727 | |
| 728 | bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, |
| 729 | const SUnit *TargetSU) { |
| 730 | assert(TargetSU != nullptr && "Invalid target SUnit" ); |
| 731 | assert(SU != nullptr && "Invalid SUnit" ); |
| 732 | FixOrder(); |
| 733 | // If insertion of the edge SU->TargetSU would create a cycle |
| 734 | // then there is a path from TargetSU to SU. |
| 735 | int UpperBound, LowerBound; |
| 736 | LowerBound = Node2Index[TargetSU->NodeNum]; |
| 737 | UpperBound = Node2Index[SU->NodeNum]; |
| 738 | bool HasLoop = false; |
| 739 | // Is Ord(TargetSU) < Ord(SU) ? |
| 740 | if (LowerBound < UpperBound) { |
| 741 | Visited.reset(); |
| 742 | // There may be a path from TargetSU to SU. Check for it. |
| 743 | DFS(SU: TargetSU, UpperBound, HasLoop); |
| 744 | } |
| 745 | return HasLoop; |
| 746 | } |
| 747 | |
| 748 | void ScheduleDAGTopologicalSort::Allocate(int n, int index) { |
| 749 | Node2Index[n] = index; |
| 750 | Index2Node[index] = n; |
| 751 | } |
| 752 | |
| 753 | ScheduleDAGTopologicalSort:: |
| 754 | ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) |
| 755 | : SUnits(sunits), ExitSU(exitsu) {} |
| 756 | |
| 757 | ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; |
| 758 | |