1 | //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass looks for safe point where the prologue and epilogue can be |
10 | // inserted. |
11 | // The safe point for the prologue (resp. epilogue) is called Save |
12 | // (resp. Restore). |
13 | // A point is safe for prologue (resp. epilogue) if and only if |
14 | // it 1) dominates (resp. post-dominates) all the frame related operations and |
15 | // between 2) two executions of the Save (resp. Restore) point there is an |
16 | // execution of the Restore (resp. Save) point. |
17 | // |
18 | // For instance, the following points are safe: |
19 | // for (int i = 0; i < 10; ++i) { |
20 | // Save |
21 | // ... |
22 | // Restore |
23 | // } |
24 | // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... |
25 | // And the following points are not: |
26 | // for (int i = 0; i < 10; ++i) { |
27 | // Save |
28 | // ... |
29 | // } |
30 | // for (int i = 0; i < 10; ++i) { |
31 | // ... |
32 | // Restore |
33 | // } |
34 | // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. |
35 | // |
36 | // This pass also ensures that the safe points are 3) cheaper than the regular |
37 | // entry and exits blocks. |
38 | // |
39 | // Property #1 is ensured via the use of MachineDominatorTree and |
40 | // MachinePostDominatorTree. |
41 | // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both |
42 | // points must be in the same loop. |
43 | // Property #3 is ensured via the MachineBlockFrequencyInfo. |
44 | // |
45 | // If this pass found points matching all these properties, then |
46 | // MachineFrameInfo is updated with this information. |
47 | // |
48 | //===----------------------------------------------------------------------===// |
49 | |
50 | #include "llvm/CodeGen/ShrinkWrap.h" |
51 | #include "llvm/ADT/BitVector.h" |
52 | #include "llvm/ADT/PostOrderIterator.h" |
53 | #include "llvm/ADT/SetVector.h" |
54 | #include "llvm/ADT/SmallVector.h" |
55 | #include "llvm/ADT/Statistic.h" |
56 | #include "llvm/Analysis/CFG.h" |
57 | #include "llvm/Analysis/ValueTracking.h" |
58 | #include "llvm/CodeGen/MachineBasicBlock.h" |
59 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
60 | #include "llvm/CodeGen/MachineDominators.h" |
61 | #include "llvm/CodeGen/MachineFrameInfo.h" |
62 | #include "llvm/CodeGen/MachineFunction.h" |
63 | #include "llvm/CodeGen/MachineFunctionPass.h" |
64 | #include "llvm/CodeGen/MachineInstr.h" |
65 | #include "llvm/CodeGen/MachineLoopInfo.h" |
66 | #include "llvm/CodeGen/MachineOperand.h" |
67 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
68 | #include "llvm/CodeGen/MachinePostDominators.h" |
69 | #include "llvm/CodeGen/RegisterClassInfo.h" |
70 | #include "llvm/CodeGen/RegisterScavenging.h" |
71 | #include "llvm/CodeGen/TargetFrameLowering.h" |
72 | #include "llvm/CodeGen/TargetInstrInfo.h" |
73 | #include "llvm/CodeGen/TargetLowering.h" |
74 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
75 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
76 | #include "llvm/IR/Attributes.h" |
77 | #include "llvm/IR/Function.h" |
78 | #include "llvm/InitializePasses.h" |
79 | #include "llvm/MC/MCAsmInfo.h" |
80 | #include "llvm/Pass.h" |
81 | #include "llvm/Support/CommandLine.h" |
82 | #include "llvm/Support/Debug.h" |
83 | #include "llvm/Support/ErrorHandling.h" |
84 | #include "llvm/Support/raw_ostream.h" |
85 | #include "llvm/Target/TargetMachine.h" |
86 | #include <cassert> |
87 | #include <memory> |
88 | |
89 | using namespace llvm; |
90 | |
91 | #define DEBUG_TYPE "shrink-wrap" |
92 | |
93 | STATISTIC(NumFunc, "Number of functions" ); |
94 | STATISTIC(NumCandidates, "Number of shrink-wrapping candidates" ); |
95 | STATISTIC(NumCandidatesDropped, |
96 | "Number of shrink-wrapping candidates dropped because of frequency" ); |
97 | |
98 | static cl::opt<cl::boolOrDefault> |
99 | EnableShrinkWrapOpt("enable-shrink-wrap" , cl::Hidden, |
100 | cl::desc("enable the shrink-wrapping pass" )); |
101 | static cl::opt<bool> EnablePostShrinkWrapOpt( |
102 | "enable-shrink-wrap-region-split" , cl::init(Val: true), cl::Hidden, |
103 | cl::desc("enable splitting of the restore block if possible" )); |
104 | |
105 | namespace { |
106 | |
107 | /// Class to determine where the safe point to insert the |
108 | /// prologue and epilogue are. |
109 | /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the |
110 | /// shrink-wrapping term for prologue/epilogue placement, this pass |
111 | /// does not rely on expensive data-flow analysis. Instead we use the |
112 | /// dominance properties and loop information to decide which point |
113 | /// are safe for such insertion. |
114 | class ShrinkWrapImpl { |
115 | /// Hold callee-saved information. |
116 | RegisterClassInfo RCI; |
117 | MachineDominatorTree *MDT = nullptr; |
118 | MachinePostDominatorTree *MPDT = nullptr; |
119 | |
120 | /// Current safe point found for the prologue. |
121 | /// The prologue will be inserted before the first instruction |
122 | /// in this basic block. |
123 | MachineBasicBlock *Save = nullptr; |
124 | |
125 | /// Current safe point found for the epilogue. |
126 | /// The epilogue will be inserted before the first terminator instruction |
127 | /// in this basic block. |
128 | MachineBasicBlock *Restore = nullptr; |
129 | |
130 | /// Hold the information of the basic block frequency. |
131 | /// Use to check the profitability of the new points. |
132 | MachineBlockFrequencyInfo *MBFI = nullptr; |
133 | |
134 | /// Hold the loop information. Used to determine if Save and Restore |
135 | /// are in the same loop. |
136 | MachineLoopInfo *MLI = nullptr; |
137 | |
138 | // Emit remarks. |
139 | MachineOptimizationRemarkEmitter *ORE = nullptr; |
140 | |
141 | /// Frequency of the Entry block. |
142 | BlockFrequency EntryFreq; |
143 | |
144 | /// Current opcode for frame setup. |
145 | unsigned FrameSetupOpcode = ~0u; |
146 | |
147 | /// Current opcode for frame destroy. |
148 | unsigned FrameDestroyOpcode = ~0u; |
149 | |
150 | /// Stack pointer register, used by llvm.{savestack,restorestack} |
151 | Register SP; |
152 | |
153 | /// Entry block. |
154 | const MachineBasicBlock *Entry = nullptr; |
155 | |
156 | using SetOfRegs = SmallSetVector<unsigned, 16>; |
157 | |
158 | /// Registers that need to be saved for the current function. |
159 | mutable SetOfRegs CurrentCSRs; |
160 | |
161 | /// Current MachineFunction. |
162 | MachineFunction *MachineFunc = nullptr; |
163 | |
164 | /// Is `true` for the block numbers where we assume possible stack accesses |
165 | /// or computation of stack-relative addresses on any CFG path including the |
166 | /// block itself. Is `false` for basic blocks where we can guarantee the |
167 | /// opposite. False positives won't lead to incorrect analysis results, |
168 | /// therefore this approach is fair. |
169 | BitVector StackAddressUsedBlockInfo; |
170 | |
171 | /// Check if \p MI uses or defines a callee-saved register or |
172 | /// a frame index. If this is the case, this means \p MI must happen |
173 | /// after Save and before Restore. |
174 | bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, |
175 | bool StackAddressUsed) const; |
176 | |
177 | const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { |
178 | if (CurrentCSRs.empty()) { |
179 | BitVector SavedRegs; |
180 | const TargetFrameLowering *TFI = |
181 | MachineFunc->getSubtarget().getFrameLowering(); |
182 | |
183 | TFI->determineCalleeSaves(MF&: *MachineFunc, SavedRegs, RS); |
184 | |
185 | for (int Reg = SavedRegs.find_first(); Reg != -1; |
186 | Reg = SavedRegs.find_next(Prev: Reg)) |
187 | CurrentCSRs.insert(X: (unsigned)Reg); |
188 | } |
189 | return CurrentCSRs; |
190 | } |
191 | |
192 | /// Update the Save and Restore points such that \p MBB is in |
193 | /// the region that is dominated by Save and post-dominated by Restore |
194 | /// and Save and Restore still match the safe point definition. |
195 | /// Such point may not exist and Save and/or Restore may be null after |
196 | /// this call. |
197 | void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); |
198 | |
199 | // Try to find safe point based on dominance and block frequency without |
200 | // any change in IR. |
201 | bool performShrinkWrapping( |
202 | const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT, |
203 | RegScavenger *RS); |
204 | |
205 | /// This function tries to split the restore point if doing so can shrink the |
206 | /// save point further. \return True if restore point is split. |
207 | bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF, |
208 | RegScavenger *RS); |
209 | |
210 | /// This function analyzes if the restore point can split to create a new |
211 | /// restore point. This function collects |
212 | /// 1. Any preds of current restore that are reachable by callee save/FI |
213 | /// blocks |
214 | /// - indicated by DirtyPreds |
215 | /// 2. Any preds of current restore that are not DirtyPreds - indicated by |
216 | /// CleanPreds |
217 | /// Both sets should be non-empty for considering restore point split. |
218 | bool checkIfRestoreSplittable( |
219 | const MachineBasicBlock *CurRestore, |
220 | const DenseSet<const MachineBasicBlock *> &ReachableByDirty, |
221 | SmallVectorImpl<MachineBasicBlock *> &DirtyPreds, |
222 | SmallVectorImpl<MachineBasicBlock *> &CleanPreds, |
223 | const TargetInstrInfo *TII, RegScavenger *RS); |
224 | |
225 | /// Initialize the pass for \p MF. |
226 | void init(MachineFunction &MF) { |
227 | RCI.runOnMachineFunction(MF); |
228 | Save = nullptr; |
229 | Restore = nullptr; |
230 | EntryFreq = MBFI->getEntryFreq(); |
231 | const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); |
232 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
233 | FrameSetupOpcode = TII.getCallFrameSetupOpcode(); |
234 | FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); |
235 | SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); |
236 | Entry = &MF.front(); |
237 | CurrentCSRs.clear(); |
238 | MachineFunc = &MF; |
239 | |
240 | ++NumFunc; |
241 | } |
242 | |
243 | /// Check whether or not Save and Restore points are still interesting for |
244 | /// shrink-wrapping. |
245 | bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } |
246 | |
247 | public: |
248 | ShrinkWrapImpl(MachineDominatorTree *MDT, MachinePostDominatorTree *MPDT, |
249 | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *MLI, |
250 | MachineOptimizationRemarkEmitter *ORE) |
251 | : MDT(MDT), MPDT(MPDT), MBFI(MBFI), MLI(MLI), ORE(ORE) {} |
252 | |
253 | /// Check if shrink wrapping is enabled for this target and function. |
254 | static bool isShrinkWrapEnabled(const MachineFunction &MF); |
255 | |
256 | bool run(MachineFunction &MF); |
257 | }; |
258 | |
259 | class ShrinkWrapLegacy : public MachineFunctionPass { |
260 | public: |
261 | static char ID; |
262 | |
263 | ShrinkWrapLegacy() : MachineFunctionPass(ID) { |
264 | initializeShrinkWrapLegacyPass(*PassRegistry::getPassRegistry()); |
265 | } |
266 | |
267 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
268 | AU.setPreservesAll(); |
269 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
270 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
271 | AU.addRequired<MachinePostDominatorTreeWrapperPass>(); |
272 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
273 | AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
274 | MachineFunctionPass::getAnalysisUsage(AU); |
275 | } |
276 | |
277 | MachineFunctionProperties getRequiredProperties() const override { |
278 | return MachineFunctionProperties().setNoVRegs(); |
279 | } |
280 | |
281 | StringRef getPassName() const override { return "Shrink Wrapping analysis" ; } |
282 | |
283 | /// Perform the shrink-wrapping analysis and update |
284 | /// the MachineFrameInfo attached to \p MF with the results. |
285 | bool runOnMachineFunction(MachineFunction &MF) override; |
286 | }; |
287 | |
288 | } // end anonymous namespace |
289 | |
290 | char ShrinkWrapLegacy::ID = 0; |
291 | |
292 | char &llvm::ShrinkWrapID = ShrinkWrapLegacy::ID; |
293 | |
294 | INITIALIZE_PASS_BEGIN(ShrinkWrapLegacy, DEBUG_TYPE, "Shrink Wrap Pass" , false, |
295 | false) |
296 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
297 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
298 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) |
299 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
300 | INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) |
301 | INITIALIZE_PASS_END(ShrinkWrapLegacy, DEBUG_TYPE, "Shrink Wrap Pass" , false, |
302 | false) |
303 | |
304 | bool ShrinkWrapImpl::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, |
305 | bool StackAddressUsed) const { |
306 | /// Check if \p Op is known to access an address not on the function's stack . |
307 | /// At the moment, accesses where the underlying object is a global, function |
308 | /// argument, or jump table are considered non-stack accesses. Note that the |
309 | /// caller's stack may get accessed when passing an argument via the stack, |
310 | /// but not the stack of the current function. |
311 | /// |
312 | auto IsKnownNonStackPtr = [](MachineMemOperand *Op) { |
313 | if (Op->getValue()) { |
314 | const Value *UO = getUnderlyingObject(V: Op->getValue()); |
315 | if (!UO) |
316 | return false; |
317 | if (auto *Arg = dyn_cast<Argument>(Val: UO)) |
318 | return !Arg->hasPassPointeeByValueCopyAttr(); |
319 | return isa<GlobalValue>(Val: UO); |
320 | } |
321 | if (const PseudoSourceValue *PSV = Op->getPseudoValue()) |
322 | return PSV->isJumpTable(); |
323 | return false; |
324 | }; |
325 | // Load/store operations may access the stack indirectly when we previously |
326 | // computed an address to a stack location. |
327 | if (StackAddressUsed && MI.mayLoadOrStore() && |
328 | (MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() || |
329 | !all_of(Range: MI.memoperands(), P: IsKnownNonStackPtr))) |
330 | return true; |
331 | |
332 | if (MI.getOpcode() == FrameSetupOpcode || |
333 | MI.getOpcode() == FrameDestroyOpcode) { |
334 | LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); |
335 | return true; |
336 | } |
337 | const MachineFunction *MF = MI.getParent()->getParent(); |
338 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
339 | for (const MachineOperand &MO : MI.operands()) { |
340 | bool UseOrDefCSR = false; |
341 | if (MO.isReg()) { |
342 | // Ignore instructions like DBG_VALUE which don't read/def the register. |
343 | if (!MO.isDef() && !MO.readsReg()) |
344 | continue; |
345 | Register PhysReg = MO.getReg(); |
346 | if (!PhysReg) |
347 | continue; |
348 | assert(PhysReg.isPhysical() && "Unallocated register?!" ); |
349 | // The stack pointer is not normally described as a callee-saved register |
350 | // in calling convention definitions, so we need to watch for it |
351 | // separately. An SP mentioned by a call instruction, we can ignore, |
352 | // though, as it's harmless and we do not want to effectively disable tail |
353 | // calls by forcing the restore point to post-dominate them. |
354 | // PPC's LR is also not normally described as a callee-saved register in |
355 | // calling convention definitions, so we need to watch for it, too. An LR |
356 | // mentioned implicitly by a return (or "branch to link register") |
357 | // instruction we can ignore, otherwise we may pessimize shrinkwrapping. |
358 | // PPC's Frame pointer (FP) is also not described as a callee-saved |
359 | // register. Until the FP is assigned a Physical Register PPC's FP needs |
360 | // to be checked separately. |
361 | UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || |
362 | RCI.getLastCalleeSavedAlias(PhysReg) || |
363 | (!MI.isReturn() && |
364 | TRI->isNonallocatableRegisterCalleeSave(Reg: PhysReg)) || |
365 | TRI->isVirtualFrameRegister(Reg: PhysReg); |
366 | } else if (MO.isRegMask()) { |
367 | // Check if this regmask clobbers any of the CSRs. |
368 | for (unsigned Reg : getCurrentCSRs(RS)) { |
369 | if (MO.clobbersPhysReg(PhysReg: Reg)) { |
370 | UseOrDefCSR = true; |
371 | break; |
372 | } |
373 | } |
374 | } |
375 | // Skip FrameIndex operands in DBG_VALUE instructions. |
376 | if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { |
377 | LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" |
378 | << MO.isFI() << "): " << MI << '\n'); |
379 | return true; |
380 | } |
381 | } |
382 | return false; |
383 | } |
384 | |
385 | /// Helper function to find the immediate (post) dominator. |
386 | template <typename ListOfBBs, typename DominanceAnalysis> |
387 | static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, |
388 | DominanceAnalysis &Dom, bool Strict = true) { |
389 | MachineBasicBlock *IDom = Dom.findNearestCommonDominator(iterator_range(BBs)); |
390 | if (Strict && IDom == &Block) |
391 | return nullptr; |
392 | return IDom; |
393 | } |
394 | |
395 | static bool isAnalyzableBB(const TargetInstrInfo &TII, |
396 | MachineBasicBlock &Entry) { |
397 | // Check if the block is analyzable. |
398 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
399 | SmallVector<MachineOperand, 4> Cond; |
400 | return !TII.analyzeBranch(MBB&: Entry, TBB, FBB, Cond); |
401 | } |
402 | |
403 | /// Determines if any predecessor of MBB is on the path from block that has use |
404 | /// or def of CSRs/FI to MBB. |
405 | /// ReachableByDirty: All blocks reachable from block that has use or def of |
406 | /// CSR/FI. |
407 | static bool |
408 | hasDirtyPred(const DenseSet<const MachineBasicBlock *> &ReachableByDirty, |
409 | const MachineBasicBlock &MBB) { |
410 | for (const MachineBasicBlock *PredBB : MBB.predecessors()) |
411 | if (ReachableByDirty.count(V: PredBB)) |
412 | return true; |
413 | return false; |
414 | } |
415 | |
416 | /// Derives the list of all the basic blocks reachable from MBB. |
417 | static void markAllReachable(DenseSet<const MachineBasicBlock *> &Visited, |
418 | const MachineBasicBlock &MBB) { |
419 | SmallVector<MachineBasicBlock *, 4> Worklist(MBB.successors()); |
420 | Visited.insert(V: &MBB); |
421 | while (!Worklist.empty()) { |
422 | MachineBasicBlock *SuccMBB = Worklist.pop_back_val(); |
423 | if (!Visited.insert(V: SuccMBB).second) |
424 | continue; |
425 | Worklist.append(in_start: SuccMBB->succ_begin(), in_end: SuccMBB->succ_end()); |
426 | } |
427 | } |
428 | |
429 | /// Collect blocks reachable by use or def of CSRs/FI. |
430 | static void collectBlocksReachableByDirty( |
431 | const DenseSet<const MachineBasicBlock *> &DirtyBBs, |
432 | DenseSet<const MachineBasicBlock *> &ReachableByDirty) { |
433 | for (const MachineBasicBlock *MBB : DirtyBBs) { |
434 | if (ReachableByDirty.count(V: MBB)) |
435 | continue; |
436 | // Mark all offsprings as reachable. |
437 | markAllReachable(Visited&: ReachableByDirty, MBB: *MBB); |
438 | } |
439 | } |
440 | |
441 | /// \return true if there is a clean path from SavePoint to the original |
442 | /// Restore. |
443 | static bool |
444 | isSaveReachableThroughClean(const MachineBasicBlock *SavePoint, |
445 | ArrayRef<MachineBasicBlock *> CleanPreds) { |
446 | DenseSet<const MachineBasicBlock *> Visited; |
447 | SmallVector<MachineBasicBlock *, 4> Worklist(CleanPreds); |
448 | while (!Worklist.empty()) { |
449 | MachineBasicBlock *CleanBB = Worklist.pop_back_val(); |
450 | if (CleanBB == SavePoint) |
451 | return true; |
452 | if (!Visited.insert(V: CleanBB).second || !CleanBB->pred_size()) |
453 | continue; |
454 | Worklist.append(in_start: CleanBB->pred_begin(), in_end: CleanBB->pred_end()); |
455 | } |
456 | return false; |
457 | } |
458 | |
459 | /// This function updates the branches post restore point split. |
460 | /// |
461 | /// Restore point has been split. |
462 | /// Old restore point: MBB |
463 | /// New restore point: NMBB |
464 | /// Any basic block(say BBToUpdate) which had a fallthrough to MBB |
465 | /// previously should |
466 | /// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the |
467 | /// block layout OR |
468 | /// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place. |
469 | static void updateTerminator(MachineBasicBlock *BBToUpdate, |
470 | MachineBasicBlock *NMBB, |
471 | const TargetInstrInfo *TII) { |
472 | DebugLoc DL = BBToUpdate->findBranchDebugLoc(); |
473 | // if NMBB isn't the new layout successor for BBToUpdate, insert unconditional |
474 | // branch to it |
475 | if (!BBToUpdate->isLayoutSuccessor(MBB: NMBB)) |
476 | TII->insertUnconditionalBranch(MBB&: *BBToUpdate, DestBB: NMBB, DL); |
477 | } |
478 | |
479 | /// This function splits the restore point and returns new restore point/BB. |
480 | /// |
481 | /// DirtyPreds: Predessors of \p MBB that are ReachableByDirty |
482 | /// |
483 | /// Decision has been made to split the restore point. |
484 | /// old restore point: \p MBB |
485 | /// new restore point: \p NMBB |
486 | /// This function makes the necessary block layout changes so that |
487 | /// 1. \p NMBB points to \p MBB unconditionally |
488 | /// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB |
489 | static MachineBasicBlock * |
490 | tryToSplitRestore(MachineBasicBlock *MBB, |
491 | ArrayRef<MachineBasicBlock *> DirtyPreds, |
492 | const TargetInstrInfo *TII) { |
493 | MachineFunction *MF = MBB->getParent(); |
494 | |
495 | // get the list of DirtyPreds who have a fallthrough to MBB |
496 | // before the block layout change. This is just to ensure that if the NMBB is |
497 | // inserted after MBB, then we create unconditional branch from |
498 | // DirtyPred/CleanPred to NMBB |
499 | SmallPtrSet<MachineBasicBlock *, 8> MBBFallthrough; |
500 | for (MachineBasicBlock *BB : DirtyPreds) |
501 | if (BB->getFallThrough(JumpToFallThrough: false) == MBB) |
502 | MBBFallthrough.insert(Ptr: BB); |
503 | |
504 | MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); |
505 | // Insert this block at the end of the function. Inserting in between may |
506 | // interfere with control flow optimizer decisions. |
507 | MF->insert(MBBI: MF->end(), MBB: NMBB); |
508 | |
509 | for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins()) |
510 | NMBB->addLiveIn(PhysReg: LI.PhysReg); |
511 | |
512 | TII->insertUnconditionalBranch(MBB&: *NMBB, DestBB: MBB, DL: DebugLoc()); |
513 | |
514 | // After splitting, all predecessors of the restore point should be dirty |
515 | // blocks. |
516 | for (MachineBasicBlock *SuccBB : DirtyPreds) |
517 | SuccBB->ReplaceUsesOfBlockWith(Old: MBB, New: NMBB); |
518 | |
519 | NMBB->addSuccessor(Succ: MBB); |
520 | |
521 | for (MachineBasicBlock *BBToUpdate : MBBFallthrough) |
522 | updateTerminator(BBToUpdate, NMBB, TII); |
523 | |
524 | return NMBB; |
525 | } |
526 | |
527 | /// This function undoes the restore point split done earlier. |
528 | /// |
529 | /// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty. |
530 | /// |
531 | /// Restore point was split and the change needs to be unrolled. Make necessary |
532 | /// changes to reset restore point from \p NMBB to \p MBB. |
533 | static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB, |
534 | MachineBasicBlock *MBB, |
535 | ArrayRef<MachineBasicBlock *> DirtyPreds, |
536 | const TargetInstrInfo *TII) { |
537 | // For a BB, if NMBB is fallthrough in the current layout, then in the new |
538 | // layout a. BB should fallthrough to MBB OR b. BB should undconditionally |
539 | // branch to MBB |
540 | SmallPtrSet<MachineBasicBlock *, 8> NMBBFallthrough; |
541 | for (MachineBasicBlock *BB : DirtyPreds) |
542 | if (BB->getFallThrough(JumpToFallThrough: false) == NMBB) |
543 | NMBBFallthrough.insert(Ptr: BB); |
544 | |
545 | NMBB->removeSuccessor(Succ: MBB); |
546 | for (MachineBasicBlock *SuccBB : DirtyPreds) |
547 | SuccBB->ReplaceUsesOfBlockWith(Old: NMBB, New: MBB); |
548 | |
549 | NMBB->erase(I: NMBB->begin(), E: NMBB->end()); |
550 | NMBB->eraseFromParent(); |
551 | |
552 | for (MachineBasicBlock *BBToUpdate : NMBBFallthrough) |
553 | updateTerminator(BBToUpdate, NMBB: MBB, TII); |
554 | } |
555 | |
556 | // A block is deemed fit for restore point split iff there exist |
557 | // 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI |
558 | // 2. CleanPreds - preds of CurRestore that arent DirtyPreds |
559 | bool ShrinkWrapImpl::checkIfRestoreSplittable( |
560 | const MachineBasicBlock *CurRestore, |
561 | const DenseSet<const MachineBasicBlock *> &ReachableByDirty, |
562 | SmallVectorImpl<MachineBasicBlock *> &DirtyPreds, |
563 | SmallVectorImpl<MachineBasicBlock *> &CleanPreds, |
564 | const TargetInstrInfo *TII, RegScavenger *RS) { |
565 | for (const MachineInstr &MI : *CurRestore) |
566 | if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) |
567 | return false; |
568 | |
569 | for (MachineBasicBlock *PredBB : CurRestore->predecessors()) { |
570 | if (!isAnalyzableBB(TII: *TII, Entry&: *PredBB)) |
571 | return false; |
572 | |
573 | if (ReachableByDirty.count(V: PredBB)) |
574 | DirtyPreds.push_back(Elt: PredBB); |
575 | else |
576 | CleanPreds.push_back(Elt: PredBB); |
577 | } |
578 | |
579 | return !(CleanPreds.empty() || DirtyPreds.empty()); |
580 | } |
581 | |
582 | bool ShrinkWrapImpl::postShrinkWrapping(bool HasCandidate, MachineFunction &MF, |
583 | RegScavenger *RS) { |
584 | if (!EnablePostShrinkWrapOpt) |
585 | return false; |
586 | |
587 | MachineBasicBlock *InitSave = nullptr; |
588 | MachineBasicBlock *InitRestore = nullptr; |
589 | |
590 | if (HasCandidate) { |
591 | InitSave = Save; |
592 | InitRestore = Restore; |
593 | } else { |
594 | InitRestore = nullptr; |
595 | InitSave = &MF.front(); |
596 | for (MachineBasicBlock &MBB : MF) { |
597 | if (MBB.isEHFuncletEntry()) |
598 | return false; |
599 | if (MBB.isReturnBlock()) { |
600 | // Do not support multiple restore points. |
601 | if (InitRestore) |
602 | return false; |
603 | InitRestore = &MBB; |
604 | } |
605 | } |
606 | } |
607 | |
608 | if (!InitSave || !InitRestore || InitRestore == InitSave || |
609 | !MDT->dominates(A: InitSave, B: InitRestore) || |
610 | !MPDT->dominates(A: InitRestore, B: InitSave)) |
611 | return false; |
612 | |
613 | // Bail out of the optimization if any of the basic block is target of |
614 | // INLINEASM_BR instruction |
615 | for (MachineBasicBlock &MBB : MF) |
616 | if (MBB.isInlineAsmBrIndirectTarget()) |
617 | return false; |
618 | |
619 | DenseSet<const MachineBasicBlock *> DirtyBBs; |
620 | for (MachineBasicBlock &MBB : MF) { |
621 | if (MBB.isEHPad()) { |
622 | DirtyBBs.insert(V: &MBB); |
623 | continue; |
624 | } |
625 | for (const MachineInstr &MI : MBB) |
626 | if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) { |
627 | DirtyBBs.insert(V: &MBB); |
628 | break; |
629 | } |
630 | } |
631 | |
632 | // Find blocks reachable from the use or def of CSRs/FI. |
633 | DenseSet<const MachineBasicBlock *> ReachableByDirty; |
634 | collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty); |
635 | |
636 | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
637 | SmallVector<MachineBasicBlock *, 2> DirtyPreds; |
638 | SmallVector<MachineBasicBlock *, 2> CleanPreds; |
639 | if (!checkIfRestoreSplittable(CurRestore: InitRestore, ReachableByDirty, DirtyPreds, |
640 | CleanPreds, TII, RS)) |
641 | return false; |
642 | |
643 | // Trying to reach out to the new save point which dominates all dirty blocks. |
644 | MachineBasicBlock *NewSave = |
645 | FindIDom<>(Block&: **DirtyPreds.begin(), BBs: DirtyPreds, Dom&: *MDT, Strict: false); |
646 | |
647 | while (NewSave && (hasDirtyPred(ReachableByDirty, MBB: *NewSave) || |
648 | EntryFreq < MBFI->getBlockFreq(MBB: NewSave) || |
649 | /*Entry freq has been observed more than a loop block in |
650 | some cases*/ |
651 | MLI->getLoopFor(BB: NewSave))) |
652 | NewSave = FindIDom<>(Block&: **NewSave->pred_begin(), BBs: NewSave->predecessors(), Dom&: *MDT, |
653 | Strict: false); |
654 | |
655 | const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); |
656 | if (!NewSave || NewSave == InitSave || |
657 | isSaveReachableThroughClean(SavePoint: NewSave, CleanPreds) || |
658 | !TFI->canUseAsPrologue(MBB: *NewSave)) |
659 | return false; |
660 | |
661 | // Now we know that splitting a restore point can isolate the restore point |
662 | // from clean blocks and doing so can shrink the save point. |
663 | MachineBasicBlock *NewRestore = |
664 | tryToSplitRestore(MBB: InitRestore, DirtyPreds, TII); |
665 | |
666 | // Make sure if the new restore point is valid as an epilogue, depending on |
667 | // targets. |
668 | if (!TFI->canUseAsEpilogue(MBB: *NewRestore)) { |
669 | rollbackRestoreSplit(MF, NMBB: NewRestore, MBB: InitRestore, DirtyPreds, TII); |
670 | return false; |
671 | } |
672 | |
673 | Save = NewSave; |
674 | Restore = NewRestore; |
675 | |
676 | MDT->recalculate(Func&: MF); |
677 | MPDT->recalculate(Func&: MF); |
678 | |
679 | assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) && |
680 | "Incorrect save or restore point due to dominance relations" ); |
681 | assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) && |
682 | "Unexpected save or restore point in a loop" ); |
683 | assert((EntryFreq >= MBFI->getBlockFreq(Save) && |
684 | EntryFreq >= MBFI->getBlockFreq(Restore)) && |
685 | "Incorrect save or restore point based on block frequency" ); |
686 | return true; |
687 | } |
688 | |
689 | void ShrinkWrapImpl::updateSaveRestorePoints(MachineBasicBlock &MBB, |
690 | RegScavenger *RS) { |
691 | // Get rid of the easy cases first. |
692 | if (!Save) |
693 | Save = &MBB; |
694 | else |
695 | Save = MDT->findNearestCommonDominator(A: Save, B: &MBB); |
696 | assert(Save); |
697 | |
698 | if (!Restore) |
699 | Restore = &MBB; |
700 | else if (MPDT->getNode(BB: &MBB)) // If the block is not in the post dom tree, it |
701 | // means the block never returns. If that's the |
702 | // case, we don't want to call |
703 | // `findNearestCommonDominator`, which will |
704 | // return `Restore`. |
705 | Restore = MPDT->findNearestCommonDominator(A: Restore, B: &MBB); |
706 | else |
707 | Restore = nullptr; // Abort, we can't find a restore point in this case. |
708 | |
709 | // Make sure we would be able to insert the restore code before the |
710 | // terminator. |
711 | if (Restore == &MBB) { |
712 | for (const MachineInstr &Terminator : MBB.terminators()) { |
713 | if (!useOrDefCSROrFI(MI: Terminator, RS, /*StackAddressUsed=*/true)) |
714 | continue; |
715 | // One of the terminator needs to happen before the restore point. |
716 | if (MBB.succ_empty()) { |
717 | Restore = nullptr; // Abort, we can't find a restore point in this case. |
718 | break; |
719 | } |
720 | // Look for a restore point that post-dominates all the successors. |
721 | // The immediate post-dominator is what we are looking for. |
722 | Restore = FindIDom<>(Block&: *Restore, BBs: Restore->successors(), Dom&: *MPDT); |
723 | break; |
724 | } |
725 | } |
726 | |
727 | if (!Restore) { |
728 | LLVM_DEBUG( |
729 | dbgs() << "Restore point needs to be spanned on several blocks\n" ); |
730 | return; |
731 | } |
732 | |
733 | // Make sure Save and Restore are suitable for shrink-wrapping: |
734 | // 1. all path from Save needs to lead to Restore before exiting. |
735 | // 2. all path to Restore needs to go through Save from Entry. |
736 | // We achieve that by making sure that: |
737 | // A. Save dominates Restore. |
738 | // B. Restore post-dominates Save. |
739 | // C. Save and Restore are in the same loop. |
740 | bool SaveDominatesRestore = false; |
741 | bool RestorePostDominatesSave = false; |
742 | while (Restore && |
743 | (!(SaveDominatesRestore = MDT->dominates(A: Save, B: Restore)) || |
744 | !(RestorePostDominatesSave = MPDT->dominates(A: Restore, B: Save)) || |
745 | // Post-dominance is not enough in loops to ensure that all uses/defs |
746 | // are after the prologue and before the epilogue at runtime. |
747 | // E.g., |
748 | // while(1) { |
749 | // Save |
750 | // Restore |
751 | // if (...) |
752 | // break; |
753 | // use/def CSRs |
754 | // } |
755 | // All the uses/defs of CSRs are dominated by Save and post-dominated |
756 | // by Restore. However, the CSRs uses are still reachable after |
757 | // Restore and before Save are executed. |
758 | // |
759 | // For now, just push the restore/save points outside of loops. |
760 | // FIXME: Refine the criteria to still find interesting cases |
761 | // for loops. |
762 | MLI->getLoopFor(BB: Save) || MLI->getLoopFor(BB: Restore))) { |
763 | // Fix (A). |
764 | if (!SaveDominatesRestore) { |
765 | Save = MDT->findNearestCommonDominator(A: Save, B: Restore); |
766 | continue; |
767 | } |
768 | // Fix (B). |
769 | if (!RestorePostDominatesSave) |
770 | Restore = MPDT->findNearestCommonDominator(A: Restore, B: Save); |
771 | |
772 | // Fix (C). |
773 | if (Restore && (MLI->getLoopFor(BB: Save) || MLI->getLoopFor(BB: Restore))) { |
774 | if (MLI->getLoopDepth(BB: Save) > MLI->getLoopDepth(BB: Restore)) { |
775 | // Push Save outside of this loop if immediate dominator is different |
776 | // from save block. If immediate dominator is not different, bail out. |
777 | Save = FindIDom<>(Block&: *Save, BBs: Save->predecessors(), Dom&: *MDT); |
778 | if (!Save) |
779 | break; |
780 | } else { |
781 | // If the loop does not exit, there is no point in looking |
782 | // for a post-dominator outside the loop. |
783 | SmallVector<MachineBasicBlock*, 4> ExitBlocks; |
784 | MLI->getLoopFor(BB: Restore)->getExitingBlocks(ExitingBlocks&: ExitBlocks); |
785 | // Push Restore outside of this loop. |
786 | // Look for the immediate post-dominator of the loop exits. |
787 | MachineBasicBlock *IPdom = Restore; |
788 | for (MachineBasicBlock *LoopExitBB: ExitBlocks) { |
789 | IPdom = FindIDom<>(Block&: *IPdom, BBs: LoopExitBB->successors(), Dom&: *MPDT); |
790 | if (!IPdom) |
791 | break; |
792 | } |
793 | // If the immediate post-dominator is not in a less nested loop, |
794 | // then we are stuck in a program with an infinite loop. |
795 | // In that case, we will not find a safe point, hence, bail out. |
796 | if (IPdom && MLI->getLoopDepth(BB: IPdom) < MLI->getLoopDepth(BB: Restore)) |
797 | Restore = IPdom; |
798 | else { |
799 | Restore = nullptr; |
800 | break; |
801 | } |
802 | } |
803 | } |
804 | } |
805 | } |
806 | |
807 | static bool (MachineOptimizationRemarkEmitter *ORE, |
808 | StringRef , StringRef , |
809 | const DiagnosticLocation &Loc, |
810 | const MachineBasicBlock *MBB) { |
811 | ORE->emit(RemarkBuilder: [&]() { |
812 | return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) |
813 | << RemarkMessage; |
814 | }); |
815 | |
816 | LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); |
817 | return false; |
818 | } |
819 | |
820 | bool ShrinkWrapImpl::performShrinkWrapping( |
821 | const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT, |
822 | RegScavenger *RS) { |
823 | for (MachineBasicBlock *MBB : RPOT) { |
824 | LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n'); |
825 | |
826 | if (MBB->isEHFuncletEntry()) |
827 | return giveUpWithRemarks(ORE, RemarkName: "UnsupportedEHFunclets" , |
828 | RemarkMessage: "EH Funclets are not supported yet." , |
829 | Loc: MBB->front().getDebugLoc(), MBB); |
830 | |
831 | if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) { |
832 | // Push the prologue and epilogue outside of the region that may throw (or |
833 | // jump out via inlineasm_br), by making sure that all the landing pads |
834 | // are at least at the boundary of the save and restore points. The |
835 | // problem is that a basic block can jump out from the middle in these |
836 | // cases, which we do not handle. |
837 | updateSaveRestorePoints(MBB&: *MBB, RS); |
838 | if (!ArePointsInteresting()) { |
839 | LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n" ); |
840 | return false; |
841 | } |
842 | continue; |
843 | } |
844 | |
845 | bool StackAddressUsed = false; |
846 | // Check if we found any stack accesses in the predecessors. We are not |
847 | // doing a full dataflow analysis here to keep things simple but just |
848 | // rely on a reverse portorder traversal (RPOT) to guarantee predecessors |
849 | // are already processed except for loops (and accept the conservative |
850 | // result for loops). |
851 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
852 | if (StackAddressUsedBlockInfo.test(Idx: Pred->getNumber())) { |
853 | StackAddressUsed = true; |
854 | break; |
855 | } |
856 | } |
857 | |
858 | for (const MachineInstr &MI : *MBB) { |
859 | if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) { |
860 | // Save (resp. restore) point must dominate (resp. post dominate) |
861 | // MI. Look for the proper basic block for those. |
862 | updateSaveRestorePoints(MBB&: *MBB, RS); |
863 | // If we are at a point where we cannot improve the placement of |
864 | // save/restore instructions, just give up. |
865 | if (!ArePointsInteresting()) { |
866 | LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n" ); |
867 | return false; |
868 | } |
869 | // No need to look for other instructions, this basic block |
870 | // will already be part of the handled region. |
871 | StackAddressUsed = true; |
872 | break; |
873 | } |
874 | } |
875 | StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed; |
876 | } |
877 | if (!ArePointsInteresting()) { |
878 | // If the points are not interesting at this point, then they must be null |
879 | // because it means we did not encounter any frame/CSR related code. |
880 | // Otherwise, we would have returned from the previous loop. |
881 | assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!" ); |
882 | LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n" ); |
883 | return false; |
884 | } |
885 | |
886 | LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " |
887 | << EntryFreq.getFrequency() << '\n'); |
888 | |
889 | const TargetFrameLowering *TFI = |
890 | MachineFunc->getSubtarget().getFrameLowering(); |
891 | do { |
892 | LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " |
893 | << printMBBReference(*Save) << ' ' |
894 | << printBlockFreq(*MBFI, *Save) |
895 | << "\nRestore: " << printMBBReference(*Restore) << ' ' |
896 | << printBlockFreq(*MBFI, *Restore) << '\n'); |
897 | |
898 | bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; |
899 | if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(MBB: Save)) && |
900 | EntryFreq >= MBFI->getBlockFreq(MBB: Restore)) && |
901 | ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(MBB: *Save)) && |
902 | TFI->canUseAsEpilogue(MBB: *Restore))) |
903 | break; |
904 | LLVM_DEBUG( |
905 | dbgs() << "New points are too expensive or invalid for the target\n" ); |
906 | MachineBasicBlock *NewBB; |
907 | if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { |
908 | Save = FindIDom<>(Block&: *Save, BBs: Save->predecessors(), Dom&: *MDT); |
909 | if (!Save) |
910 | break; |
911 | NewBB = Save; |
912 | } else { |
913 | // Restore is expensive. |
914 | Restore = FindIDom<>(Block&: *Restore, BBs: Restore->successors(), Dom&: *MPDT); |
915 | if (!Restore) |
916 | break; |
917 | NewBB = Restore; |
918 | } |
919 | updateSaveRestorePoints(MBB&: *NewBB, RS); |
920 | } while (Save && Restore); |
921 | |
922 | if (!ArePointsInteresting()) { |
923 | ++NumCandidatesDropped; |
924 | return false; |
925 | } |
926 | return true; |
927 | } |
928 | |
929 | bool ShrinkWrapImpl::run(MachineFunction &MF) { |
930 | LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); |
931 | |
932 | init(MF); |
933 | |
934 | ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); |
935 | if (containsIrreducibleCFG<MachineBasicBlock *>(RPOTraversal&: RPOT, LI: *MLI)) { |
936 | // If MF is irreducible, a block may be in a loop without |
937 | // MachineLoopInfo reporting it. I.e., we may use the |
938 | // post-dominance property in loops, which lead to incorrect |
939 | // results. Moreover, we may miss that the prologue and |
940 | // epilogue are not in the same loop, leading to unbalanced |
941 | // construction/deconstruction of the stack frame. |
942 | return giveUpWithRemarks(ORE, RemarkName: "UnsupportedIrreducibleCFG" , |
943 | RemarkMessage: "Irreducible CFGs are not supported yet." , |
944 | Loc: MF.getFunction().getSubprogram(), MBB: &MF.front()); |
945 | } |
946 | |
947 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
948 | std::unique_ptr<RegScavenger> RS( |
949 | TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); |
950 | |
951 | bool Changed = false; |
952 | |
953 | // Initially, conservatively assume that stack addresses can be used in each |
954 | // basic block and change the state only for those basic blocks for which we |
955 | // were able to prove the opposite. |
956 | StackAddressUsedBlockInfo.resize(N: MF.getNumBlockIDs(), t: true); |
957 | bool HasCandidate = performShrinkWrapping(RPOT, RS: RS.get()); |
958 | StackAddressUsedBlockInfo.clear(); |
959 | Changed = postShrinkWrapping(HasCandidate, MF, RS: RS.get()); |
960 | if (!HasCandidate && !Changed) |
961 | return false; |
962 | if (!ArePointsInteresting()) |
963 | return Changed; |
964 | |
965 | LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " |
966 | << printMBBReference(*Save) << ' ' |
967 | << "\nRestore: " << printMBBReference(*Restore) << '\n'); |
968 | |
969 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
970 | MFI.setSavePoint(Save); |
971 | MFI.setRestorePoint(Restore); |
972 | ++NumCandidates; |
973 | return Changed; |
974 | } |
975 | |
976 | bool ShrinkWrapLegacy::runOnMachineFunction(MachineFunction &MF) { |
977 | if (skipFunction(F: MF.getFunction()) || MF.empty() || |
978 | !ShrinkWrapImpl::isShrinkWrapEnabled(MF)) |
979 | return false; |
980 | |
981 | MachineDominatorTree *MDT = |
982 | &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
983 | MachinePostDominatorTree *MPDT = |
984 | &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); |
985 | MachineBlockFrequencyInfo *MBFI = |
986 | &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
987 | MachineLoopInfo *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
988 | MachineOptimizationRemarkEmitter *ORE = |
989 | &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); |
990 | |
991 | return ShrinkWrapImpl(MDT, MPDT, MBFI, MLI, ORE).run(MF); |
992 | } |
993 | |
994 | PreservedAnalyses ShrinkWrapPass::run(MachineFunction &MF, |
995 | MachineFunctionAnalysisManager &MFAM) { |
996 | MFPropsModifier _(*this, MF); |
997 | if (MF.empty() || !ShrinkWrapImpl::isShrinkWrapEnabled(MF)) |
998 | return PreservedAnalyses::all(); |
999 | |
1000 | MachineDominatorTree &MDT = MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF); |
1001 | MachinePostDominatorTree &MPDT = |
1002 | MFAM.getResult<MachinePostDominatorTreeAnalysis>(IR&: MF); |
1003 | MachineBlockFrequencyInfo &MBFI = |
1004 | MFAM.getResult<MachineBlockFrequencyAnalysis>(IR&: MF); |
1005 | MachineLoopInfo &MLI = MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
1006 | MachineOptimizationRemarkEmitter &ORE = |
1007 | MFAM.getResult<MachineOptimizationRemarkEmitterAnalysis>(IR&: MF); |
1008 | |
1009 | ShrinkWrapImpl(&MDT, &MPDT, &MBFI, &MLI, &ORE).run(MF); |
1010 | return PreservedAnalyses::all(); |
1011 | } |
1012 | |
1013 | bool ShrinkWrapImpl::isShrinkWrapEnabled(const MachineFunction &MF) { |
1014 | const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); |
1015 | |
1016 | switch (EnableShrinkWrapOpt) { |
1017 | case cl::BOU_UNSET: |
1018 | return TFI->enableShrinkWrapping(MF) && |
1019 | // Windows with CFI has some limitations that make it impossible |
1020 | // to use shrink-wrapping. |
1021 | !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && |
1022 | // Sanitizers look at the value of the stack at the location |
1023 | // of the crash. Since a crash can happen anywhere, the |
1024 | // frame must be lowered before anything else happen for the |
1025 | // sanitizers to be able to get a correct stack frame. |
1026 | !(MF.getFunction().hasFnAttribute(Kind: Attribute::SanitizeAddress) || |
1027 | MF.getFunction().hasFnAttribute(Kind: Attribute::SanitizeThread) || |
1028 | MF.getFunction().hasFnAttribute(Kind: Attribute::SanitizeMemory) || |
1029 | MF.getFunction().hasFnAttribute(Kind: Attribute::SanitizeType) || |
1030 | MF.getFunction().hasFnAttribute(Kind: Attribute::SanitizeHWAddress)); |
1031 | // If EnableShrinkWrap is set, it takes precedence on whatever the |
1032 | // target sets. The rational is that we assume we want to test |
1033 | // something related to shrink-wrapping. |
1034 | case cl::BOU_TRUE: |
1035 | return true; |
1036 | case cl::BOU_FALSE: |
1037 | return false; |
1038 | } |
1039 | llvm_unreachable("Invalid shrink-wrapping state" ); |
1040 | } |
1041 | |