| 1 | //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a wrapper around MCSchedModel that allows the interface |
| 10 | // to benefit from information currently only available in TargetInstrInfo. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/CodeGen/TargetSchedule.h" |
| 15 | #include "llvm/CodeGen/MachineFunction.h" |
| 16 | #include "llvm/CodeGen/MachineInstr.h" |
| 17 | #include "llvm/CodeGen/MachineOperand.h" |
| 18 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 19 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 20 | #include "llvm/MC/MCInstrDesc.h" |
| 21 | #include "llvm/MC/MCInstrItineraries.h" |
| 22 | #include "llvm/MC/MCSchedule.h" |
| 23 | #include "llvm/Support/CommandLine.h" |
| 24 | #include "llvm/Support/ErrorHandling.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
| 26 | #include <algorithm> |
| 27 | #include <cassert> |
| 28 | #include <numeric> |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | static cl::opt<bool> ForceEnableIntervals( |
| 33 | "sched-model-force-enable-intervals" , cl::Hidden, cl::init(Val: false), |
| 34 | cl::desc("Force the use of resource intervals in the schedule model" )); |
| 35 | |
| 36 | bool TargetSchedModel::hasInstrSchedModel() const { |
| 37 | return EnableSchedModel && SchedModel.hasInstrSchedModel(); |
| 38 | } |
| 39 | |
| 40 | bool TargetSchedModel::hasInstrItineraries() const { |
| 41 | return EnableSchedItins && !InstrItins.isEmpty(); |
| 42 | } |
| 43 | |
| 44 | void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo, |
| 45 | bool EnableSModel, bool EnableSItins) { |
| 46 | STI = TSInfo; |
| 47 | SchedModel = TSInfo->getSchedModel(); |
| 48 | TII = TSInfo->getInstrInfo(); |
| 49 | STI->initInstrItins(InstrItins); |
| 50 | |
| 51 | EnableSchedModel = EnableSModel; |
| 52 | EnableSchedItins = EnableSItins; |
| 53 | |
| 54 | unsigned NumRes = SchedModel.getNumProcResourceKinds(); |
| 55 | ResourceFactors.resize(N: NumRes); |
| 56 | ResourceLCM = SchedModel.IssueWidth; |
| 57 | for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
| 58 | unsigned NumUnits = SchedModel.getProcResource(ProcResourceIdx: Idx)->NumUnits; |
| 59 | if (NumUnits > 0) |
| 60 | ResourceLCM = std::lcm(m: ResourceLCM, n: NumUnits); |
| 61 | } |
| 62 | MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; |
| 63 | for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
| 64 | unsigned NumUnits = SchedModel.getProcResource(ProcResourceIdx: Idx)->NumUnits; |
| 65 | ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | /// Returns true only if instruction is specified as single issue. |
| 70 | bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, |
| 71 | const MCSchedClassDesc *SC) const { |
| 72 | if (hasInstrSchedModel()) { |
| 73 | if (!SC) |
| 74 | SC = resolveSchedClass(MI); |
| 75 | if (SC->isValid()) |
| 76 | return SC->BeginGroup; |
| 77 | } |
| 78 | return false; |
| 79 | } |
| 80 | |
| 81 | bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, |
| 82 | const MCSchedClassDesc *SC) const { |
| 83 | if (hasInstrSchedModel()) { |
| 84 | if (!SC) |
| 85 | SC = resolveSchedClass(MI); |
| 86 | if (SC->isValid()) |
| 87 | return SC->EndGroup; |
| 88 | } |
| 89 | return false; |
| 90 | } |
| 91 | |
| 92 | unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, |
| 93 | const MCSchedClassDesc *SC) const { |
| 94 | if (hasInstrItineraries()) { |
| 95 | int UOps = InstrItins.getNumMicroOps(ItinClassIndx: MI->getDesc().getSchedClass()); |
| 96 | return (UOps >= 0) ? UOps : TII->getNumMicroOps(ItinData: &InstrItins, MI: *MI); |
| 97 | } |
| 98 | if (hasInstrSchedModel()) { |
| 99 | if (!SC) |
| 100 | SC = resolveSchedClass(MI); |
| 101 | if (SC->isValid()) |
| 102 | return SC->NumMicroOps; |
| 103 | } |
| 104 | return MI->isTransient() ? 0 : 1; |
| 105 | } |
| 106 | |
| 107 | // The machine model may explicitly specify an invalid latency, which |
| 108 | // effectively means infinite latency. Since users of the TargetSchedule API |
| 109 | // don't know how to handle this, we convert it to a very large latency that is |
| 110 | // easy to distinguish when debugging the DAG but won't induce overflow. |
| 111 | static unsigned capLatency(int Cycles) { |
| 112 | return Cycles >= 0 ? Cycles : 1000; |
| 113 | } |
| 114 | |
| 115 | /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require |
| 116 | /// evaluation of predicates that depend on instruction operands or flags. |
| 117 | const MCSchedClassDesc *TargetSchedModel:: |
| 118 | resolveSchedClass(const MachineInstr *MI) const { |
| 119 | // Get the definition's scheduling class descriptor from this machine model. |
| 120 | unsigned SchedClass = MI->getDesc().getSchedClass(); |
| 121 | const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClassIdx: SchedClass); |
| 122 | if (!SCDesc->isValid()) |
| 123 | return SCDesc; |
| 124 | |
| 125 | #ifndef NDEBUG |
| 126 | unsigned NIter = 0; |
| 127 | #endif |
| 128 | while (SCDesc->isVariant()) { |
| 129 | assert(++NIter < 6 && "Variants are nested deeper than the magic number" ); |
| 130 | |
| 131 | SchedClass = STI->resolveSchedClass(SchedClass, MI, SchedModel: this); |
| 132 | SCDesc = SchedModel.getSchedClassDesc(SchedClassIdx: SchedClass); |
| 133 | } |
| 134 | return SCDesc; |
| 135 | } |
| 136 | |
| 137 | /// Find the def index of this operand. This index maps to the machine model and |
| 138 | /// is independent of use operands. Def operands may be reordered with uses or |
| 139 | /// merged with uses without affecting the def index (e.g. before/after |
| 140 | /// regalloc). However, an instruction's def operands must never be reordered |
| 141 | /// with respect to each other. |
| 142 | static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { |
| 143 | unsigned DefIdx = 0; |
| 144 | for (unsigned i = 0; i != DefOperIdx; ++i) { |
| 145 | const MachineOperand &MO = MI->getOperand(i); |
| 146 | if (MO.isReg() && MO.isDef()) |
| 147 | ++DefIdx; |
| 148 | } |
| 149 | return DefIdx; |
| 150 | } |
| 151 | |
| 152 | /// Find the use index of this operand. This is independent of the instruction's |
| 153 | /// def operands. |
| 154 | /// |
| 155 | /// Note that uses are not determined by the operand's isUse property, which |
| 156 | /// is simply the inverse of isDef. Here we consider any readsReg operand to be |
| 157 | /// a "use". The machine model allows an operand to be both a Def and Use. |
| 158 | static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { |
| 159 | unsigned UseIdx = 0; |
| 160 | for (unsigned i = 0; i != UseOperIdx; ++i) { |
| 161 | const MachineOperand &MO = MI->getOperand(i); |
| 162 | if (MO.isReg() && MO.readsReg() && !MO.isDef()) |
| 163 | ++UseIdx; |
| 164 | } |
| 165 | return UseIdx; |
| 166 | } |
| 167 | |
| 168 | // Top-level API for clients that know the operand indices. This doesn't need to |
| 169 | // return std::optional<unsigned>, as it always returns a valid latency. |
| 170 | unsigned TargetSchedModel::computeOperandLatency( |
| 171 | const MachineInstr *DefMI, unsigned DefOperIdx, |
| 172 | const MachineInstr *UseMI, unsigned UseOperIdx) const { |
| 173 | |
| 174 | const unsigned InstrLatency = computeInstrLatency(MI: DefMI); |
| 175 | const unsigned DefaultDefLatency = TII->defaultDefLatency(SchedModel, DefMI: *DefMI); |
| 176 | |
| 177 | if (!hasInstrSchedModel() && !hasInstrItineraries()) |
| 178 | return DefaultDefLatency; |
| 179 | |
| 180 | if (hasInstrItineraries()) { |
| 181 | std::optional<unsigned> OperLatency; |
| 182 | if (UseMI) { |
| 183 | OperLatency = TII->getOperandLatency(ItinData: &InstrItins, DefMI: *DefMI, DefIdx: DefOperIdx, |
| 184 | UseMI: *UseMI, UseIdx: UseOperIdx); |
| 185 | } |
| 186 | else { |
| 187 | unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| 188 | OperLatency = InstrItins.getOperandCycle(ItinClassIndx: DefClass, OperandIdx: DefOperIdx); |
| 189 | } |
| 190 | |
| 191 | // Expected latency is the max of InstrLatency and DefaultDefLatency, if we |
| 192 | // didn't find an operand latency. |
| 193 | return OperLatency ? *OperLatency |
| 194 | : std::max(a: InstrLatency, b: DefaultDefLatency); |
| 195 | } |
| 196 | |
| 197 | // hasInstrSchedModel() |
| 198 | const MCSchedClassDesc *SCDesc = resolveSchedClass(MI: DefMI); |
| 199 | unsigned DefIdx = findDefIdx(MI: DefMI, DefOperIdx); |
| 200 | if (DefIdx < SCDesc->NumWriteLatencyEntries) { |
| 201 | // Lookup the definition's write latency in SubtargetInfo. |
| 202 | const MCWriteLatencyEntry *WLEntry = |
| 203 | STI->getWriteLatencyEntry(SC: SCDesc, DefIdx); |
| 204 | unsigned WriteID = WLEntry->WriteResourceID; |
| 205 | unsigned Latency = capLatency(Cycles: WLEntry->Cycles); |
| 206 | if (!UseMI) |
| 207 | return Latency; |
| 208 | |
| 209 | // Lookup the use's latency adjustment in SubtargetInfo. |
| 210 | const MCSchedClassDesc *UseDesc = resolveSchedClass(MI: UseMI); |
| 211 | if (UseDesc->NumReadAdvanceEntries == 0) |
| 212 | return Latency; |
| 213 | unsigned UseIdx = findUseIdx(MI: UseMI, UseOperIdx); |
| 214 | int Advance = STI->getReadAdvanceCycles(SC: UseDesc, UseIdx, WriteResID: WriteID); |
| 215 | if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap |
| 216 | return 0; |
| 217 | return Latency - Advance; |
| 218 | } |
| 219 | // If DefIdx does not exist in the model (e.g. implicit defs), then return |
| 220 | // unit latency (defaultDefLatency may be too conservative). |
| 221 | #ifndef NDEBUG |
| 222 | if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() && |
| 223 | !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() && |
| 224 | SchedModel.isComplete()) { |
| 225 | errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " |
| 226 | << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)" ; |
| 227 | llvm_unreachable("incomplete machine model" ); |
| 228 | } |
| 229 | #endif |
| 230 | // FIXME: Automatically giving all implicit defs defaultDefLatency is |
| 231 | // undesirable. We should only do it for defs that are known to the MC |
| 232 | // desc like flags. Truly implicit defs should get 1 cycle latency. |
| 233 | return DefMI->isTransient() ? 0 : DefaultDefLatency; |
| 234 | } |
| 235 | |
| 236 | unsigned |
| 237 | TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { |
| 238 | return capLatency(Cycles: MCSchedModel::computeInstrLatency(STI: *STI, SCDesc)); |
| 239 | } |
| 240 | |
| 241 | unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { |
| 242 | assert(hasInstrSchedModel() && "Only call this function with a SchedModel" ); |
| 243 | unsigned SCIdx = TII->get(Opcode).getSchedClass(); |
| 244 | return capLatency(Cycles: SchedModel.computeInstrLatency(STI: *STI, SClass: SCIdx)); |
| 245 | } |
| 246 | |
| 247 | unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { |
| 248 | if (hasInstrSchedModel()) |
| 249 | return capLatency(Cycles: SchedModel.computeInstrLatency(STI: *STI, MCII: *TII, Inst)); |
| 250 | return computeInstrLatency(Opcode: Inst.getOpcode()); |
| 251 | } |
| 252 | |
| 253 | unsigned |
| 254 | TargetSchedModel::computeInstrLatency(const MachineInstr *MI, |
| 255 | bool UseDefaultDefLatency) const { |
| 256 | // For the itinerary model, fall back to the old subtarget hook. |
| 257 | // Allow subtargets to compute Bundle latencies outside the machine model. |
| 258 | if (hasInstrItineraries() || MI->isBundle() || |
| 259 | (!hasInstrSchedModel() && !UseDefaultDefLatency)) |
| 260 | return TII->getInstrLatency(ItinData: &InstrItins, MI: *MI); |
| 261 | |
| 262 | if (hasInstrSchedModel()) { |
| 263 | const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); |
| 264 | if (SCDesc->isValid()) |
| 265 | return computeInstrLatency(SCDesc: *SCDesc); |
| 266 | } |
| 267 | return TII->defaultDefLatency(SchedModel, DefMI: *MI); |
| 268 | } |
| 269 | |
| 270 | unsigned TargetSchedModel:: |
| 271 | computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
| 272 | const MachineInstr *DepMI) const { |
| 273 | if (!SchedModel.isOutOfOrder()) |
| 274 | return 1; |
| 275 | |
| 276 | // Out-of-order processor can dispatch WAW dependencies in the same cycle. |
| 277 | |
| 278 | // Treat predication as a data dependency for out-of-order cpus. In-order |
| 279 | // cpus do not need to treat predicated writes specially. |
| 280 | // |
| 281 | // TODO: The following hack exists because predication passes do not |
| 282 | // correctly append imp-use operands, and readsReg() strangely returns false |
| 283 | // for predicated defs. |
| 284 | Register Reg = DefMI->getOperand(i: DefOperIdx).getReg(); |
| 285 | const MachineFunction &MF = *DefMI->getMF(); |
| 286 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 287 | if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(MI: *DepMI)) |
| 288 | return computeInstrLatency(MI: DefMI); |
| 289 | |
| 290 | // If we have a per operand scheduling model, check if this def is writing |
| 291 | // an unbuffered resource. If so, it treated like an in-order cpu. |
| 292 | if (hasInstrSchedModel()) { |
| 293 | const MCSchedClassDesc *SCDesc = resolveSchedClass(MI: DefMI); |
| 294 | if (SCDesc->isValid()) { |
| 295 | for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SC: SCDesc), |
| 296 | *PRE = STI->getWriteProcResEnd(SC: SCDesc); PRI != PRE; ++PRI) { |
| 297 | if (!SchedModel.getProcResource(ProcResourceIdx: PRI->ProcResourceIdx)->BufferSize) |
| 298 | return 1; |
| 299 | } |
| 300 | } |
| 301 | } |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | double |
| 306 | TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { |
| 307 | if (hasInstrItineraries()) { |
| 308 | unsigned SchedClass = MI->getDesc().getSchedClass(); |
| 309 | return MCSchedModel::getReciprocalThroughput(SchedClass, |
| 310 | IID: *getInstrItineraries()); |
| 311 | } |
| 312 | |
| 313 | if (hasInstrSchedModel()) |
| 314 | return MCSchedModel::getReciprocalThroughput(STI: *STI, SCDesc: *resolveSchedClass(MI)); |
| 315 | |
| 316 | return 0.0; |
| 317 | } |
| 318 | |
| 319 | double |
| 320 | TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { |
| 321 | unsigned SchedClass = TII->get(Opcode).getSchedClass(); |
| 322 | if (hasInstrItineraries()) |
| 323 | return MCSchedModel::getReciprocalThroughput(SchedClass, |
| 324 | IID: *getInstrItineraries()); |
| 325 | if (hasInstrSchedModel()) { |
| 326 | const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClassIdx: SchedClass); |
| 327 | if (SCDesc.isValid() && !SCDesc.isVariant()) |
| 328 | return MCSchedModel::getReciprocalThroughput(STI: *STI, SCDesc); |
| 329 | } |
| 330 | |
| 331 | return 0.0; |
| 332 | } |
| 333 | |
| 334 | double |
| 335 | TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { |
| 336 | if (hasInstrSchedModel()) |
| 337 | return SchedModel.getReciprocalThroughput(STI: *STI, MCII: *TII, Inst: MI); |
| 338 | return computeReciprocalThroughput(Opcode: MI.getOpcode()); |
| 339 | } |
| 340 | |
| 341 | bool TargetSchedModel::enableIntervals() const { |
| 342 | if (ForceEnableIntervals) |
| 343 | return true; |
| 344 | |
| 345 | return SchedModel.EnableIntervals; |
| 346 | } |
| 347 | |