| 1 | //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of the MC-JIT runtime dynamic linker. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/ExecutionEngine/RuntimeDyld.h" |
| 14 | #include "RuntimeDyldCOFF.h" |
| 15 | #include "RuntimeDyldELF.h" |
| 16 | #include "RuntimeDyldImpl.h" |
| 17 | #include "RuntimeDyldMachO.h" |
| 18 | #include "llvm/Object/COFF.h" |
| 19 | #include "llvm/Object/ELFObjectFile.h" |
| 20 | #include "llvm/Support/Alignment.h" |
| 21 | #include "llvm/Support/MSVCErrorWorkarounds.h" |
| 22 | #include "llvm/Support/MathExtras.h" |
| 23 | #include <mutex> |
| 24 | |
| 25 | #include <future> |
| 26 | |
| 27 | using namespace llvm; |
| 28 | using namespace llvm::object; |
| 29 | |
| 30 | #define DEBUG_TYPE "dyld" |
| 31 | |
| 32 | namespace { |
| 33 | |
| 34 | enum RuntimeDyldErrorCode { |
| 35 | GenericRTDyldError = 1 |
| 36 | }; |
| 37 | |
| 38 | // FIXME: This class is only here to support the transition to llvm::Error. It |
| 39 | // will be removed once this transition is complete. Clients should prefer to |
| 40 | // deal with the Error value directly, rather than converting to error_code. |
| 41 | class RuntimeDyldErrorCategory : public std::error_category { |
| 42 | public: |
| 43 | const char *name() const noexcept override { return "runtimedyld" ; } |
| 44 | |
| 45 | std::string message(int Condition) const override { |
| 46 | switch (static_cast<RuntimeDyldErrorCode>(Condition)) { |
| 47 | case GenericRTDyldError: return "Generic RuntimeDyld error" ; |
| 48 | } |
| 49 | llvm_unreachable("Unrecognized RuntimeDyldErrorCode" ); |
| 50 | } |
| 51 | }; |
| 52 | |
| 53 | } |
| 54 | |
| 55 | char RuntimeDyldError::ID = 0; |
| 56 | |
| 57 | void RuntimeDyldError::log(raw_ostream &OS) const { |
| 58 | OS << ErrMsg << "\n" ; |
| 59 | } |
| 60 | |
| 61 | std::error_code RuntimeDyldError::convertToErrorCode() const { |
| 62 | static RuntimeDyldErrorCategory RTDyldErrorCategory; |
| 63 | return std::error_code(GenericRTDyldError, RTDyldErrorCategory); |
| 64 | } |
| 65 | |
| 66 | // Empty out-of-line virtual destructor as the key function. |
| 67 | RuntimeDyldImpl::~RuntimeDyldImpl() = default; |
| 68 | |
| 69 | // Pin LoadedObjectInfo's vtables to this file. |
| 70 | void RuntimeDyld::LoadedObjectInfo::anchor() {} |
| 71 | |
| 72 | namespace llvm { |
| 73 | |
| 74 | void RuntimeDyldImpl::registerEHFrames() {} |
| 75 | |
| 76 | void RuntimeDyldImpl::deregisterEHFrames() { |
| 77 | MemMgr.deregisterEHFrames(); |
| 78 | } |
| 79 | |
| 80 | #ifndef NDEBUG |
| 81 | static void dumpSectionMemory(const SectionEntry &S, StringRef State) { |
| 82 | dbgs() << "----- Contents of section " << S.getName() << " " << State |
| 83 | << " -----" ; |
| 84 | |
| 85 | if (S.getAddress() == nullptr) { |
| 86 | dbgs() << "\n <section not emitted>\n" ; |
| 87 | return; |
| 88 | } |
| 89 | |
| 90 | const unsigned ColsPerRow = 16; |
| 91 | |
| 92 | uint8_t *DataAddr = S.getAddress(); |
| 93 | uint64_t LoadAddr = S.getLoadAddress(); |
| 94 | |
| 95 | unsigned StartPadding = LoadAddr & (ColsPerRow - 1); |
| 96 | unsigned BytesRemaining = S.getSize(); |
| 97 | |
| 98 | if (StartPadding) { |
| 99 | dbgs() << "\n" << format("0x%016" PRIx64, |
| 100 | LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":" ; |
| 101 | while (StartPadding--) |
| 102 | dbgs() << " " ; |
| 103 | } |
| 104 | |
| 105 | while (BytesRemaining > 0) { |
| 106 | if ((LoadAddr & (ColsPerRow - 1)) == 0) |
| 107 | dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":" ; |
| 108 | |
| 109 | dbgs() << " " << format("%02x" , *DataAddr); |
| 110 | |
| 111 | ++DataAddr; |
| 112 | ++LoadAddr; |
| 113 | --BytesRemaining; |
| 114 | } |
| 115 | |
| 116 | dbgs() << "\n" ; |
| 117 | } |
| 118 | #endif |
| 119 | |
| 120 | // Resolve the relocations for all symbols we currently know about. |
| 121 | void RuntimeDyldImpl::resolveRelocations() { |
| 122 | std::lock_guard<sys::Mutex> locked(lock); |
| 123 | |
| 124 | // Print out the sections prior to relocation. |
| 125 | LLVM_DEBUG({ |
| 126 | for (SectionEntry &S : Sections) |
| 127 | dumpSectionMemory(S, "before relocations" ); |
| 128 | }); |
| 129 | |
| 130 | // First, resolve relocations associated with external symbols. |
| 131 | if (auto Err = resolveExternalSymbols()) { |
| 132 | HasError = true; |
| 133 | ErrorStr = toString(E: std::move(Err)); |
| 134 | } |
| 135 | |
| 136 | resolveLocalRelocations(); |
| 137 | |
| 138 | // Print out sections after relocation. |
| 139 | LLVM_DEBUG({ |
| 140 | for (SectionEntry &S : Sections) |
| 141 | dumpSectionMemory(S, "after relocations" ); |
| 142 | }); |
| 143 | } |
| 144 | |
| 145 | void RuntimeDyldImpl::resolveLocalRelocations() { |
| 146 | // Iterate over all outstanding relocations |
| 147 | for (const auto &Rel : Relocations) { |
| 148 | // The Section here (Sections[i]) refers to the section in which the |
| 149 | // symbol for the relocation is located. The SectionID in the relocation |
| 150 | // entry provides the section to which the relocation will be applied. |
| 151 | unsigned Idx = Rel.first; |
| 152 | uint64_t Addr = getSectionLoadAddress(SectionID: Idx); |
| 153 | LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" |
| 154 | << format("%p" , (uintptr_t)Addr) << "\n" ); |
| 155 | resolveRelocationList(Relocs: Rel.second, Value: Addr); |
| 156 | } |
| 157 | Relocations.clear(); |
| 158 | } |
| 159 | |
| 160 | void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, |
| 161 | uint64_t TargetAddress) { |
| 162 | std::lock_guard<sys::Mutex> locked(lock); |
| 163 | for (unsigned i = 0, e = Sections.size(); i != e; ++i) { |
| 164 | if (Sections[i].getAddress() == LocalAddress) { |
| 165 | reassignSectionAddress(SectionID: i, Addr: TargetAddress); |
| 166 | return; |
| 167 | } |
| 168 | } |
| 169 | llvm_unreachable("Attempting to remap address of unknown section!" ); |
| 170 | } |
| 171 | |
| 172 | static Error getOffset(const SymbolRef &Sym, SectionRef Sec, |
| 173 | uint64_t &Result) { |
| 174 | Expected<uint64_t> AddressOrErr = Sym.getAddress(); |
| 175 | if (!AddressOrErr) |
| 176 | return AddressOrErr.takeError(); |
| 177 | Result = *AddressOrErr - Sec.getAddress(); |
| 178 | return Error::success(); |
| 179 | } |
| 180 | |
| 181 | Expected<RuntimeDyldImpl::ObjSectionToIDMap> |
| 182 | RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { |
| 183 | std::lock_guard<sys::Mutex> locked(lock); |
| 184 | |
| 185 | // Save information about our target |
| 186 | Arch = (Triple::ArchType)Obj.getArch(); |
| 187 | IsTargetLittleEndian = Obj.isLittleEndian(); |
| 188 | setMipsABI(Obj); |
| 189 | |
| 190 | // Compute the memory size required to load all sections to be loaded |
| 191 | // and pass this information to the memory manager |
| 192 | if (MemMgr.needsToReserveAllocationSpace()) { |
| 193 | uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; |
| 194 | Align CodeAlign, RODataAlign, RWDataAlign; |
| 195 | if (auto Err = computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize, |
| 196 | RODataAlign, RWDataSize, RWDataAlign)) |
| 197 | return std::move(Err); |
| 198 | MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, |
| 199 | RWDataSize, RWDataAlign); |
| 200 | } |
| 201 | |
| 202 | // Used sections from the object file |
| 203 | ObjSectionToIDMap LocalSections; |
| 204 | |
| 205 | // Common symbols requiring allocation, with their sizes and alignments |
| 206 | CommonSymbolList CommonSymbolsToAllocate; |
| 207 | |
| 208 | uint64_t CommonSize = 0; |
| 209 | uint32_t CommonAlign = 0; |
| 210 | |
| 211 | // First, collect all weak and common symbols. We need to know if stronger |
| 212 | // definitions occur elsewhere. |
| 213 | JITSymbolResolver::LookupSet ResponsibilitySet; |
| 214 | { |
| 215 | JITSymbolResolver::LookupSet Symbols; |
| 216 | for (auto &Sym : Obj.symbols()) { |
| 217 | Expected<uint32_t> FlagsOrErr = Sym.getFlags(); |
| 218 | if (!FlagsOrErr) |
| 219 | // TODO: Test this error. |
| 220 | return FlagsOrErr.takeError(); |
| 221 | if ((*FlagsOrErr & SymbolRef::SF_Common) || |
| 222 | (*FlagsOrErr & SymbolRef::SF_Weak)) { |
| 223 | // Get symbol name. |
| 224 | if (auto NameOrErr = Sym.getName()) |
| 225 | Symbols.insert(x: *NameOrErr); |
| 226 | else |
| 227 | return NameOrErr.takeError(); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) |
| 232 | ResponsibilitySet = std::move(*ResultOrErr); |
| 233 | else |
| 234 | return ResultOrErr.takeError(); |
| 235 | } |
| 236 | |
| 237 | // Parse symbols |
| 238 | LLVM_DEBUG(dbgs() << "Parse symbols:\n" ); |
| 239 | for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; |
| 240 | ++I) { |
| 241 | Expected<uint32_t> FlagsOrErr = I->getFlags(); |
| 242 | if (!FlagsOrErr) |
| 243 | // TODO: Test this error. |
| 244 | return FlagsOrErr.takeError(); |
| 245 | |
| 246 | // Skip undefined symbols. |
| 247 | if (*FlagsOrErr & SymbolRef::SF_Undefined) |
| 248 | continue; |
| 249 | |
| 250 | // Get the symbol type. |
| 251 | object::SymbolRef::Type SymType; |
| 252 | if (auto SymTypeOrErr = I->getType()) |
| 253 | SymType = *SymTypeOrErr; |
| 254 | else |
| 255 | return SymTypeOrErr.takeError(); |
| 256 | |
| 257 | // Get symbol name. |
| 258 | StringRef Name; |
| 259 | if (auto NameOrErr = I->getName()) |
| 260 | Name = *NameOrErr; |
| 261 | else |
| 262 | return NameOrErr.takeError(); |
| 263 | |
| 264 | // Compute JIT symbol flags. |
| 265 | auto JITSymFlags = getJITSymbolFlags(Sym: *I); |
| 266 | if (!JITSymFlags) |
| 267 | return JITSymFlags.takeError(); |
| 268 | |
| 269 | // If this is a weak definition, check to see if there's a strong one. |
| 270 | // If there is, skip this symbol (we won't be providing it: the strong |
| 271 | // definition will). If there's no strong definition, make this definition |
| 272 | // strong. |
| 273 | if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { |
| 274 | // First check whether there's already a definition in this instance. |
| 275 | if (GlobalSymbolTable.count(Key: Name)) |
| 276 | continue; |
| 277 | |
| 278 | // If we're not responsible for this symbol, skip it. |
| 279 | if (!ResponsibilitySet.count(x: Name)) |
| 280 | continue; |
| 281 | |
| 282 | // Otherwise update the flags on the symbol to make this definition |
| 283 | // strong. |
| 284 | if (JITSymFlags->isWeak()) |
| 285 | *JITSymFlags &= ~JITSymbolFlags::Weak; |
| 286 | if (JITSymFlags->isCommon()) { |
| 287 | *JITSymFlags &= ~JITSymbolFlags::Common; |
| 288 | uint32_t Align = I->getAlignment(); |
| 289 | uint64_t Size = I->getCommonSize(); |
| 290 | if (!CommonAlign) |
| 291 | CommonAlign = Align; |
| 292 | CommonSize = alignTo(Value: CommonSize, Align) + Size; |
| 293 | CommonSymbolsToAllocate.push_back(x: *I); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | if (*FlagsOrErr & SymbolRef::SF_Absolute && |
| 298 | SymType != object::SymbolRef::ST_File) { |
| 299 | uint64_t Addr = 0; |
| 300 | if (auto AddrOrErr = I->getAddress()) |
| 301 | Addr = *AddrOrErr; |
| 302 | else |
| 303 | return AddrOrErr.takeError(); |
| 304 | |
| 305 | unsigned SectionID = AbsoluteSymbolSection; |
| 306 | |
| 307 | LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name |
| 308 | << " SID: " << SectionID |
| 309 | << " Offset: " << format("%p" , (uintptr_t)Addr) |
| 310 | << " flags: " << *FlagsOrErr << "\n" ); |
| 311 | // Skip absolute symbol relocations. |
| 312 | if (!Name.empty()) { |
| 313 | auto Result = GlobalSymbolTable.insert_or_assign( |
| 314 | Key: Name, Val: SymbolTableEntry(SectionID, Addr, *JITSymFlags)); |
| 315 | processNewSymbol(ObjSymbol: *I, Entry&: Result.first->getValue()); |
| 316 | } |
| 317 | } else if (SymType == object::SymbolRef::ST_Function || |
| 318 | SymType == object::SymbolRef::ST_Data || |
| 319 | SymType == object::SymbolRef::ST_Unknown || |
| 320 | SymType == object::SymbolRef::ST_Other) { |
| 321 | |
| 322 | section_iterator SI = Obj.section_end(); |
| 323 | if (auto SIOrErr = I->getSection()) |
| 324 | SI = *SIOrErr; |
| 325 | else |
| 326 | return SIOrErr.takeError(); |
| 327 | |
| 328 | if (SI == Obj.section_end()) |
| 329 | continue; |
| 330 | |
| 331 | // Get symbol offset. |
| 332 | uint64_t SectOffset; |
| 333 | if (auto Err = getOffset(Sym: *I, Sec: *SI, Result&: SectOffset)) |
| 334 | return std::move(Err); |
| 335 | |
| 336 | bool IsCode = SI->isText(); |
| 337 | unsigned SectionID; |
| 338 | if (auto SectionIDOrErr = |
| 339 | findOrEmitSection(Obj, Section: *SI, IsCode, LocalSections)) |
| 340 | SectionID = *SectionIDOrErr; |
| 341 | else |
| 342 | return SectionIDOrErr.takeError(); |
| 343 | |
| 344 | LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name |
| 345 | << " SID: " << SectionID |
| 346 | << " Offset: " << format("%p" , (uintptr_t)SectOffset) |
| 347 | << " flags: " << *FlagsOrErr << "\n" ); |
| 348 | // Skip absolute symbol relocations. |
| 349 | if (!Name.empty()) { |
| 350 | auto Result = GlobalSymbolTable.insert_or_assign( |
| 351 | Key: Name, Val: SymbolTableEntry(SectionID, SectOffset, *JITSymFlags)); |
| 352 | processNewSymbol(ObjSymbol: *I, Entry&: Result.first->getValue()); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | // Allocate common symbols |
| 358 | if (auto Err = emitCommonSymbols(Obj, CommonSymbols&: CommonSymbolsToAllocate, CommonSize, |
| 359 | CommonAlign)) |
| 360 | return std::move(Err); |
| 361 | |
| 362 | // Parse and process relocations |
| 363 | LLVM_DEBUG(dbgs() << "Parse relocations:\n" ); |
| 364 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
| 365 | SI != SE; ++SI) { |
| 366 | StubMap Stubs; |
| 367 | |
| 368 | Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); |
| 369 | if (!RelSecOrErr) |
| 370 | return RelSecOrErr.takeError(); |
| 371 | |
| 372 | section_iterator RelocatedSection = *RelSecOrErr; |
| 373 | if (RelocatedSection == SE) |
| 374 | continue; |
| 375 | |
| 376 | relocation_iterator I = SI->relocation_begin(); |
| 377 | relocation_iterator E = SI->relocation_end(); |
| 378 | |
| 379 | if (I == E && !ProcessAllSections) |
| 380 | continue; |
| 381 | |
| 382 | bool IsCode = RelocatedSection->isText(); |
| 383 | unsigned SectionID = 0; |
| 384 | if (auto SectionIDOrErr = findOrEmitSection(Obj, Section: *RelocatedSection, IsCode, |
| 385 | LocalSections)) |
| 386 | SectionID = *SectionIDOrErr; |
| 387 | else |
| 388 | return SectionIDOrErr.takeError(); |
| 389 | |
| 390 | LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n" ); |
| 391 | |
| 392 | for (; I != E;) |
| 393 | if (auto IOrErr = processRelocationRef(SectionID, RelI: I, Obj, ObjSectionToID&: LocalSections, Stubs)) |
| 394 | I = *IOrErr; |
| 395 | else |
| 396 | return IOrErr.takeError(); |
| 397 | |
| 398 | // If there is a NotifyStubEmitted callback set, call it to register any |
| 399 | // stubs created for this section. |
| 400 | if (NotifyStubEmitted) { |
| 401 | StringRef FileName = Obj.getFileName(); |
| 402 | StringRef SectionName = Sections[SectionID].getName(); |
| 403 | for (auto &KV : Stubs) { |
| 404 | |
| 405 | auto &VR = KV.first; |
| 406 | uint64_t StubAddr = KV.second; |
| 407 | |
| 408 | // If this is a named stub, just call NotifyStubEmitted. |
| 409 | if (VR.SymbolName) { |
| 410 | NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, |
| 411 | StubAddr); |
| 412 | continue; |
| 413 | } |
| 414 | |
| 415 | // Otherwise we will have to try a reverse lookup on the globla symbol table. |
| 416 | for (auto &GSTMapEntry : GlobalSymbolTable) { |
| 417 | StringRef SymbolName = GSTMapEntry.first(); |
| 418 | auto &GSTEntry = GSTMapEntry.second; |
| 419 | if (GSTEntry.getSectionID() == VR.SectionID && |
| 420 | GSTEntry.getOffset() == VR.Offset) { |
| 421 | NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, |
| 422 | StubAddr); |
| 423 | break; |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | // Process remaining sections |
| 431 | if (ProcessAllSections) { |
| 432 | LLVM_DEBUG(dbgs() << "Process remaining sections:\n" ); |
| 433 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
| 434 | SI != SE; ++SI) { |
| 435 | |
| 436 | /* Ignore already loaded sections */ |
| 437 | if (LocalSections.find(x: *SI) != LocalSections.end()) |
| 438 | continue; |
| 439 | |
| 440 | bool IsCode = SI->isText(); |
| 441 | if (auto SectionIDOrErr = |
| 442 | findOrEmitSection(Obj, Section: *SI, IsCode, LocalSections)) |
| 443 | LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n" ); |
| 444 | else |
| 445 | return SectionIDOrErr.takeError(); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | // Give the subclasses a chance to tie-up any loose ends. |
| 450 | if (auto Err = finalizeLoad(ObjImg: Obj, SectionMap&: LocalSections)) |
| 451 | return std::move(Err); |
| 452 | |
| 453 | // for (auto E : LocalSections) |
| 454 | // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; |
| 455 | |
| 456 | return LocalSections; |
| 457 | } |
| 458 | |
| 459 | // A helper method for computeTotalAllocSize. |
| 460 | // Computes the memory size required to allocate sections with the given sizes, |
| 461 | // assuming that all sections are allocated with the given alignment |
| 462 | static uint64_t |
| 463 | computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, |
| 464 | Align Alignment) { |
| 465 | uint64_t TotalSize = 0; |
| 466 | for (uint64_t SectionSize : SectionSizes) |
| 467 | TotalSize += alignTo(Size: SectionSize, A: Alignment); |
| 468 | return TotalSize; |
| 469 | } |
| 470 | |
| 471 | static bool isRequiredForExecution(const SectionRef Section) { |
| 472 | const ObjectFile *Obj = Section.getObject(); |
| 473 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
| 474 | return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; |
| 475 | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Val: Obj)) { |
| 476 | const coff_section *CoffSection = COFFObj->getCOFFSection(Section); |
| 477 | // Avoid loading zero-sized COFF sections. |
| 478 | // In PE files, VirtualSize gives the section size, and SizeOfRawData |
| 479 | // may be zero for sections with content. In Obj files, SizeOfRawData |
| 480 | // gives the section size, and VirtualSize is always zero. Hence |
| 481 | // the need to check for both cases below. |
| 482 | bool HasContent = |
| 483 | (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); |
| 484 | bool IsDiscardable = |
| 485 | CoffSection->Characteristics & |
| 486 | (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); |
| 487 | return HasContent && !IsDiscardable; |
| 488 | } |
| 489 | |
| 490 | assert(isa<MachOObjectFile>(Obj)); |
| 491 | return true; |
| 492 | } |
| 493 | |
| 494 | static bool isReadOnlyData(const SectionRef Section) { |
| 495 | const ObjectFile *Obj = Section.getObject(); |
| 496 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
| 497 | return !(ELFSectionRef(Section).getFlags() & |
| 498 | (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); |
| 499 | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Val: Obj)) |
| 500 | return ((COFFObj->getCOFFSection(Section)->Characteristics & |
| 501 | (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
| 502 | | COFF::IMAGE_SCN_MEM_READ |
| 503 | | COFF::IMAGE_SCN_MEM_WRITE)) |
| 504 | == |
| 505 | (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
| 506 | | COFF::IMAGE_SCN_MEM_READ)); |
| 507 | |
| 508 | assert(isa<MachOObjectFile>(Obj)); |
| 509 | return false; |
| 510 | } |
| 511 | |
| 512 | static bool isZeroInit(const SectionRef Section) { |
| 513 | const ObjectFile *Obj = Section.getObject(); |
| 514 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
| 515 | return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; |
| 516 | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Val: Obj)) |
| 517 | return COFFObj->getCOFFSection(Section)->Characteristics & |
| 518 | COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; |
| 519 | |
| 520 | auto *MachO = cast<MachOObjectFile>(Val: Obj); |
| 521 | unsigned SectionType = MachO->getSectionType(Sec: Section); |
| 522 | return SectionType == MachO::S_ZEROFILL || |
| 523 | SectionType == MachO::S_GB_ZEROFILL; |
| 524 | } |
| 525 | |
| 526 | static bool isTLS(const SectionRef Section) { |
| 527 | const ObjectFile *Obj = Section.getObject(); |
| 528 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
| 529 | return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS; |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | // Compute an upper bound of the memory size that is required to load all |
| 534 | // sections |
| 535 | Error RuntimeDyldImpl::computeTotalAllocSize( |
| 536 | const ObjectFile &Obj, uint64_t &CodeSize, Align &CodeAlign, |
| 537 | uint64_t &RODataSize, Align &RODataAlign, uint64_t &RWDataSize, |
| 538 | Align &RWDataAlign) { |
| 539 | // Compute the size of all sections required for execution |
| 540 | std::vector<uint64_t> CodeSectionSizes; |
| 541 | std::vector<uint64_t> ROSectionSizes; |
| 542 | std::vector<uint64_t> RWSectionSizes; |
| 543 | |
| 544 | // Collect sizes of all sections to be loaded; |
| 545 | // also determine the max alignment of all sections |
| 546 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
| 547 | SI != SE; ++SI) { |
| 548 | const SectionRef &Section = *SI; |
| 549 | |
| 550 | bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; |
| 551 | |
| 552 | // Consider only the sections that are required to be loaded for execution |
| 553 | if (IsRequired) { |
| 554 | uint64_t DataSize = Section.getSize(); |
| 555 | Align Alignment = Section.getAlignment(); |
| 556 | bool IsCode = Section.isText(); |
| 557 | bool IsReadOnly = isReadOnlyData(Section); |
| 558 | bool IsTLS = isTLS(Section); |
| 559 | |
| 560 | Expected<StringRef> NameOrErr = Section.getName(); |
| 561 | if (!NameOrErr) |
| 562 | return NameOrErr.takeError(); |
| 563 | StringRef Name = *NameOrErr; |
| 564 | |
| 565 | uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); |
| 566 | |
| 567 | uint64_t PaddingSize = 0; |
| 568 | if (Name == ".eh_frame" ) |
| 569 | PaddingSize += 4; |
| 570 | if (StubBufSize != 0) |
| 571 | PaddingSize += getStubAlignment().value() - 1; |
| 572 | |
| 573 | uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; |
| 574 | |
| 575 | // The .eh_frame section (at least on Linux) needs an extra four bytes |
| 576 | // padded |
| 577 | // with zeroes added at the end. For MachO objects, this section has a |
| 578 | // slightly different name, so this won't have any effect for MachO |
| 579 | // objects. |
| 580 | if (Name == ".eh_frame" ) |
| 581 | SectionSize += 4; |
| 582 | |
| 583 | if (!SectionSize) |
| 584 | SectionSize = 1; |
| 585 | |
| 586 | if (IsCode) { |
| 587 | CodeAlign = std::max(a: CodeAlign, b: Alignment); |
| 588 | CodeSectionSizes.push_back(x: SectionSize); |
| 589 | } else if (IsReadOnly) { |
| 590 | RODataAlign = std::max(a: RODataAlign, b: Alignment); |
| 591 | ROSectionSizes.push_back(x: SectionSize); |
| 592 | } else if (!IsTLS) { |
| 593 | RWDataAlign = std::max(a: RWDataAlign, b: Alignment); |
| 594 | RWSectionSizes.push_back(x: SectionSize); |
| 595 | } |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | // Compute Global Offset Table size. If it is not zero we |
| 600 | // also update alignment, which is equal to a size of a |
| 601 | // single GOT entry. |
| 602 | if (unsigned GotSize = computeGOTSize(Obj)) { |
| 603 | RWSectionSizes.push_back(x: GotSize); |
| 604 | RWDataAlign = std::max(a: RWDataAlign, b: Align(getGOTEntrySize())); |
| 605 | } |
| 606 | |
| 607 | // Compute the size of all common symbols |
| 608 | uint64_t CommonSize = 0; |
| 609 | Align CommonAlign; |
| 610 | for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; |
| 611 | ++I) { |
| 612 | Expected<uint32_t> FlagsOrErr = I->getFlags(); |
| 613 | if (!FlagsOrErr) |
| 614 | // TODO: Test this error. |
| 615 | return FlagsOrErr.takeError(); |
| 616 | if (*FlagsOrErr & SymbolRef::SF_Common) { |
| 617 | // Add the common symbols to a list. We'll allocate them all below. |
| 618 | uint64_t Size = I->getCommonSize(); |
| 619 | Align Alignment = Align(I->getAlignment()); |
| 620 | // If this is the first common symbol, use its alignment as the alignment |
| 621 | // for the common symbols section. |
| 622 | if (CommonSize == 0) |
| 623 | CommonAlign = Alignment; |
| 624 | CommonSize = alignTo(Size: CommonSize, A: Alignment) + Size; |
| 625 | } |
| 626 | } |
| 627 | if (CommonSize != 0) { |
| 628 | RWSectionSizes.push_back(x: CommonSize); |
| 629 | RWDataAlign = std::max(a: RWDataAlign, b: CommonAlign); |
| 630 | } |
| 631 | |
| 632 | if (!CodeSectionSizes.empty()) { |
| 633 | // Add 64 bytes for a potential IFunc resolver stub |
| 634 | CodeSectionSizes.push_back(x: 64); |
| 635 | } |
| 636 | |
| 637 | // Compute the required allocation space for each different type of sections |
| 638 | // (code, read-only data, read-write data) assuming that all sections are |
| 639 | // allocated with the max alignment. Note that we cannot compute with the |
| 640 | // individual alignments of the sections, because then the required size |
| 641 | // depends on the order, in which the sections are allocated. |
| 642 | CodeSize = computeAllocationSizeForSections(SectionSizes&: CodeSectionSizes, Alignment: CodeAlign); |
| 643 | RODataSize = computeAllocationSizeForSections(SectionSizes&: ROSectionSizes, Alignment: RODataAlign); |
| 644 | RWDataSize = computeAllocationSizeForSections(SectionSizes&: RWSectionSizes, Alignment: RWDataAlign); |
| 645 | |
| 646 | return Error::success(); |
| 647 | } |
| 648 | |
| 649 | // compute GOT size |
| 650 | unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { |
| 651 | size_t GotEntrySize = getGOTEntrySize(); |
| 652 | if (!GotEntrySize) |
| 653 | return 0; |
| 654 | |
| 655 | size_t GotSize = 0; |
| 656 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
| 657 | SI != SE; ++SI) { |
| 658 | |
| 659 | for (const RelocationRef &Reloc : SI->relocations()) |
| 660 | if (relocationNeedsGot(R: Reloc)) |
| 661 | GotSize += GotEntrySize; |
| 662 | } |
| 663 | |
| 664 | return GotSize; |
| 665 | } |
| 666 | |
| 667 | // compute stub buffer size for the given section |
| 668 | unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, |
| 669 | const SectionRef &Section) { |
| 670 | if (!MemMgr.allowStubAllocation()) { |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | unsigned StubSize = getMaxStubSize(); |
| 675 | if (StubSize == 0) { |
| 676 | return 0; |
| 677 | } |
| 678 | // FIXME: this is an inefficient way to handle this. We should computed the |
| 679 | // necessary section allocation size in loadObject by walking all the sections |
| 680 | // once. |
| 681 | unsigned StubBufSize = 0; |
| 682 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
| 683 | SI != SE; ++SI) { |
| 684 | |
| 685 | Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); |
| 686 | if (!RelSecOrErr) |
| 687 | report_fatal_error(reason: Twine(toString(E: RelSecOrErr.takeError()))); |
| 688 | |
| 689 | section_iterator RelSecI = *RelSecOrErr; |
| 690 | if (!(RelSecI == Section)) |
| 691 | continue; |
| 692 | |
| 693 | for (const RelocationRef &Reloc : SI->relocations()) { |
| 694 | if (relocationNeedsStub(R: Reloc)) |
| 695 | StubBufSize += StubSize; |
| 696 | if (relocationNeedsDLLImportStub(R: Reloc)) |
| 697 | StubBufSize = sizeAfterAddingDLLImportStub(Size: StubBufSize); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | // Get section data size and alignment |
| 702 | uint64_t DataSize = Section.getSize(); |
| 703 | Align Alignment = Section.getAlignment(); |
| 704 | |
| 705 | // Add stubbuf size alignment |
| 706 | Align StubAlignment = getStubAlignment(); |
| 707 | Align EndAlignment = commonAlignment(A: Alignment, Offset: DataSize); |
| 708 | if (StubAlignment > EndAlignment) |
| 709 | StubBufSize += StubAlignment.value() - EndAlignment.value(); |
| 710 | return StubBufSize; |
| 711 | } |
| 712 | |
| 713 | uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, |
| 714 | unsigned Size) const { |
| 715 | uint64_t Result = 0; |
| 716 | if (IsTargetLittleEndian) { |
| 717 | Src += Size - 1; |
| 718 | while (Size--) |
| 719 | Result = (Result << 8) | *Src--; |
| 720 | } else |
| 721 | while (Size--) |
| 722 | Result = (Result << 8) | *Src++; |
| 723 | |
| 724 | return Result; |
| 725 | } |
| 726 | |
| 727 | void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, |
| 728 | unsigned Size) const { |
| 729 | if (IsTargetLittleEndian) { |
| 730 | while (Size--) { |
| 731 | *Dst++ = Value & 0xFF; |
| 732 | Value >>= 8; |
| 733 | } |
| 734 | } else { |
| 735 | Dst += Size - 1; |
| 736 | while (Size--) { |
| 737 | *Dst-- = Value & 0xFF; |
| 738 | Value >>= 8; |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | Expected<JITSymbolFlags> |
| 744 | RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { |
| 745 | return JITSymbolFlags::fromObjectSymbol(Symbol: SR); |
| 746 | } |
| 747 | |
| 748 | Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, |
| 749 | CommonSymbolList &SymbolsToAllocate, |
| 750 | uint64_t CommonSize, |
| 751 | uint32_t CommonAlign) { |
| 752 | if (SymbolsToAllocate.empty()) |
| 753 | return Error::success(); |
| 754 | |
| 755 | // Allocate memory for the section |
| 756 | unsigned SectionID = Sections.size(); |
| 757 | uint8_t *Addr = MemMgr.allocateDataSection(Size: CommonSize, Alignment: CommonAlign, SectionID, |
| 758 | SectionName: "<common symbols>" , IsReadOnly: false); |
| 759 | if (!Addr) |
| 760 | report_fatal_error(reason: "Unable to allocate memory for common symbols!" ); |
| 761 | uint64_t Offset = 0; |
| 762 | Sections.push_back( |
| 763 | x: SectionEntry("<common symbols>" , Addr, CommonSize, CommonSize, 0)); |
| 764 | memset(s: Addr, c: 0, n: CommonSize); |
| 765 | |
| 766 | LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID |
| 767 | << " new addr: " << format("%p" , Addr) |
| 768 | << " DataSize: " << CommonSize << "\n" ); |
| 769 | |
| 770 | // Assign the address of each symbol |
| 771 | for (auto &Sym : SymbolsToAllocate) { |
| 772 | uint32_t Alignment = Sym.getAlignment(); |
| 773 | uint64_t Size = Sym.getCommonSize(); |
| 774 | StringRef Name; |
| 775 | if (auto NameOrErr = Sym.getName()) |
| 776 | Name = *NameOrErr; |
| 777 | else |
| 778 | return NameOrErr.takeError(); |
| 779 | if (Alignment) { |
| 780 | // This symbol has an alignment requirement. |
| 781 | uint64_t AlignOffset = |
| 782 | offsetToAlignment(Value: (uint64_t)Addr, Alignment: Align(Alignment)); |
| 783 | Addr += AlignOffset; |
| 784 | Offset += AlignOffset; |
| 785 | } |
| 786 | auto JITSymFlags = getJITSymbolFlags(SR: Sym); |
| 787 | |
| 788 | if (!JITSymFlags) |
| 789 | return JITSymFlags.takeError(); |
| 790 | |
| 791 | LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " |
| 792 | << format("%p" , Addr) << "\n" ); |
| 793 | if (!Name.empty()) // Skip absolute symbol relocations. |
| 794 | GlobalSymbolTable[Name] = |
| 795 | SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); |
| 796 | Offset += Size; |
| 797 | Addr += Size; |
| 798 | } |
| 799 | |
| 800 | return Error::success(); |
| 801 | } |
| 802 | |
| 803 | Expected<unsigned> |
| 804 | RuntimeDyldImpl::emitSection(const ObjectFile &Obj, |
| 805 | const SectionRef &Section, |
| 806 | bool IsCode) { |
| 807 | StringRef data; |
| 808 | Align Alignment = Section.getAlignment(); |
| 809 | |
| 810 | unsigned PaddingSize = 0; |
| 811 | unsigned StubBufSize = 0; |
| 812 | bool IsRequired = isRequiredForExecution(Section); |
| 813 | bool IsVirtual = Section.isVirtual(); |
| 814 | bool IsZeroInit = isZeroInit(Section); |
| 815 | bool IsReadOnly = isReadOnlyData(Section); |
| 816 | bool IsTLS = isTLS(Section); |
| 817 | uint64_t DataSize = Section.getSize(); |
| 818 | |
| 819 | Expected<StringRef> NameOrErr = Section.getName(); |
| 820 | if (!NameOrErr) |
| 821 | return NameOrErr.takeError(); |
| 822 | StringRef Name = *NameOrErr; |
| 823 | |
| 824 | StubBufSize = computeSectionStubBufSize(Obj, Section); |
| 825 | |
| 826 | // The .eh_frame section (at least on Linux) needs an extra four bytes padded |
| 827 | // with zeroes added at the end. For MachO objects, this section has a |
| 828 | // slightly different name, so this won't have any effect for MachO objects. |
| 829 | if (Name == ".eh_frame" ) |
| 830 | PaddingSize = 4; |
| 831 | |
| 832 | uintptr_t Allocate; |
| 833 | unsigned SectionID = Sections.size(); |
| 834 | uint8_t *Addr; |
| 835 | uint64_t LoadAddress = 0; |
| 836 | const char *pData = nullptr; |
| 837 | |
| 838 | // If this section contains any bits (i.e. isn't a virtual or bss section), |
| 839 | // grab a reference to them. |
| 840 | if (!IsVirtual && !IsZeroInit) { |
| 841 | // In either case, set the location of the unrelocated section in memory, |
| 842 | // since we still process relocations for it even if we're not applying them. |
| 843 | if (Expected<StringRef> E = Section.getContents()) |
| 844 | data = *E; |
| 845 | else |
| 846 | return E.takeError(); |
| 847 | pData = data.data(); |
| 848 | } |
| 849 | |
| 850 | // If there are any stubs then the section alignment needs to be at least as |
| 851 | // high as stub alignment or padding calculations may by incorrect when the |
| 852 | // section is remapped. |
| 853 | if (StubBufSize != 0) { |
| 854 | Alignment = std::max(a: Alignment, b: getStubAlignment()); |
| 855 | PaddingSize += getStubAlignment().value() - 1; |
| 856 | } |
| 857 | |
| 858 | // Some sections, such as debug info, don't need to be loaded for execution. |
| 859 | // Process those only if explicitly requested. |
| 860 | if (IsRequired || ProcessAllSections) { |
| 861 | Allocate = DataSize + PaddingSize + StubBufSize; |
| 862 | if (!Allocate) |
| 863 | Allocate = 1; |
| 864 | if (IsTLS) { |
| 865 | auto TLSSection = MemMgr.allocateTLSSection(Size: Allocate, Alignment: Alignment.value(), |
| 866 | SectionID, SectionName: Name); |
| 867 | Addr = TLSSection.InitializationImage; |
| 868 | LoadAddress = TLSSection.Offset; |
| 869 | } else if (IsCode) { |
| 870 | Addr = MemMgr.allocateCodeSection(Size: Allocate, Alignment: Alignment.value(), SectionID, |
| 871 | SectionName: Name); |
| 872 | } else { |
| 873 | Addr = MemMgr.allocateDataSection(Size: Allocate, Alignment: Alignment.value(), SectionID, |
| 874 | SectionName: Name, IsReadOnly); |
| 875 | } |
| 876 | if (!Addr) |
| 877 | report_fatal_error(reason: "Unable to allocate section memory!" ); |
| 878 | |
| 879 | // Zero-initialize or copy the data from the image |
| 880 | if (IsZeroInit || IsVirtual) |
| 881 | memset(s: Addr, c: 0, n: DataSize); |
| 882 | else |
| 883 | memcpy(dest: Addr, src: pData, n: DataSize); |
| 884 | |
| 885 | // Fill in any extra bytes we allocated for padding |
| 886 | if (PaddingSize != 0) { |
| 887 | memset(s: Addr + DataSize, c: 0, n: PaddingSize); |
| 888 | // Update the DataSize variable to include padding. |
| 889 | DataSize += PaddingSize; |
| 890 | |
| 891 | // Align DataSize to stub alignment if we have any stubs (PaddingSize will |
| 892 | // have been increased above to account for this). |
| 893 | if (StubBufSize > 0) |
| 894 | DataSize &= -(uint64_t)getStubAlignment().value(); |
| 895 | } |
| 896 | |
| 897 | LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " |
| 898 | << Name << " obj addr: " << format("%p" , pData) |
| 899 | << " new addr: " << format("%p" , Addr) << " DataSize: " |
| 900 | << DataSize << " StubBufSize: " << StubBufSize |
| 901 | << " Allocate: " << Allocate << "\n" ); |
| 902 | } else { |
| 903 | // Even if we didn't load the section, we need to record an entry for it |
| 904 | // to handle later processing (and by 'handle' I mean don't do anything |
| 905 | // with these sections). |
| 906 | Allocate = 0; |
| 907 | Addr = nullptr; |
| 908 | LLVM_DEBUG( |
| 909 | dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name |
| 910 | << " obj addr: " << format("%p" , data.data()) << " new addr: 0" |
| 911 | << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize |
| 912 | << " Allocate: " << Allocate << "\n" ); |
| 913 | } |
| 914 | |
| 915 | Sections.push_back( |
| 916 | x: SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); |
| 917 | |
| 918 | // The load address of a TLS section is not equal to the address of its |
| 919 | // initialization image |
| 920 | if (IsTLS) |
| 921 | Sections.back().setLoadAddress(LoadAddress); |
| 922 | // Debug info sections are linked as if their load address was zero |
| 923 | if (!IsRequired) |
| 924 | Sections.back().setLoadAddress(0); |
| 925 | |
| 926 | return SectionID; |
| 927 | } |
| 928 | |
| 929 | Expected<unsigned> |
| 930 | RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, |
| 931 | const SectionRef &Section, |
| 932 | bool IsCode, |
| 933 | ObjSectionToIDMap &LocalSections) { |
| 934 | |
| 935 | unsigned SectionID = 0; |
| 936 | ObjSectionToIDMap::iterator i = LocalSections.find(x: Section); |
| 937 | if (i != LocalSections.end()) |
| 938 | SectionID = i->second; |
| 939 | else { |
| 940 | if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) |
| 941 | SectionID = *SectionIDOrErr; |
| 942 | else |
| 943 | return SectionIDOrErr.takeError(); |
| 944 | LocalSections[Section] = SectionID; |
| 945 | } |
| 946 | return SectionID; |
| 947 | } |
| 948 | |
| 949 | void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, |
| 950 | unsigned SectionID) { |
| 951 | Relocations[SectionID].push_back(Elt: RE); |
| 952 | } |
| 953 | |
| 954 | void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, |
| 955 | StringRef SymbolName) { |
| 956 | // Relocation by symbol. If the symbol is found in the global symbol table, |
| 957 | // create an appropriate section relocation. Otherwise, add it to |
| 958 | // ExternalSymbolRelocations. |
| 959 | RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Key: SymbolName); |
| 960 | if (Loc == GlobalSymbolTable.end()) { |
| 961 | ExternalSymbolRelocations[SymbolName].push_back(Elt: RE); |
| 962 | } else { |
| 963 | assert(!SymbolName.empty() && |
| 964 | "Empty symbol should not be in GlobalSymbolTable" ); |
| 965 | // Copy the RE since we want to modify its addend. |
| 966 | RelocationEntry RECopy = RE; |
| 967 | const auto &SymInfo = Loc->second; |
| 968 | RECopy.Addend += SymInfo.getOffset(); |
| 969 | Relocations[SymInfo.getSectionID()].push_back(Elt: RECopy); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, |
| 974 | unsigned AbiVariant) { |
| 975 | if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || |
| 976 | Arch == Triple::aarch64_32) { |
| 977 | // This stub has to be able to access the full address space, |
| 978 | // since symbol lookup won't necessarily find a handy, in-range, |
| 979 | // PLT stub for functions which could be anywhere. |
| 980 | // Stub can use ip0 (== x16) to calculate address |
| 981 | writeBytesUnaligned(Value: 0xd2e00010, Dst: Addr, Size: 4); // movz ip0, #:abs_g3:<addr> |
| 982 | writeBytesUnaligned(Value: 0xf2c00010, Dst: Addr+4, Size: 4); // movk ip0, #:abs_g2_nc:<addr> |
| 983 | writeBytesUnaligned(Value: 0xf2a00010, Dst: Addr+8, Size: 4); // movk ip0, #:abs_g1_nc:<addr> |
| 984 | writeBytesUnaligned(Value: 0xf2800010, Dst: Addr+12, Size: 4); // movk ip0, #:abs_g0_nc:<addr> |
| 985 | writeBytesUnaligned(Value: 0xd61f0200, Dst: Addr+16, Size: 4); // br ip0 |
| 986 | |
| 987 | return Addr; |
| 988 | } else if (Arch == Triple::arm || Arch == Triple::armeb) { |
| 989 | // TODO: There is only ARM far stub now. We should add the Thumb stub, |
| 990 | // and stubs for branches Thumb - ARM and ARM - Thumb. |
| 991 | writeBytesUnaligned(Value: 0xe51ff004, Dst: Addr, Size: 4); // ldr pc, [pc, #-4] |
| 992 | return Addr + 4; |
| 993 | } else if (Arch == Triple::loongarch64) { |
| 994 | // lu12i.w $t0, %abs_hi20(addr) |
| 995 | // ori $t0, $t0, %abs_lo12(addr) |
| 996 | // lu32i.d $t0, %abs64_lo20(addr) |
| 997 | // lu52i.d $t0, $t0, %abs64_lo12(addr) |
| 998 | // jr $t0 |
| 999 | writeBytesUnaligned(Value: 0x1400000c, Dst: Addr, Size: 4); |
| 1000 | writeBytesUnaligned(Value: 0x0380018c, Dst: Addr + 4, Size: 4); |
| 1001 | writeBytesUnaligned(Value: 0x1600000c, Dst: Addr + 8, Size: 4); |
| 1002 | writeBytesUnaligned(Value: 0x0300018c, Dst: Addr + 12, Size: 4); |
| 1003 | writeBytesUnaligned(Value: 0x4c000180, Dst: Addr + 16, Size: 4); |
| 1004 | return Addr; |
| 1005 | } else if (IsMipsO32ABI || IsMipsN32ABI) { |
| 1006 | // 0: 3c190000 lui t9,%hi(addr). |
| 1007 | // 4: 27390000 addiu t9,t9,%lo(addr). |
| 1008 | // 8: 03200008 jr t9. |
| 1009 | // c: 00000000 nop. |
| 1010 | const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; |
| 1011 | const unsigned NopInstr = 0x0; |
| 1012 | unsigned JrT9Instr = 0x03200008; |
| 1013 | if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || |
| 1014 | (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) |
| 1015 | JrT9Instr = 0x03200009; |
| 1016 | |
| 1017 | writeBytesUnaligned(Value: LuiT9Instr, Dst: Addr, Size: 4); |
| 1018 | writeBytesUnaligned(Value: AdduiT9Instr, Dst: Addr + 4, Size: 4); |
| 1019 | writeBytesUnaligned(Value: JrT9Instr, Dst: Addr + 8, Size: 4); |
| 1020 | writeBytesUnaligned(Value: NopInstr, Dst: Addr + 12, Size: 4); |
| 1021 | return Addr; |
| 1022 | } else if (IsMipsN64ABI) { |
| 1023 | // 0: 3c190000 lui t9,%highest(addr). |
| 1024 | // 4: 67390000 daddiu t9,t9,%higher(addr). |
| 1025 | // 8: 0019CC38 dsll t9,t9,16. |
| 1026 | // c: 67390000 daddiu t9,t9,%hi(addr). |
| 1027 | // 10: 0019CC38 dsll t9,t9,16. |
| 1028 | // 14: 67390000 daddiu t9,t9,%lo(addr). |
| 1029 | // 18: 03200008 jr t9. |
| 1030 | // 1c: 00000000 nop. |
| 1031 | const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, |
| 1032 | DsllT9Instr = 0x19CC38; |
| 1033 | const unsigned NopInstr = 0x0; |
| 1034 | unsigned JrT9Instr = 0x03200008; |
| 1035 | if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) |
| 1036 | JrT9Instr = 0x03200009; |
| 1037 | |
| 1038 | writeBytesUnaligned(Value: LuiT9Instr, Dst: Addr, Size: 4); |
| 1039 | writeBytesUnaligned(Value: DaddiuT9Instr, Dst: Addr + 4, Size: 4); |
| 1040 | writeBytesUnaligned(Value: DsllT9Instr, Dst: Addr + 8, Size: 4); |
| 1041 | writeBytesUnaligned(Value: DaddiuT9Instr, Dst: Addr + 12, Size: 4); |
| 1042 | writeBytesUnaligned(Value: DsllT9Instr, Dst: Addr + 16, Size: 4); |
| 1043 | writeBytesUnaligned(Value: DaddiuT9Instr, Dst: Addr + 20, Size: 4); |
| 1044 | writeBytesUnaligned(Value: JrT9Instr, Dst: Addr + 24, Size: 4); |
| 1045 | writeBytesUnaligned(Value: NopInstr, Dst: Addr + 28, Size: 4); |
| 1046 | return Addr; |
| 1047 | } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { |
| 1048 | // Depending on which version of the ELF ABI is in use, we need to |
| 1049 | // generate one of two variants of the stub. They both start with |
| 1050 | // the same sequence to load the target address into r12. |
| 1051 | writeInt32BE(Addr, Value: 0x3D800000); // lis r12, highest(addr) |
| 1052 | writeInt32BE(Addr: Addr+4, Value: 0x618C0000); // ori r12, higher(addr) |
| 1053 | writeInt32BE(Addr: Addr+8, Value: 0x798C07C6); // sldi r12, r12, 32 |
| 1054 | writeInt32BE(Addr: Addr+12, Value: 0x658C0000); // oris r12, r12, h(addr) |
| 1055 | writeInt32BE(Addr: Addr+16, Value: 0x618C0000); // ori r12, r12, l(addr) |
| 1056 | if (AbiVariant == 2) { |
| 1057 | // PowerPC64 stub ELFv2 ABI: The address points to the function itself. |
| 1058 | // The address is already in r12 as required by the ABI. Branch to it. |
| 1059 | writeInt32BE(Addr: Addr+20, Value: 0xF8410018); // std r2, 24(r1) |
| 1060 | writeInt32BE(Addr: Addr+24, Value: 0x7D8903A6); // mtctr r12 |
| 1061 | writeInt32BE(Addr: Addr+28, Value: 0x4E800420); // bctr |
| 1062 | } else { |
| 1063 | // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. |
| 1064 | // Load the function address on r11 and sets it to control register. Also |
| 1065 | // loads the function TOC in r2 and environment pointer to r11. |
| 1066 | writeInt32BE(Addr: Addr+20, Value: 0xF8410028); // std r2, 40(r1) |
| 1067 | writeInt32BE(Addr: Addr+24, Value: 0xE96C0000); // ld r11, 0(r12) |
| 1068 | writeInt32BE(Addr: Addr+28, Value: 0xE84C0008); // ld r2, 0(r12) |
| 1069 | writeInt32BE(Addr: Addr+32, Value: 0x7D6903A6); // mtctr r11 |
| 1070 | writeInt32BE(Addr: Addr+36, Value: 0xE96C0010); // ld r11, 16(r2) |
| 1071 | writeInt32BE(Addr: Addr+40, Value: 0x4E800420); // bctr |
| 1072 | } |
| 1073 | return Addr; |
| 1074 | } else if (Arch == Triple::systemz) { |
| 1075 | writeInt16BE(Addr, Value: 0xC418); // lgrl %r1,.+8 |
| 1076 | writeInt16BE(Addr: Addr+2, Value: 0x0000); |
| 1077 | writeInt16BE(Addr: Addr+4, Value: 0x0004); |
| 1078 | writeInt16BE(Addr: Addr+6, Value: 0x07F1); // brc 15,%r1 |
| 1079 | // 8-byte address stored at Addr + 8 |
| 1080 | return Addr; |
| 1081 | } else if (Arch == Triple::x86_64) { |
| 1082 | *Addr = 0xFF; // jmp |
| 1083 | *(Addr+1) = 0x25; // rip |
| 1084 | // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 |
| 1085 | } else if (Arch == Triple::x86) { |
| 1086 | *Addr = 0xE9; // 32-bit pc-relative jump. |
| 1087 | } |
| 1088 | return Addr; |
| 1089 | } |
| 1090 | |
| 1091 | // Assign an address to a symbol name and resolve all the relocations |
| 1092 | // associated with it. |
| 1093 | void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, |
| 1094 | uint64_t Addr) { |
| 1095 | // The address to use for relocation resolution is not |
| 1096 | // the address of the local section buffer. We must be doing |
| 1097 | // a remote execution environment of some sort. Relocations can't |
| 1098 | // be applied until all the sections have been moved. The client must |
| 1099 | // trigger this with a call to MCJIT::finalize() or |
| 1100 | // RuntimeDyld::resolveRelocations(). |
| 1101 | // |
| 1102 | // Addr is a uint64_t because we can't assume the pointer width |
| 1103 | // of the target is the same as that of the host. Just use a generic |
| 1104 | // "big enough" type. |
| 1105 | LLVM_DEBUG( |
| 1106 | dbgs() << "Reassigning address for section " << SectionID << " (" |
| 1107 | << Sections[SectionID].getName() << "): " |
| 1108 | << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) |
| 1109 | << " -> " << format("0x%016" PRIx64, Addr) << "\n" ); |
| 1110 | Sections[SectionID].setLoadAddress(Addr); |
| 1111 | } |
| 1112 | |
| 1113 | void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, |
| 1114 | uint64_t Value) { |
| 1115 | for (const RelocationEntry &RE : Relocs) { |
| 1116 | // Ignore relocations for sections that were not loaded |
| 1117 | if (RE.SectionID != AbsoluteSymbolSection && |
| 1118 | Sections[RE.SectionID].getAddress() == nullptr) |
| 1119 | continue; |
| 1120 | resolveRelocation(RE, Value); |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | void RuntimeDyldImpl::applyExternalSymbolRelocations( |
| 1125 | const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { |
| 1126 | for (auto &RelocKV : ExternalSymbolRelocations) { |
| 1127 | StringRef Name = RelocKV.first(); |
| 1128 | RelocationList &Relocs = RelocKV.second; |
| 1129 | if (Name.size() == 0) { |
| 1130 | // This is an absolute symbol, use an address of zero. |
| 1131 | LLVM_DEBUG(dbgs() << "Resolving absolute relocations." |
| 1132 | << "\n" ); |
| 1133 | resolveRelocationList(Relocs, Value: 0); |
| 1134 | } else { |
| 1135 | uint64_t Addr = 0; |
| 1136 | JITSymbolFlags Flags; |
| 1137 | RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Key: Name); |
| 1138 | if (Loc == GlobalSymbolTable.end()) { |
| 1139 | auto RRI = ExternalSymbolMap.find(Key: Name); |
| 1140 | assert(RRI != ExternalSymbolMap.end() && "No result for symbol" ); |
| 1141 | Addr = RRI->second.getAddress(); |
| 1142 | Flags = RRI->second.getFlags(); |
| 1143 | } else { |
| 1144 | // We found the symbol in our global table. It was probably in a |
| 1145 | // Module that we loaded previously. |
| 1146 | const auto &SymInfo = Loc->second; |
| 1147 | Addr = getSectionLoadAddress(SectionID: SymInfo.getSectionID()) + |
| 1148 | SymInfo.getOffset(); |
| 1149 | Flags = SymInfo.getFlags(); |
| 1150 | } |
| 1151 | |
| 1152 | // FIXME: Implement error handling that doesn't kill the host program! |
| 1153 | if (!Addr && !Resolver.allowsZeroSymbols()) |
| 1154 | report_fatal_error(reason: Twine("Program used external function '" ) + Name + |
| 1155 | "' which could not be resolved!" ); |
| 1156 | |
| 1157 | // If Resolver returned UINT64_MAX, the client wants to handle this symbol |
| 1158 | // manually and we shouldn't resolve its relocations. |
| 1159 | if (Addr != UINT64_MAX) { |
| 1160 | |
| 1161 | // Tweak the address based on the symbol flags if necessary. |
| 1162 | // For example, this is used by RuntimeDyldMachOARM to toggle the low bit |
| 1163 | // if the target symbol is Thumb. |
| 1164 | Addr = modifyAddressBasedOnFlags(Addr, Flags); |
| 1165 | |
| 1166 | LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" |
| 1167 | << format("0x%lx" , Addr) << "\n" ); |
| 1168 | resolveRelocationList(Relocs, Value: Addr); |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | ExternalSymbolRelocations.clear(); |
| 1173 | } |
| 1174 | |
| 1175 | Error RuntimeDyldImpl::resolveExternalSymbols() { |
| 1176 | StringMap<JITEvaluatedSymbol> ExternalSymbolMap; |
| 1177 | |
| 1178 | // Resolution can trigger emission of more symbols, so iterate until |
| 1179 | // we've resolved *everything*. |
| 1180 | { |
| 1181 | JITSymbolResolver::LookupSet ResolvedSymbols; |
| 1182 | |
| 1183 | while (true) { |
| 1184 | JITSymbolResolver::LookupSet NewSymbols; |
| 1185 | |
| 1186 | for (auto &RelocKV : ExternalSymbolRelocations) { |
| 1187 | StringRef Name = RelocKV.first(); |
| 1188 | if (!Name.empty() && !GlobalSymbolTable.count(Key: Name) && |
| 1189 | !ResolvedSymbols.count(x: Name)) |
| 1190 | NewSymbols.insert(x: Name); |
| 1191 | } |
| 1192 | |
| 1193 | if (NewSymbols.empty()) |
| 1194 | break; |
| 1195 | |
| 1196 | #ifdef _MSC_VER |
| 1197 | using ExpectedLookupResult = |
| 1198 | MSVCPExpected<JITSymbolResolver::LookupResult>; |
| 1199 | #else |
| 1200 | using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; |
| 1201 | #endif |
| 1202 | |
| 1203 | auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); |
| 1204 | auto NewSymbolsF = NewSymbolsP->get_future(); |
| 1205 | Resolver.lookup(Symbols: NewSymbols, |
| 1206 | OnResolved: [=](Expected<JITSymbolResolver::LookupResult> Result) { |
| 1207 | NewSymbolsP->set_value(std::move(Result)); |
| 1208 | }); |
| 1209 | |
| 1210 | auto NewResolverResults = NewSymbolsF.get(); |
| 1211 | |
| 1212 | if (!NewResolverResults) |
| 1213 | return NewResolverResults.takeError(); |
| 1214 | |
| 1215 | assert(NewResolverResults->size() == NewSymbols.size() && |
| 1216 | "Should have errored on unresolved symbols" ); |
| 1217 | |
| 1218 | for (auto &RRKV : *NewResolverResults) { |
| 1219 | assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?" ); |
| 1220 | ExternalSymbolMap.insert(KV: RRKV); |
| 1221 | ResolvedSymbols.insert(x: RRKV.first); |
| 1222 | } |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | applyExternalSymbolRelocations(ExternalSymbolMap); |
| 1227 | |
| 1228 | return Error::success(); |
| 1229 | } |
| 1230 | |
| 1231 | void RuntimeDyldImpl::finalizeAsync( |
| 1232 | std::unique_ptr<RuntimeDyldImpl> This, |
| 1233 | unique_function<void(object::OwningBinary<object::ObjectFile>, |
| 1234 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> |
| 1235 | OnEmitted, |
| 1236 | object::OwningBinary<object::ObjectFile> O, |
| 1237 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) { |
| 1238 | |
| 1239 | auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); |
| 1240 | auto PostResolveContinuation = |
| 1241 | [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O), |
| 1242 | Info = std::move(Info)]( |
| 1243 | Expected<JITSymbolResolver::LookupResult> Result) mutable { |
| 1244 | if (!Result) { |
| 1245 | OnEmitted(std::move(O), std::move(Info), Result.takeError()); |
| 1246 | return; |
| 1247 | } |
| 1248 | |
| 1249 | /// Copy the result into a StringMap, where the keys are held by value. |
| 1250 | StringMap<JITEvaluatedSymbol> Resolved; |
| 1251 | for (auto &KV : *Result) |
| 1252 | Resolved[KV.first] = KV.second; |
| 1253 | |
| 1254 | SharedThis->applyExternalSymbolRelocations(ExternalSymbolMap: Resolved); |
| 1255 | SharedThis->resolveLocalRelocations(); |
| 1256 | SharedThis->registerEHFrames(); |
| 1257 | std::string ErrMsg; |
| 1258 | if (SharedThis->MemMgr.finalizeMemory(ErrMsg: &ErrMsg)) |
| 1259 | OnEmitted(std::move(O), std::move(Info), |
| 1260 | make_error<StringError>(Args: std::move(ErrMsg), |
| 1261 | Args: inconvertibleErrorCode())); |
| 1262 | else |
| 1263 | OnEmitted(std::move(O), std::move(Info), Error::success()); |
| 1264 | }; |
| 1265 | |
| 1266 | JITSymbolResolver::LookupSet Symbols; |
| 1267 | |
| 1268 | for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { |
| 1269 | StringRef Name = RelocKV.first(); |
| 1270 | if (Name.empty()) // Skip absolute symbol relocations. |
| 1271 | continue; |
| 1272 | assert(!SharedThis->GlobalSymbolTable.count(Name) && |
| 1273 | "Name already processed. RuntimeDyld instances can not be re-used " |
| 1274 | "when finalizing with finalizeAsync." ); |
| 1275 | Symbols.insert(x: Name); |
| 1276 | } |
| 1277 | |
| 1278 | if (!Symbols.empty()) { |
| 1279 | SharedThis->Resolver.lookup(Symbols, OnResolved: std::move(PostResolveContinuation)); |
| 1280 | } else |
| 1281 | PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); |
| 1282 | } |
| 1283 | |
| 1284 | //===----------------------------------------------------------------------===// |
| 1285 | // RuntimeDyld class implementation |
| 1286 | |
| 1287 | uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( |
| 1288 | const object::SectionRef &Sec) const { |
| 1289 | |
| 1290 | auto I = ObjSecToIDMap.find(x: Sec); |
| 1291 | if (I != ObjSecToIDMap.end()) |
| 1292 | return RTDyld.Sections[I->second].getLoadAddress(); |
| 1293 | |
| 1294 | return 0; |
| 1295 | } |
| 1296 | |
| 1297 | RuntimeDyld::MemoryManager::TLSSection |
| 1298 | RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size, |
| 1299 | unsigned Alignment, |
| 1300 | unsigned SectionID, |
| 1301 | StringRef SectionName) { |
| 1302 | report_fatal_error(reason: "allocation of TLS not implemented" ); |
| 1303 | } |
| 1304 | |
| 1305 | void RuntimeDyld::MemoryManager::anchor() {} |
| 1306 | void JITSymbolResolver::anchor() {} |
| 1307 | void LegacyJITSymbolResolver::anchor() {} |
| 1308 | |
| 1309 | RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, |
| 1310 | JITSymbolResolver &Resolver) |
| 1311 | : MemMgr(MemMgr), Resolver(Resolver) { |
| 1312 | // FIXME: There's a potential issue lurking here if a single instance of |
| 1313 | // RuntimeDyld is used to load multiple objects. The current implementation |
| 1314 | // associates a single memory manager with a RuntimeDyld instance. Even |
| 1315 | // though the public class spawns a new 'impl' instance for each load, |
| 1316 | // they share a single memory manager. This can become a problem when page |
| 1317 | // permissions are applied. |
| 1318 | Dyld = nullptr; |
| 1319 | ProcessAllSections = false; |
| 1320 | } |
| 1321 | |
| 1322 | RuntimeDyld::~RuntimeDyld() = default; |
| 1323 | |
| 1324 | static std::unique_ptr<RuntimeDyldCOFF> |
| 1325 | createRuntimeDyldCOFF( |
| 1326 | Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, |
| 1327 | JITSymbolResolver &Resolver, bool ProcessAllSections, |
| 1328 | RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { |
| 1329 | std::unique_ptr<RuntimeDyldCOFF> Dyld = |
| 1330 | RuntimeDyldCOFF::create(Arch, MemMgr&: MM, Resolver); |
| 1331 | Dyld->setProcessAllSections(ProcessAllSections); |
| 1332 | Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); |
| 1333 | return Dyld; |
| 1334 | } |
| 1335 | |
| 1336 | static std::unique_ptr<RuntimeDyldELF> |
| 1337 | createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, |
| 1338 | JITSymbolResolver &Resolver, bool ProcessAllSections, |
| 1339 | RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { |
| 1340 | std::unique_ptr<RuntimeDyldELF> Dyld = |
| 1341 | RuntimeDyldELF::create(Arch, MemMgr&: MM, Resolver); |
| 1342 | Dyld->setProcessAllSections(ProcessAllSections); |
| 1343 | Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); |
| 1344 | return Dyld; |
| 1345 | } |
| 1346 | |
| 1347 | static std::unique_ptr<RuntimeDyldMachO> |
| 1348 | createRuntimeDyldMachO( |
| 1349 | Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, |
| 1350 | JITSymbolResolver &Resolver, |
| 1351 | bool ProcessAllSections, |
| 1352 | RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { |
| 1353 | std::unique_ptr<RuntimeDyldMachO> Dyld = |
| 1354 | RuntimeDyldMachO::create(Arch, MemMgr&: MM, Resolver); |
| 1355 | Dyld->setProcessAllSections(ProcessAllSections); |
| 1356 | Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); |
| 1357 | return Dyld; |
| 1358 | } |
| 1359 | |
| 1360 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> |
| 1361 | RuntimeDyld::loadObject(const ObjectFile &Obj) { |
| 1362 | if (!Dyld) { |
| 1363 | if (Obj.isELF()) |
| 1364 | Dyld = |
| 1365 | createRuntimeDyldELF(Arch: static_cast<Triple::ArchType>(Obj.getArch()), |
| 1366 | MM&: MemMgr, Resolver, ProcessAllSections, |
| 1367 | NotifyStubEmitted: std::move(NotifyStubEmitted)); |
| 1368 | else if (Obj.isMachO()) |
| 1369 | Dyld = createRuntimeDyldMachO( |
| 1370 | Arch: static_cast<Triple::ArchType>(Obj.getArch()), MM&: MemMgr, Resolver, |
| 1371 | ProcessAllSections, NotifyStubEmitted: std::move(NotifyStubEmitted)); |
| 1372 | else if (Obj.isCOFF()) |
| 1373 | Dyld = createRuntimeDyldCOFF( |
| 1374 | Arch: static_cast<Triple::ArchType>(Obj.getArch()), MM&: MemMgr, Resolver, |
| 1375 | ProcessAllSections, NotifyStubEmitted: std::move(NotifyStubEmitted)); |
| 1376 | else |
| 1377 | report_fatal_error(reason: "Incompatible object format!" ); |
| 1378 | } |
| 1379 | |
| 1380 | if (!Dyld->isCompatibleFile(Obj)) |
| 1381 | report_fatal_error(reason: "Incompatible object format!" ); |
| 1382 | |
| 1383 | auto LoadedObjInfo = Dyld->loadObject(Obj); |
| 1384 | MemMgr.notifyObjectLoaded(RTDyld&: *this, Obj); |
| 1385 | return LoadedObjInfo; |
| 1386 | } |
| 1387 | |
| 1388 | void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { |
| 1389 | if (!Dyld) |
| 1390 | return nullptr; |
| 1391 | return Dyld->getSymbolLocalAddress(Name); |
| 1392 | } |
| 1393 | |
| 1394 | unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { |
| 1395 | assert(Dyld && "No RuntimeDyld instance attached" ); |
| 1396 | return Dyld->getSymbolSectionID(Name); |
| 1397 | } |
| 1398 | |
| 1399 | JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { |
| 1400 | if (!Dyld) |
| 1401 | return nullptr; |
| 1402 | return Dyld->getSymbol(Name); |
| 1403 | } |
| 1404 | |
| 1405 | std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { |
| 1406 | if (!Dyld) |
| 1407 | return std::map<StringRef, JITEvaluatedSymbol>(); |
| 1408 | return Dyld->getSymbolTable(); |
| 1409 | } |
| 1410 | |
| 1411 | void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } |
| 1412 | |
| 1413 | void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { |
| 1414 | Dyld->reassignSectionAddress(SectionID, Addr); |
| 1415 | } |
| 1416 | |
| 1417 | void RuntimeDyld::mapSectionAddress(const void *LocalAddress, |
| 1418 | uint64_t TargetAddress) { |
| 1419 | Dyld->mapSectionAddress(LocalAddress, TargetAddress); |
| 1420 | } |
| 1421 | |
| 1422 | bool RuntimeDyld::hasError() { return Dyld->hasError(); } |
| 1423 | |
| 1424 | StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } |
| 1425 | |
| 1426 | void RuntimeDyld::finalizeWithMemoryManagerLocking() { |
| 1427 | bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; |
| 1428 | MemMgr.FinalizationLocked = true; |
| 1429 | resolveRelocations(); |
| 1430 | registerEHFrames(); |
| 1431 | if (!MemoryFinalizationLocked) { |
| 1432 | MemMgr.finalizeMemory(); |
| 1433 | MemMgr.FinalizationLocked = false; |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { |
| 1438 | assert(Dyld && "No Dyld instance attached" ); |
| 1439 | return Dyld->getSectionContent(SectionID); |
| 1440 | } |
| 1441 | |
| 1442 | uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { |
| 1443 | assert(Dyld && "No Dyld instance attached" ); |
| 1444 | return Dyld->getSectionLoadAddress(SectionID); |
| 1445 | } |
| 1446 | |
| 1447 | void RuntimeDyld::registerEHFrames() { |
| 1448 | if (Dyld) |
| 1449 | Dyld->registerEHFrames(); |
| 1450 | } |
| 1451 | |
| 1452 | void RuntimeDyld::deregisterEHFrames() { |
| 1453 | if (Dyld) |
| 1454 | Dyld->deregisterEHFrames(); |
| 1455 | } |
| 1456 | // FIXME: Kill this with fire once we have a new JIT linker: this is only here |
| 1457 | // so that we can re-use RuntimeDyld's implementation without twisting the |
| 1458 | // interface any further for ORC's purposes. |
| 1459 | void jitLinkForORC( |
| 1460 | object::OwningBinary<object::ObjectFile> O, |
| 1461 | RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, |
| 1462 | bool ProcessAllSections, |
| 1463 | unique_function<Error(const object::ObjectFile &Obj, |
| 1464 | RuntimeDyld::LoadedObjectInfo &LoadedObj, |
| 1465 | std::map<StringRef, JITEvaluatedSymbol>)> |
| 1466 | OnLoaded, |
| 1467 | unique_function<void(object::OwningBinary<object::ObjectFile>, |
| 1468 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> |
| 1469 | OnEmitted) { |
| 1470 | |
| 1471 | RuntimeDyld RTDyld(MemMgr, Resolver); |
| 1472 | RTDyld.setProcessAllSections(ProcessAllSections); |
| 1473 | |
| 1474 | auto Info = RTDyld.loadObject(Obj: *O.getBinary()); |
| 1475 | |
| 1476 | if (RTDyld.hasError()) { |
| 1477 | OnEmitted(std::move(O), std::move(Info), |
| 1478 | make_error<StringError>(Args: RTDyld.getErrorString(), |
| 1479 | Args: inconvertibleErrorCode())); |
| 1480 | return; |
| 1481 | } |
| 1482 | |
| 1483 | if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) { |
| 1484 | OnEmitted(std::move(O), std::move(Info), std::move(Err)); |
| 1485 | return; |
| 1486 | } |
| 1487 | |
| 1488 | RuntimeDyldImpl::finalizeAsync(This: std::move(RTDyld.Dyld), OnEmitted: std::move(OnEmitted), |
| 1489 | O: std::move(O), Info: std::move(Info)); |
| 1490 | } |
| 1491 | |
| 1492 | } // end namespace llvm |
| 1493 | |