| 1 | //===- DIExpressionOptimizer.cpp - Constant folding of DIExpressions ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements functions to constant fold DIExpressions. Which were |
| 10 | // declared in DIExpressionOptimizer.h |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/BinaryFormat/Dwarf.h" |
| 15 | #include "llvm/IR/DebugInfoMetadata.h" |
| 16 | |
| 17 | using namespace llvm; |
| 18 | |
| 19 | /// Returns true if the Op is a DW_OP_constu. |
| 20 | static std::optional<uint64_t> isConstantVal(DIExpression::ExprOperand Op) { |
| 21 | if (Op.getOp() == dwarf::DW_OP_constu) |
| 22 | return Op.getArg(I: 0); |
| 23 | return std::nullopt; |
| 24 | } |
| 25 | |
| 26 | /// Returns true if an operation and operand result in a No Op. |
| 27 | static bool isNeutralElement(uint64_t Op, uint64_t Val) { |
| 28 | switch (Op) { |
| 29 | case dwarf::DW_OP_plus: |
| 30 | case dwarf::DW_OP_minus: |
| 31 | case dwarf::DW_OP_shl: |
| 32 | case dwarf::DW_OP_shr: |
| 33 | return Val == 0; |
| 34 | case dwarf::DW_OP_mul: |
| 35 | case dwarf::DW_OP_div: |
| 36 | return Val == 1; |
| 37 | default: |
| 38 | return false; |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | /// Try to fold \p Const1 and \p Const2 by applying \p Operator and returning |
| 43 | /// the result, if there is an overflow, return a std::nullopt. |
| 44 | static std::optional<uint64_t> |
| 45 | foldOperationIfPossible(uint64_t Const1, uint64_t Const2, |
| 46 | dwarf::LocationAtom Operator) { |
| 47 | |
| 48 | bool ResultOverflowed; |
| 49 | switch (Operator) { |
| 50 | case dwarf::DW_OP_plus: { |
| 51 | auto Result = SaturatingAdd(X: Const1, Y: Const2, ResultOverflowed: &ResultOverflowed); |
| 52 | if (ResultOverflowed) |
| 53 | return std::nullopt; |
| 54 | return Result; |
| 55 | } |
| 56 | case dwarf::DW_OP_minus: { |
| 57 | if (Const1 < Const2) |
| 58 | return std::nullopt; |
| 59 | return Const1 - Const2; |
| 60 | } |
| 61 | case dwarf::DW_OP_shl: { |
| 62 | if (Const2 >= std::numeric_limits<uint64_t>::digits || |
| 63 | static_cast<uint64_t>(countl_zero(Val: Const1)) < Const2) |
| 64 | return std::nullopt; |
| 65 | return Const1 << Const2; |
| 66 | } |
| 67 | case dwarf::DW_OP_shr: { |
| 68 | if (Const2 >= std::numeric_limits<uint64_t>::digits || |
| 69 | static_cast<uint64_t>(countr_zero(Val: Const1)) < Const2) |
| 70 | return std::nullopt; |
| 71 | return Const1 >> Const2; |
| 72 | } |
| 73 | case dwarf::DW_OP_mul: { |
| 74 | auto Result = SaturatingMultiply(X: Const1, Y: Const2, ResultOverflowed: &ResultOverflowed); |
| 75 | if (ResultOverflowed) |
| 76 | return std::nullopt; |
| 77 | return Result; |
| 78 | } |
| 79 | case dwarf::DW_OP_div: { |
| 80 | if (Const2) |
| 81 | return Const1 / Const2; |
| 82 | return std::nullopt; |
| 83 | } |
| 84 | default: |
| 85 | return std::nullopt; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | /// Returns true if the two operations \p Operator1 and \p Operator2 are |
| 90 | /// commutative and can be folded. |
| 91 | static bool operationsAreFoldableAndCommutative(dwarf::LocationAtom Operator1, |
| 92 | dwarf::LocationAtom Operator2) { |
| 93 | return Operator1 == Operator2 && |
| 94 | (Operator1 == dwarf::DW_OP_plus || Operator1 == dwarf::DW_OP_mul); |
| 95 | } |
| 96 | |
| 97 | /// Consume one operator and its operand(s). |
| 98 | static void consumeOneOperator(DIExpressionCursor &Cursor, uint64_t &Loc, |
| 99 | const DIExpression::ExprOperand &Op) { |
| 100 | Cursor.consume(N: 1); |
| 101 | Loc = Loc + Op.getSize(); |
| 102 | } |
| 103 | |
| 104 | /// Reset the Cursor to the beginning of the WorkingOps. |
| 105 | void startFromBeginning(uint64_t &Loc, DIExpressionCursor &Cursor, |
| 106 | ArrayRef<uint64_t> WorkingOps) { |
| 107 | Cursor.assignNewExpr(Expr: WorkingOps); |
| 108 | Loc = 0; |
| 109 | } |
| 110 | |
| 111 | /// This function will canonicalize: |
| 112 | /// 1. DW_OP_plus_uconst to DW_OP_constu <const-val> DW_OP_plus |
| 113 | /// 2. DW_OP_lit<n> to DW_OP_constu <n> |
| 114 | static SmallVector<uint64_t> |
| 115 | canonicalizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) { |
| 116 | DIExpressionCursor Cursor(WorkingOps); |
| 117 | uint64_t Loc = 0; |
| 118 | SmallVector<uint64_t> ResultOps; |
| 119 | while (Loc < WorkingOps.size()) { |
| 120 | auto Op = Cursor.peek(); |
| 121 | /// Expression has no operations, break. |
| 122 | if (!Op) |
| 123 | break; |
| 124 | auto OpRaw = Op->getOp(); |
| 125 | |
| 126 | if (OpRaw >= dwarf::DW_OP_lit0 && OpRaw <= dwarf::DW_OP_lit31) { |
| 127 | ResultOps.push_back(Elt: dwarf::DW_OP_constu); |
| 128 | ResultOps.push_back(Elt: OpRaw - dwarf::DW_OP_lit0); |
| 129 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 130 | continue; |
| 131 | } |
| 132 | if (OpRaw == dwarf::DW_OP_plus_uconst) { |
| 133 | ResultOps.push_back(Elt: dwarf::DW_OP_constu); |
| 134 | ResultOps.push_back(Elt: Op->getArg(I: 0)); |
| 135 | ResultOps.push_back(Elt: dwarf::DW_OP_plus); |
| 136 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 137 | continue; |
| 138 | } |
| 139 | uint64_t PrevLoc = Loc; |
| 140 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 141 | ResultOps.append(in_start: WorkingOps.begin() + PrevLoc, in_end: WorkingOps.begin() + Loc); |
| 142 | } |
| 143 | return ResultOps; |
| 144 | } |
| 145 | |
| 146 | /// This function will convert: |
| 147 | /// 1. DW_OP_constu <const-val> DW_OP_plus to DW_OP_plus_uconst |
| 148 | /// 2. DW_OP_constu, 0 to DW_OP_lit0 |
| 149 | static SmallVector<uint64_t> |
| 150 | optimizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) { |
| 151 | DIExpressionCursor Cursor(WorkingOps); |
| 152 | uint64_t Loc = 0; |
| 153 | SmallVector<uint64_t> ResultOps; |
| 154 | while (Loc < WorkingOps.size()) { |
| 155 | auto Op1 = Cursor.peek(); |
| 156 | /// Expression has no operations, exit. |
| 157 | if (!Op1) |
| 158 | break; |
| 159 | auto Op1Raw = Op1->getOp(); |
| 160 | |
| 161 | if (Op1Raw == dwarf::DW_OP_constu && Op1->getArg(I: 0) == 0) { |
| 162 | ResultOps.push_back(Elt: dwarf::DW_OP_lit0); |
| 163 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 164 | continue; |
| 165 | } |
| 166 | |
| 167 | auto Op2 = Cursor.peekNext(); |
| 168 | /// Expression has no more operations, copy into ResultOps and exit. |
| 169 | if (!Op2) { |
| 170 | uint64_t PrevLoc = Loc; |
| 171 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 172 | ResultOps.append(in_start: WorkingOps.begin() + PrevLoc, in_end: WorkingOps.begin() + Loc); |
| 173 | break; |
| 174 | } |
| 175 | auto Op2Raw = Op2->getOp(); |
| 176 | |
| 177 | if (Op1Raw == dwarf::DW_OP_constu && Op2Raw == dwarf::DW_OP_plus) { |
| 178 | ResultOps.push_back(Elt: dwarf::DW_OP_plus_uconst); |
| 179 | ResultOps.push_back(Elt: Op1->getArg(I: 0)); |
| 180 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 181 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 182 | continue; |
| 183 | } |
| 184 | uint64_t PrevLoc = Loc; |
| 185 | consumeOneOperator(Cursor, Loc, Op: *Cursor.peek()); |
| 186 | ResultOps.append(in_start: WorkingOps.begin() + PrevLoc, in_end: WorkingOps.begin() + Loc); |
| 187 | } |
| 188 | return ResultOps; |
| 189 | } |
| 190 | |
| 191 | /// {DW_OP_constu, 0, DW_OP_[plus, minus, shl, shr]} -> {} |
| 192 | /// {DW_OP_constu, 1, DW_OP_[mul, div]} -> {} |
| 193 | static bool tryFoldNoOpMath(uint64_t Const1, |
| 194 | ArrayRef<DIExpression::ExprOperand> Ops, |
| 195 | uint64_t &Loc, DIExpressionCursor &Cursor, |
| 196 | SmallVectorImpl<uint64_t> &WorkingOps) { |
| 197 | |
| 198 | if (isNeutralElement(Op: Ops[1].getOp(), Val: Const1)) { |
| 199 | WorkingOps.erase(CS: WorkingOps.begin() + Loc, CE: WorkingOps.begin() + Loc + 3); |
| 200 | startFromBeginning(Loc, Cursor, WorkingOps); |
| 201 | return true; |
| 202 | } |
| 203 | return false; |
| 204 | } |
| 205 | |
| 206 | /// {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_[plus, |
| 207 | /// minus, mul, div, shl, shr] -> {DW_OP_constu, Const1 [+, -, *, /, <<, >>] |
| 208 | /// Const2} |
| 209 | static bool tryFoldConstants(uint64_t Const1, |
| 210 | ArrayRef<DIExpression::ExprOperand> Ops, |
| 211 | uint64_t &Loc, DIExpressionCursor &Cursor, |
| 212 | SmallVectorImpl<uint64_t> &WorkingOps) { |
| 213 | |
| 214 | auto Const2 = isConstantVal(Op: Ops[1]); |
| 215 | if (!Const2) |
| 216 | return false; |
| 217 | |
| 218 | auto Result = foldOperationIfPossible( |
| 219 | Const1, Const2: *Const2, Operator: static_cast<dwarf::LocationAtom>(Ops[2].getOp())); |
| 220 | if (!Result) { |
| 221 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 222 | return true; |
| 223 | } |
| 224 | WorkingOps.erase(CS: WorkingOps.begin() + Loc + 2, CE: WorkingOps.begin() + Loc + 5); |
| 225 | WorkingOps[Loc] = dwarf::DW_OP_constu; |
| 226 | WorkingOps[Loc + 1] = *Result; |
| 227 | startFromBeginning(Loc, Cursor, WorkingOps); |
| 228 | return true; |
| 229 | } |
| 230 | |
| 231 | /// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_constu, Const2, |
| 232 | /// DW_OP_[plus, mul]} -> {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus, |
| 233 | /// mul]} |
| 234 | static bool tryFoldCommutativeMath(uint64_t Const1, |
| 235 | ArrayRef<DIExpression::ExprOperand> Ops, |
| 236 | uint64_t &Loc, DIExpressionCursor &Cursor, |
| 237 | SmallVectorImpl<uint64_t> &WorkingOps) { |
| 238 | |
| 239 | auto Const2 = isConstantVal(Op: Ops[2]); |
| 240 | auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp()); |
| 241 | auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp()); |
| 242 | |
| 243 | if (!Const2 || !operationsAreFoldableAndCommutative(Operator1: Operand1, Operator2: Operand2)) |
| 244 | return false; |
| 245 | |
| 246 | auto Result = foldOperationIfPossible(Const1, Const2: *Const2, Operator: Operand1); |
| 247 | if (!Result) { |
| 248 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 249 | return true; |
| 250 | } |
| 251 | WorkingOps.erase(CS: WorkingOps.begin() + Loc + 3, CE: WorkingOps.begin() + Loc + 6); |
| 252 | WorkingOps[Loc] = dwarf::DW_OP_constu; |
| 253 | WorkingOps[Loc + 1] = *Result; |
| 254 | startFromBeginning(Loc, Cursor, WorkingOps); |
| 255 | return true; |
| 256 | } |
| 257 | |
| 258 | /// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_LLVM_arg, Arg1, |
| 259 | /// DW_OP_[plus, mul], DW_OP_constu, Const2, DW_OP_[plus, mul]} -> |
| 260 | /// {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus, mul], DW_OP_LLVM_arg, |
| 261 | /// Arg1, DW_OP_[plus, mul]} |
| 262 | static bool tryFoldCommutativeMathWithArgInBetween( |
| 263 | uint64_t Const1, ArrayRef<DIExpression::ExprOperand> Ops, uint64_t &Loc, |
| 264 | DIExpressionCursor &Cursor, SmallVectorImpl<uint64_t> &WorkingOps) { |
| 265 | |
| 266 | auto Const2 = isConstantVal(Op: Ops[4]); |
| 267 | auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp()); |
| 268 | auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp()); |
| 269 | auto Operand3 = static_cast<dwarf::LocationAtom>(Ops[5].getOp()); |
| 270 | |
| 271 | if (!Const2 || Ops[2].getOp() != dwarf::DW_OP_LLVM_arg || |
| 272 | !operationsAreFoldableAndCommutative(Operator1: Operand1, Operator2: Operand2) || |
| 273 | !operationsAreFoldableAndCommutative(Operator1: Operand2, Operator2: Operand3)) |
| 274 | return false; |
| 275 | |
| 276 | auto Result = foldOperationIfPossible(Const1, Const2: *Const2, Operator: Operand1); |
| 277 | if (!Result) { |
| 278 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 279 | return true; |
| 280 | } |
| 281 | WorkingOps.erase(CS: WorkingOps.begin() + Loc + 6, CE: WorkingOps.begin() + Loc + 9); |
| 282 | WorkingOps[Loc] = dwarf::DW_OP_constu; |
| 283 | WorkingOps[Loc + 1] = *Result; |
| 284 | startFromBeginning(Loc, Cursor, WorkingOps); |
| 285 | return true; |
| 286 | } |
| 287 | |
| 288 | DIExpression *DIExpression::foldConstantMath() { |
| 289 | |
| 290 | SmallVector<uint64_t, 8> WorkingOps(Elements.begin(), Elements.end()); |
| 291 | uint64_t Loc = 0; |
| 292 | SmallVector<uint64_t> ResultOps = canonicalizeDwarfOperations(WorkingOps); |
| 293 | DIExpressionCursor Cursor(ResultOps); |
| 294 | SmallVector<DIExpression::ExprOperand, 8> Ops; |
| 295 | |
| 296 | // Iterate over all Operations in a DIExpression to match the smallest pattern |
| 297 | // that can be folded. |
| 298 | while (Loc < ResultOps.size()) { |
| 299 | Ops.clear(); |
| 300 | |
| 301 | auto Op = Cursor.peek(); |
| 302 | // Expression has no operations, exit. |
| 303 | if (!Op) |
| 304 | break; |
| 305 | |
| 306 | auto Const1 = isConstantVal(Op: *Op); |
| 307 | |
| 308 | if (!Const1) { |
| 309 | // Early exit, all of the following patterns start with a constant value. |
| 310 | consumeOneOperator(Cursor, Loc, Op: *Op); |
| 311 | continue; |
| 312 | } |
| 313 | |
| 314 | Ops.push_back(Elt: *Op); |
| 315 | |
| 316 | Op = Cursor.peekNext(); |
| 317 | // All following patterns require at least 2 Operations, exit. |
| 318 | if (!Op) |
| 319 | break; |
| 320 | |
| 321 | Ops.push_back(Elt: *Op); |
| 322 | |
| 323 | // Try to fold a constant no-op, such as {+ 0} |
| 324 | if (tryFoldNoOpMath(Const1: *Const1, Ops, Loc, Cursor, WorkingOps&: ResultOps)) |
| 325 | continue; |
| 326 | |
| 327 | Op = Cursor.peekNextN(N: 2); |
| 328 | // Op[1] could still match a pattern, skip iteration. |
| 329 | if (!Op) { |
| 330 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 331 | continue; |
| 332 | } |
| 333 | |
| 334 | Ops.push_back(Elt: *Op); |
| 335 | |
| 336 | // Try to fold a pattern of two constants such as {C1 + C2}. |
| 337 | if (tryFoldConstants(Const1: *Const1, Ops, Loc, Cursor, WorkingOps&: ResultOps)) |
| 338 | continue; |
| 339 | |
| 340 | Op = Cursor.peekNextN(N: 3); |
| 341 | // Op[1] and Op[2] could still match a pattern, skip iteration. |
| 342 | if (!Op) { |
| 343 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 344 | continue; |
| 345 | } |
| 346 | |
| 347 | Ops.push_back(Elt: *Op); |
| 348 | |
| 349 | // Try to fold commutative constant math, such as {C1 + C2 +}. |
| 350 | if (tryFoldCommutativeMath(Const1: *Const1, Ops, Loc, Cursor, WorkingOps&: ResultOps)) |
| 351 | continue; |
| 352 | |
| 353 | Op = Cursor.peekNextN(N: 4); |
| 354 | if (!Op) { |
| 355 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 356 | continue; |
| 357 | } |
| 358 | |
| 359 | Ops.push_back(Elt: *Op); |
| 360 | Op = Cursor.peekNextN(N: 5); |
| 361 | if (!Op) { |
| 362 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 363 | continue; |
| 364 | } |
| 365 | |
| 366 | Ops.push_back(Elt: *Op); |
| 367 | |
| 368 | // Try to fold commutative constant math with an LLVM_Arg in between, such |
| 369 | // as {C1 + Arg + C2 +}. |
| 370 | if (tryFoldCommutativeMathWithArgInBetween(Const1: *Const1, Ops, Loc, Cursor, |
| 371 | WorkingOps&: ResultOps)) |
| 372 | continue; |
| 373 | |
| 374 | consumeOneOperator(Cursor, Loc, Op: Ops[0]); |
| 375 | } |
| 376 | ResultOps = optimizeDwarfOperations(WorkingOps: ResultOps); |
| 377 | auto *Result = DIExpression::get(Context&: getContext(), Elements: ResultOps); |
| 378 | assert(Result->isValid() && "concatenated expression is not valid" ); |
| 379 | return Result; |
| 380 | } |
| 381 | |