1 | //===- Dominators.cpp - Dominator Calculation -----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements simple dominator construction algorithms for finding |
10 | // forward dominators. Postdominators are available in libanalysis, but are not |
11 | // included in libvmcore, because it's not needed. Forward dominators are |
12 | // needed to support the Verifier pass. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/IR/Dominators.h" |
17 | #include "llvm/ADT/StringRef.h" |
18 | #include "llvm/Config/llvm-config.h" |
19 | #include "llvm/IR/CFG.h" |
20 | #include "llvm/IR/Function.h" |
21 | #include "llvm/IR/Instruction.h" |
22 | #include "llvm/IR/Instructions.h" |
23 | #include "llvm/IR/PassManager.h" |
24 | #include "llvm/InitializePasses.h" |
25 | #include "llvm/PassRegistry.h" |
26 | #include "llvm/Support/Casting.h" |
27 | #include "llvm/Support/CommandLine.h" |
28 | #include "llvm/Support/Compiler.h" |
29 | #include "llvm/Support/GenericDomTreeConstruction.h" |
30 | #include "llvm/Support/raw_ostream.h" |
31 | |
32 | #include <cassert> |
33 | |
34 | namespace llvm { |
35 | class Argument; |
36 | class Constant; |
37 | class Value; |
38 | } // namespace llvm |
39 | using namespace llvm; |
40 | |
41 | bool llvm::VerifyDomInfo = false; |
42 | static cl::opt<bool, true> |
43 | VerifyDomInfoX("verify-dom-info" , cl::location(L&: VerifyDomInfo), cl::Hidden, |
44 | cl::desc("Verify dominator info (time consuming)" )); |
45 | |
46 | #ifdef EXPENSIVE_CHECKS |
47 | static constexpr bool ExpensiveChecksEnabled = true; |
48 | #else |
49 | static constexpr bool ExpensiveChecksEnabled = false; |
50 | #endif |
51 | |
52 | bool BasicBlockEdge::isSingleEdge() const { |
53 | unsigned NumEdgesToEnd = 0; |
54 | for (const BasicBlock *Succ : successors(BB: Start)) { |
55 | if (Succ == End) |
56 | ++NumEdgesToEnd; |
57 | if (NumEdgesToEnd >= 2) |
58 | return false; |
59 | } |
60 | assert(NumEdgesToEnd == 1); |
61 | return true; |
62 | } |
63 | |
64 | //===----------------------------------------------------------------------===// |
65 | // DominatorTree Implementation |
66 | //===----------------------------------------------------------------------===// |
67 | // |
68 | // Provide public access to DominatorTree information. Implementation details |
69 | // can be found in Dominators.h, GenericDomTree.h, and |
70 | // GenericDomTreeConstruction.h. |
71 | // |
72 | //===----------------------------------------------------------------------===// |
73 | |
74 | template class LLVM_EXPORT_TEMPLATE llvm::DomTreeNodeBase<BasicBlock>; |
75 | template class LLVM_EXPORT_TEMPLATE |
76 | llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase |
77 | template class LLVM_EXPORT_TEMPLATE |
78 | llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase |
79 | |
80 | template class llvm::cfg::Update<BasicBlock *>; |
81 | |
82 | template LLVM_EXPORT_TEMPLATE void |
83 | llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( |
84 | DomTreeBuilder::BBDomTree &DT); |
85 | template LLVM_EXPORT_TEMPLATE void |
86 | llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( |
87 | DomTreeBuilder::BBDomTree &DT, BBUpdates U); |
88 | |
89 | template LLVM_EXPORT_TEMPLATE void |
90 | llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( |
91 | DomTreeBuilder::BBPostDomTree &DT); |
92 | // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. |
93 | |
94 | template LLVM_EXPORT_TEMPLATE void |
95 | llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( |
96 | DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); |
97 | template LLVM_EXPORT_TEMPLATE void |
98 | llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( |
99 | DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); |
100 | |
101 | template LLVM_EXPORT_TEMPLATE void |
102 | llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( |
103 | DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); |
104 | template LLVM_EXPORT_TEMPLATE void |
105 | llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( |
106 | DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); |
107 | |
108 | template LLVM_EXPORT_TEMPLATE void |
109 | llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( |
110 | DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &, |
111 | DomTreeBuilder::BBDomTreeGraphDiff *); |
112 | template LLVM_EXPORT_TEMPLATE void |
113 | llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( |
114 | DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &, |
115 | DomTreeBuilder::BBPostDomTreeGraphDiff *); |
116 | |
117 | template LLVM_EXPORT_TEMPLATE bool |
118 | llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( |
119 | const DomTreeBuilder::BBDomTree &DT, |
120 | DomTreeBuilder::BBDomTree::VerificationLevel VL); |
121 | template LLVM_EXPORT_TEMPLATE bool |
122 | llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( |
123 | const DomTreeBuilder::BBPostDomTree &DT, |
124 | DomTreeBuilder::BBPostDomTree::VerificationLevel VL); |
125 | |
126 | bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, |
127 | FunctionAnalysisManager::Invalidator &) { |
128 | // Check whether the analysis, all analyses on functions, or the function's |
129 | // CFG have been preserved. |
130 | auto PAC = PA.getChecker<DominatorTreeAnalysis>(); |
131 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || |
132 | PAC.preservedSet<CFGAnalyses>()); |
133 | } |
134 | |
135 | bool DominatorTree::dominates(const BasicBlock *BB, const Use &U) const { |
136 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
137 | if (auto *PN = dyn_cast<PHINode>(Val: UserInst)) |
138 | // A phi use using a value from a block is dominated by the end of that |
139 | // block. Note that the phi's parent block may not be. |
140 | return dominates(A: BB, B: PN->getIncomingBlock(U)); |
141 | else |
142 | return properlyDominates(A: BB, B: UserInst->getParent()); |
143 | } |
144 | |
145 | // dominates - Return true if Def dominates a use in User. This performs |
146 | // the special checks necessary if Def and User are in the same basic block. |
147 | // Note that Def doesn't dominate a use in Def itself! |
148 | bool DominatorTree::dominates(const Value *DefV, |
149 | const Instruction *User) const { |
150 | const Instruction *Def = dyn_cast<Instruction>(Val: DefV); |
151 | if (!Def) { |
152 | assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && |
153 | "Should be called with an instruction, argument or constant" ); |
154 | return true; // Arguments and constants dominate everything. |
155 | } |
156 | |
157 | const BasicBlock *UseBB = User->getParent(); |
158 | const BasicBlock *DefBB = Def->getParent(); |
159 | |
160 | // Any unreachable use is dominated, even if Def == User. |
161 | if (!isReachableFromEntry(A: UseBB)) |
162 | return true; |
163 | |
164 | // Unreachable definitions don't dominate anything. |
165 | if (!isReachableFromEntry(A: DefBB)) |
166 | return false; |
167 | |
168 | // An instruction doesn't dominate a use in itself. |
169 | if (Def == User) |
170 | return false; |
171 | |
172 | // The value defined by an invoke dominates an instruction only if it |
173 | // dominates every instruction in UseBB. |
174 | // A PHI is dominated only if the instruction dominates every possible use in |
175 | // the UseBB. |
176 | if (isa<InvokeInst>(Val: Def) || isa<CallBrInst>(Val: Def) || isa<PHINode>(Val: User)) |
177 | return dominates(Def, BB: UseBB); |
178 | |
179 | if (DefBB != UseBB) |
180 | return dominates(A: DefBB, B: UseBB); |
181 | |
182 | return Def->comesBefore(Other: User); |
183 | } |
184 | |
185 | // true if Def would dominate a use in any instruction in UseBB. |
186 | // note that dominates(Def, Def->getParent()) is false. |
187 | bool DominatorTree::dominates(const Instruction *Def, |
188 | const BasicBlock *UseBB) const { |
189 | const BasicBlock *DefBB = Def->getParent(); |
190 | |
191 | // Any unreachable use is dominated, even if DefBB == UseBB. |
192 | if (!isReachableFromEntry(A: UseBB)) |
193 | return true; |
194 | |
195 | // Unreachable definitions don't dominate anything. |
196 | if (!isReachableFromEntry(A: DefBB)) |
197 | return false; |
198 | |
199 | if (DefBB == UseBB) |
200 | return false; |
201 | |
202 | // Invoke results are only usable in the normal destination, not in the |
203 | // exceptional destination. |
204 | if (const auto *II = dyn_cast<InvokeInst>(Val: Def)) { |
205 | BasicBlock *NormalDest = II->getNormalDest(); |
206 | BasicBlockEdge E(DefBB, NormalDest); |
207 | return dominates(BBE: E, BB: UseBB); |
208 | } |
209 | |
210 | return dominates(A: DefBB, B: UseBB); |
211 | } |
212 | |
213 | bool DominatorTree::dominates(const BasicBlockEdge &BBE, |
214 | const BasicBlock *UseBB) const { |
215 | // If the BB the edge ends in doesn't dominate the use BB, then the |
216 | // edge also doesn't. |
217 | const BasicBlock *Start = BBE.getStart(); |
218 | const BasicBlock *End = BBE.getEnd(); |
219 | if (!dominates(A: End, B: UseBB)) |
220 | return false; |
221 | |
222 | // Simple case: if the end BB has a single predecessor, the fact that it |
223 | // dominates the use block implies that the edge also does. |
224 | if (End->getSinglePredecessor()) |
225 | return true; |
226 | |
227 | // The normal edge from the invoke is critical. Conceptually, what we would |
228 | // like to do is split it and check if the new block dominates the use. |
229 | // With X being the new block, the graph would look like: |
230 | // |
231 | // DefBB |
232 | // /\ . . |
233 | // / \ . . |
234 | // / \ . . |
235 | // / \ | | |
236 | // A X B C |
237 | // | \ | / |
238 | // . \|/ |
239 | // . NormalDest |
240 | // . |
241 | // |
242 | // Given the definition of dominance, NormalDest is dominated by X iff X |
243 | // dominates all of NormalDest's predecessors (X, B, C in the example). X |
244 | // trivially dominates itself, so we only have to find if it dominates the |
245 | // other predecessors. Since the only way out of X is via NormalDest, X can |
246 | // only properly dominate a node if NormalDest dominates that node too. |
247 | int IsDuplicateEdge = 0; |
248 | for (const BasicBlock *BB : predecessors(BB: End)) { |
249 | if (BB == Start) { |
250 | // If there are multiple edges between Start and End, by definition they |
251 | // can't dominate anything. |
252 | if (IsDuplicateEdge++) |
253 | return false; |
254 | continue; |
255 | } |
256 | |
257 | if (!dominates(A: End, B: BB)) |
258 | return false; |
259 | } |
260 | return true; |
261 | } |
262 | |
263 | bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { |
264 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
265 | // A PHI in the end of the edge is dominated by it. |
266 | PHINode *PN = dyn_cast<PHINode>(Val: UserInst); |
267 | if (PN && PN->getParent() == BBE.getEnd() && |
268 | PN->getIncomingBlock(U) == BBE.getStart()) |
269 | return true; |
270 | |
271 | // Otherwise use the edge-dominates-block query, which |
272 | // handles the crazy critical edge cases properly. |
273 | const BasicBlock *UseBB; |
274 | if (PN) |
275 | UseBB = PN->getIncomingBlock(U); |
276 | else |
277 | UseBB = UserInst->getParent(); |
278 | return dominates(BBE, UseBB); |
279 | } |
280 | |
281 | bool DominatorTree::dominates(const Value *DefV, const Use &U) const { |
282 | const Instruction *Def = dyn_cast<Instruction>(Val: DefV); |
283 | if (!Def) { |
284 | assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && |
285 | "Should be called with an instruction, argument or constant" ); |
286 | return true; // Arguments and constants dominate everything. |
287 | } |
288 | |
289 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
290 | const BasicBlock *DefBB = Def->getParent(); |
291 | |
292 | // Determine the block in which the use happens. PHI nodes use |
293 | // their operands on edges; simulate this by thinking of the use |
294 | // happening at the end of the predecessor block. |
295 | const BasicBlock *UseBB; |
296 | if (PHINode *PN = dyn_cast<PHINode>(Val: UserInst)) |
297 | UseBB = PN->getIncomingBlock(U); |
298 | else |
299 | UseBB = UserInst->getParent(); |
300 | |
301 | // Any unreachable use is dominated, even if Def == User. |
302 | if (!isReachableFromEntry(A: UseBB)) |
303 | return true; |
304 | |
305 | // Unreachable definitions don't dominate anything. |
306 | if (!isReachableFromEntry(A: DefBB)) |
307 | return false; |
308 | |
309 | // Invoke instructions define their return values on the edges to their normal |
310 | // successors, so we have to handle them specially. |
311 | // Among other things, this means they don't dominate anything in |
312 | // their own block, except possibly a phi, so we don't need to |
313 | // walk the block in any case. |
314 | if (const InvokeInst *II = dyn_cast<InvokeInst>(Val: Def)) { |
315 | BasicBlock *NormalDest = II->getNormalDest(); |
316 | BasicBlockEdge E(DefBB, NormalDest); |
317 | return dominates(BBE: E, U); |
318 | } |
319 | |
320 | // If the def and use are in different blocks, do a simple CFG dominator |
321 | // tree query. |
322 | if (DefBB != UseBB) |
323 | return dominates(A: DefBB, B: UseBB); |
324 | |
325 | // Ok, def and use are in the same block. If the def is an invoke, it |
326 | // doesn't dominate anything in the block. If it's a PHI, it dominates |
327 | // everything in the block. |
328 | if (isa<PHINode>(Val: UserInst)) |
329 | return true; |
330 | |
331 | return Def->comesBefore(Other: UserInst); |
332 | } |
333 | |
334 | bool DominatorTree::isReachableFromEntry(const Use &U) const { |
335 | Instruction *I = dyn_cast<Instruction>(Val: U.getUser()); |
336 | |
337 | // ConstantExprs aren't really reachable from the entry block, but they |
338 | // don't need to be treated like unreachable code either. |
339 | if (!I) return true; |
340 | |
341 | // PHI nodes use their operands on their incoming edges. |
342 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) |
343 | return isReachableFromEntry(A: PN->getIncomingBlock(U)); |
344 | |
345 | // Everything else uses their operands in their own block. |
346 | return isReachableFromEntry(A: I->getParent()); |
347 | } |
348 | |
349 | // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2. |
350 | bool DominatorTree::dominates(const BasicBlockEdge &BBE1, |
351 | const BasicBlockEdge &BBE2) const { |
352 | if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd()) |
353 | return true; |
354 | return dominates(BBE: BBE1, UseBB: BBE2.getStart()); |
355 | } |
356 | |
357 | Instruction *DominatorTree::findNearestCommonDominator(Instruction *I1, |
358 | Instruction *I2) const { |
359 | BasicBlock *BB1 = I1->getParent(); |
360 | BasicBlock *BB2 = I2->getParent(); |
361 | if (BB1 == BB2) |
362 | return I1->comesBefore(Other: I2) ? I1 : I2; |
363 | if (!isReachableFromEntry(A: BB2)) |
364 | return I1; |
365 | if (!isReachableFromEntry(A: BB1)) |
366 | return I2; |
367 | BasicBlock *DomBB = findNearestCommonDominator(A: BB1, B: BB2); |
368 | if (BB1 == DomBB) |
369 | return I1; |
370 | if (BB2 == DomBB) |
371 | return I2; |
372 | return DomBB->getTerminator(); |
373 | } |
374 | |
375 | //===----------------------------------------------------------------------===// |
376 | // DominatorTreeAnalysis and related pass implementations |
377 | //===----------------------------------------------------------------------===// |
378 | // |
379 | // This implements the DominatorTreeAnalysis which is used with the new pass |
380 | // manager. It also implements some methods from utility passes. |
381 | // |
382 | //===----------------------------------------------------------------------===// |
383 | |
384 | DominatorTree DominatorTreeAnalysis::run(Function &F, |
385 | FunctionAnalysisManager &) { |
386 | DominatorTree DT; |
387 | DT.recalculate(Func&: F); |
388 | return DT; |
389 | } |
390 | |
391 | AnalysisKey DominatorTreeAnalysis::Key; |
392 | |
393 | DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} |
394 | |
395 | PreservedAnalyses DominatorTreePrinterPass::run(Function &F, |
396 | FunctionAnalysisManager &AM) { |
397 | OS << "DominatorTree for function: " << F.getName() << "\n" ; |
398 | AM.getResult<DominatorTreeAnalysis>(IR&: F).print(O&: OS); |
399 | |
400 | return PreservedAnalyses::all(); |
401 | } |
402 | |
403 | PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, |
404 | FunctionAnalysisManager &AM) { |
405 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
406 | assert(DT.verify()); |
407 | (void)DT; |
408 | return PreservedAnalyses::all(); |
409 | } |
410 | |
411 | //===----------------------------------------------------------------------===// |
412 | // DominatorTreeWrapperPass Implementation |
413 | //===----------------------------------------------------------------------===// |
414 | // |
415 | // The implementation details of the wrapper pass that holds a DominatorTree |
416 | // suitable for use with the legacy pass manager. |
417 | // |
418 | //===----------------------------------------------------------------------===// |
419 | |
420 | char DominatorTreeWrapperPass::ID = 0; |
421 | |
422 | DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) { |
423 | initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); |
424 | } |
425 | |
426 | INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree" , |
427 | "Dominator Tree Construction" , true, true) |
428 | |
429 | bool DominatorTreeWrapperPass::runOnFunction(Function &F) { |
430 | DT.recalculate(Func&: F); |
431 | return false; |
432 | } |
433 | |
434 | void DominatorTreeWrapperPass::verifyAnalysis() const { |
435 | if (VerifyDomInfo) |
436 | assert(DT.verify(DominatorTree::VerificationLevel::Full)); |
437 | else if (ExpensiveChecksEnabled) |
438 | assert(DT.verify(DominatorTree::VerificationLevel::Basic)); |
439 | } |
440 | |
441 | void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { |
442 | DT.print(O&: OS); |
443 | } |
444 | |