| 1 | //===- Dominators.cpp - Dominator Calculation -----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements simple dominator construction algorithms for finding |
| 10 | // forward dominators. Postdominators are available in libanalysis, but are not |
| 11 | // included in libvmcore, because it's not needed. Forward dominators are |
| 12 | // needed to support the Verifier pass. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/IR/Dominators.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/Config/llvm-config.h" |
| 19 | #include "llvm/IR/CFG.h" |
| 20 | #include "llvm/IR/Function.h" |
| 21 | #include "llvm/IR/Instruction.h" |
| 22 | #include "llvm/IR/Instructions.h" |
| 23 | #include "llvm/IR/PassManager.h" |
| 24 | #include "llvm/InitializePasses.h" |
| 25 | #include "llvm/PassRegistry.h" |
| 26 | #include "llvm/Support/Casting.h" |
| 27 | #include "llvm/Support/CommandLine.h" |
| 28 | #include "llvm/Support/Compiler.h" |
| 29 | #include "llvm/Support/GenericDomTreeConstruction.h" |
| 30 | #include "llvm/Support/raw_ostream.h" |
| 31 | |
| 32 | #include <cassert> |
| 33 | |
| 34 | namespace llvm { |
| 35 | class Argument; |
| 36 | class Constant; |
| 37 | class Value; |
| 38 | } // namespace llvm |
| 39 | using namespace llvm; |
| 40 | |
| 41 | bool llvm::VerifyDomInfo = false; |
| 42 | static cl::opt<bool, true> |
| 43 | VerifyDomInfoX("verify-dom-info" , cl::location(L&: VerifyDomInfo), cl::Hidden, |
| 44 | cl::desc("Verify dominator info (time consuming)" )); |
| 45 | |
| 46 | #ifdef EXPENSIVE_CHECKS |
| 47 | static constexpr bool ExpensiveChecksEnabled = true; |
| 48 | #else |
| 49 | static constexpr bool ExpensiveChecksEnabled = false; |
| 50 | #endif |
| 51 | |
| 52 | bool BasicBlockEdge::isSingleEdge() const { |
| 53 | unsigned NumEdgesToEnd = 0; |
| 54 | for (const BasicBlock *Succ : successors(BB: Start)) { |
| 55 | if (Succ == End) |
| 56 | ++NumEdgesToEnd; |
| 57 | if (NumEdgesToEnd >= 2) |
| 58 | return false; |
| 59 | } |
| 60 | assert(NumEdgesToEnd == 1); |
| 61 | return true; |
| 62 | } |
| 63 | |
| 64 | //===----------------------------------------------------------------------===// |
| 65 | // DominatorTree Implementation |
| 66 | //===----------------------------------------------------------------------===// |
| 67 | // |
| 68 | // Provide public access to DominatorTree information. Implementation details |
| 69 | // can be found in Dominators.h, GenericDomTree.h, and |
| 70 | // GenericDomTreeConstruction.h. |
| 71 | // |
| 72 | //===----------------------------------------------------------------------===// |
| 73 | |
| 74 | template class LLVM_EXPORT_TEMPLATE llvm::DomTreeNodeBase<BasicBlock>; |
| 75 | template class LLVM_EXPORT_TEMPLATE |
| 76 | llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase |
| 77 | template class LLVM_EXPORT_TEMPLATE |
| 78 | llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase |
| 79 | |
| 80 | template class llvm::cfg::Update<BasicBlock *>; |
| 81 | |
| 82 | template LLVM_EXPORT_TEMPLATE void |
| 83 | llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( |
| 84 | DomTreeBuilder::BBDomTree &DT); |
| 85 | template LLVM_EXPORT_TEMPLATE void |
| 86 | llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( |
| 87 | DomTreeBuilder::BBDomTree &DT, BBUpdates U); |
| 88 | |
| 89 | template LLVM_EXPORT_TEMPLATE void |
| 90 | llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( |
| 91 | DomTreeBuilder::BBPostDomTree &DT); |
| 92 | // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. |
| 93 | |
| 94 | template LLVM_EXPORT_TEMPLATE void |
| 95 | llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( |
| 96 | DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); |
| 97 | template LLVM_EXPORT_TEMPLATE void |
| 98 | llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( |
| 99 | DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); |
| 100 | |
| 101 | template LLVM_EXPORT_TEMPLATE void |
| 102 | llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( |
| 103 | DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); |
| 104 | template LLVM_EXPORT_TEMPLATE void |
| 105 | llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( |
| 106 | DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); |
| 107 | |
| 108 | template LLVM_EXPORT_TEMPLATE void |
| 109 | llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( |
| 110 | DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &, |
| 111 | DomTreeBuilder::BBDomTreeGraphDiff *); |
| 112 | template LLVM_EXPORT_TEMPLATE void |
| 113 | llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( |
| 114 | DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &, |
| 115 | DomTreeBuilder::BBPostDomTreeGraphDiff *); |
| 116 | |
| 117 | template LLVM_EXPORT_TEMPLATE bool |
| 118 | llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( |
| 119 | const DomTreeBuilder::BBDomTree &DT, |
| 120 | DomTreeBuilder::BBDomTree::VerificationLevel VL); |
| 121 | template LLVM_EXPORT_TEMPLATE bool |
| 122 | llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( |
| 123 | const DomTreeBuilder::BBPostDomTree &DT, |
| 124 | DomTreeBuilder::BBPostDomTree::VerificationLevel VL); |
| 125 | |
| 126 | bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, |
| 127 | FunctionAnalysisManager::Invalidator &) { |
| 128 | // Check whether the analysis, all analyses on functions, or the function's |
| 129 | // CFG have been preserved. |
| 130 | auto PAC = PA.getChecker<DominatorTreeAnalysis>(); |
| 131 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || |
| 132 | PAC.preservedSet<CFGAnalyses>()); |
| 133 | } |
| 134 | |
| 135 | bool DominatorTree::dominates(const BasicBlock *BB, const Use &U) const { |
| 136 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
| 137 | if (auto *PN = dyn_cast<PHINode>(Val: UserInst)) |
| 138 | // A phi use using a value from a block is dominated by the end of that |
| 139 | // block. Note that the phi's parent block may not be. |
| 140 | return dominates(A: BB, B: PN->getIncomingBlock(U)); |
| 141 | else |
| 142 | return properlyDominates(A: BB, B: UserInst->getParent()); |
| 143 | } |
| 144 | |
| 145 | // dominates - Return true if Def dominates a use in User. This performs |
| 146 | // the special checks necessary if Def and User are in the same basic block. |
| 147 | // Note that Def doesn't dominate a use in Def itself! |
| 148 | bool DominatorTree::dominates(const Value *DefV, |
| 149 | const Instruction *User) const { |
| 150 | const Instruction *Def = dyn_cast<Instruction>(Val: DefV); |
| 151 | if (!Def) { |
| 152 | assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && |
| 153 | "Should be called with an instruction, argument or constant" ); |
| 154 | return true; // Arguments and constants dominate everything. |
| 155 | } |
| 156 | |
| 157 | const BasicBlock *UseBB = User->getParent(); |
| 158 | const BasicBlock *DefBB = Def->getParent(); |
| 159 | |
| 160 | // Any unreachable use is dominated, even if Def == User. |
| 161 | if (!isReachableFromEntry(A: UseBB)) |
| 162 | return true; |
| 163 | |
| 164 | // Unreachable definitions don't dominate anything. |
| 165 | if (!isReachableFromEntry(A: DefBB)) |
| 166 | return false; |
| 167 | |
| 168 | // An instruction doesn't dominate a use in itself. |
| 169 | if (Def == User) |
| 170 | return false; |
| 171 | |
| 172 | // The value defined by an invoke dominates an instruction only if it |
| 173 | // dominates every instruction in UseBB. |
| 174 | // A PHI is dominated only if the instruction dominates every possible use in |
| 175 | // the UseBB. |
| 176 | if (isa<InvokeInst>(Val: Def) || isa<CallBrInst>(Val: Def) || isa<PHINode>(Val: User)) |
| 177 | return dominates(Def, BB: UseBB); |
| 178 | |
| 179 | if (DefBB != UseBB) |
| 180 | return dominates(A: DefBB, B: UseBB); |
| 181 | |
| 182 | return Def->comesBefore(Other: User); |
| 183 | } |
| 184 | |
| 185 | // true if Def would dominate a use in any instruction in UseBB. |
| 186 | // note that dominates(Def, Def->getParent()) is false. |
| 187 | bool DominatorTree::dominates(const Instruction *Def, |
| 188 | const BasicBlock *UseBB) const { |
| 189 | const BasicBlock *DefBB = Def->getParent(); |
| 190 | |
| 191 | // Any unreachable use is dominated, even if DefBB == UseBB. |
| 192 | if (!isReachableFromEntry(A: UseBB)) |
| 193 | return true; |
| 194 | |
| 195 | // Unreachable definitions don't dominate anything. |
| 196 | if (!isReachableFromEntry(A: DefBB)) |
| 197 | return false; |
| 198 | |
| 199 | if (DefBB == UseBB) |
| 200 | return false; |
| 201 | |
| 202 | // Invoke results are only usable in the normal destination, not in the |
| 203 | // exceptional destination. |
| 204 | if (const auto *II = dyn_cast<InvokeInst>(Val: Def)) { |
| 205 | BasicBlock *NormalDest = II->getNormalDest(); |
| 206 | BasicBlockEdge E(DefBB, NormalDest); |
| 207 | return dominates(BBE: E, BB: UseBB); |
| 208 | } |
| 209 | |
| 210 | return dominates(A: DefBB, B: UseBB); |
| 211 | } |
| 212 | |
| 213 | bool DominatorTree::dominates(const BasicBlockEdge &BBE, |
| 214 | const BasicBlock *UseBB) const { |
| 215 | // If the BB the edge ends in doesn't dominate the use BB, then the |
| 216 | // edge also doesn't. |
| 217 | const BasicBlock *Start = BBE.getStart(); |
| 218 | const BasicBlock *End = BBE.getEnd(); |
| 219 | if (!dominates(A: End, B: UseBB)) |
| 220 | return false; |
| 221 | |
| 222 | // Simple case: if the end BB has a single predecessor, the fact that it |
| 223 | // dominates the use block implies that the edge also does. |
| 224 | if (End->getSinglePredecessor()) |
| 225 | return true; |
| 226 | |
| 227 | // The normal edge from the invoke is critical. Conceptually, what we would |
| 228 | // like to do is split it and check if the new block dominates the use. |
| 229 | // With X being the new block, the graph would look like: |
| 230 | // |
| 231 | // DefBB |
| 232 | // /\ . . |
| 233 | // / \ . . |
| 234 | // / \ . . |
| 235 | // / \ | | |
| 236 | // A X B C |
| 237 | // | \ | / |
| 238 | // . \|/ |
| 239 | // . NormalDest |
| 240 | // . |
| 241 | // |
| 242 | // Given the definition of dominance, NormalDest is dominated by X iff X |
| 243 | // dominates all of NormalDest's predecessors (X, B, C in the example). X |
| 244 | // trivially dominates itself, so we only have to find if it dominates the |
| 245 | // other predecessors. Since the only way out of X is via NormalDest, X can |
| 246 | // only properly dominate a node if NormalDest dominates that node too. |
| 247 | int IsDuplicateEdge = 0; |
| 248 | for (const BasicBlock *BB : predecessors(BB: End)) { |
| 249 | if (BB == Start) { |
| 250 | // If there are multiple edges between Start and End, by definition they |
| 251 | // can't dominate anything. |
| 252 | if (IsDuplicateEdge++) |
| 253 | return false; |
| 254 | continue; |
| 255 | } |
| 256 | |
| 257 | if (!dominates(A: End, B: BB)) |
| 258 | return false; |
| 259 | } |
| 260 | return true; |
| 261 | } |
| 262 | |
| 263 | bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { |
| 264 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
| 265 | // A PHI in the end of the edge is dominated by it. |
| 266 | PHINode *PN = dyn_cast<PHINode>(Val: UserInst); |
| 267 | if (PN && PN->getParent() == BBE.getEnd() && |
| 268 | PN->getIncomingBlock(U) == BBE.getStart()) |
| 269 | return true; |
| 270 | |
| 271 | // Otherwise use the edge-dominates-block query, which |
| 272 | // handles the crazy critical edge cases properly. |
| 273 | const BasicBlock *UseBB; |
| 274 | if (PN) |
| 275 | UseBB = PN->getIncomingBlock(U); |
| 276 | else |
| 277 | UseBB = UserInst->getParent(); |
| 278 | return dominates(BBE, UseBB); |
| 279 | } |
| 280 | |
| 281 | bool DominatorTree::dominates(const Value *DefV, const Use &U) const { |
| 282 | const Instruction *Def = dyn_cast<Instruction>(Val: DefV); |
| 283 | if (!Def) { |
| 284 | assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && |
| 285 | "Should be called with an instruction, argument or constant" ); |
| 286 | return true; // Arguments and constants dominate everything. |
| 287 | } |
| 288 | |
| 289 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
| 290 | const BasicBlock *DefBB = Def->getParent(); |
| 291 | |
| 292 | // Determine the block in which the use happens. PHI nodes use |
| 293 | // their operands on edges; simulate this by thinking of the use |
| 294 | // happening at the end of the predecessor block. |
| 295 | const BasicBlock *UseBB; |
| 296 | if (PHINode *PN = dyn_cast<PHINode>(Val: UserInst)) |
| 297 | UseBB = PN->getIncomingBlock(U); |
| 298 | else |
| 299 | UseBB = UserInst->getParent(); |
| 300 | |
| 301 | // Any unreachable use is dominated, even if Def == User. |
| 302 | if (!isReachableFromEntry(A: UseBB)) |
| 303 | return true; |
| 304 | |
| 305 | // Unreachable definitions don't dominate anything. |
| 306 | if (!isReachableFromEntry(A: DefBB)) |
| 307 | return false; |
| 308 | |
| 309 | // Invoke instructions define their return values on the edges to their normal |
| 310 | // successors, so we have to handle them specially. |
| 311 | // Among other things, this means they don't dominate anything in |
| 312 | // their own block, except possibly a phi, so we don't need to |
| 313 | // walk the block in any case. |
| 314 | if (const InvokeInst *II = dyn_cast<InvokeInst>(Val: Def)) { |
| 315 | BasicBlock *NormalDest = II->getNormalDest(); |
| 316 | BasicBlockEdge E(DefBB, NormalDest); |
| 317 | return dominates(BBE: E, U); |
| 318 | } |
| 319 | |
| 320 | // If the def and use are in different blocks, do a simple CFG dominator |
| 321 | // tree query. |
| 322 | if (DefBB != UseBB) |
| 323 | return dominates(A: DefBB, B: UseBB); |
| 324 | |
| 325 | // Ok, def and use are in the same block. If the def is an invoke, it |
| 326 | // doesn't dominate anything in the block. If it's a PHI, it dominates |
| 327 | // everything in the block. |
| 328 | if (isa<PHINode>(Val: UserInst)) |
| 329 | return true; |
| 330 | |
| 331 | return Def->comesBefore(Other: UserInst); |
| 332 | } |
| 333 | |
| 334 | bool DominatorTree::isReachableFromEntry(const Use &U) const { |
| 335 | Instruction *I = dyn_cast<Instruction>(Val: U.getUser()); |
| 336 | |
| 337 | // ConstantExprs aren't really reachable from the entry block, but they |
| 338 | // don't need to be treated like unreachable code either. |
| 339 | if (!I) return true; |
| 340 | |
| 341 | // PHI nodes use their operands on their incoming edges. |
| 342 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) |
| 343 | return isReachableFromEntry(A: PN->getIncomingBlock(U)); |
| 344 | |
| 345 | // Everything else uses their operands in their own block. |
| 346 | return isReachableFromEntry(A: I->getParent()); |
| 347 | } |
| 348 | |
| 349 | // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2. |
| 350 | bool DominatorTree::dominates(const BasicBlockEdge &BBE1, |
| 351 | const BasicBlockEdge &BBE2) const { |
| 352 | if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd()) |
| 353 | return true; |
| 354 | return dominates(BBE: BBE1, UseBB: BBE2.getStart()); |
| 355 | } |
| 356 | |
| 357 | Instruction *DominatorTree::findNearestCommonDominator(Instruction *I1, |
| 358 | Instruction *I2) const { |
| 359 | BasicBlock *BB1 = I1->getParent(); |
| 360 | BasicBlock *BB2 = I2->getParent(); |
| 361 | if (BB1 == BB2) |
| 362 | return I1->comesBefore(Other: I2) ? I1 : I2; |
| 363 | if (!isReachableFromEntry(A: BB2)) |
| 364 | return I1; |
| 365 | if (!isReachableFromEntry(A: BB1)) |
| 366 | return I2; |
| 367 | BasicBlock *DomBB = findNearestCommonDominator(A: BB1, B: BB2); |
| 368 | if (BB1 == DomBB) |
| 369 | return I1; |
| 370 | if (BB2 == DomBB) |
| 371 | return I2; |
| 372 | return DomBB->getTerminator(); |
| 373 | } |
| 374 | |
| 375 | //===----------------------------------------------------------------------===// |
| 376 | // DominatorTreeAnalysis and related pass implementations |
| 377 | //===----------------------------------------------------------------------===// |
| 378 | // |
| 379 | // This implements the DominatorTreeAnalysis which is used with the new pass |
| 380 | // manager. It also implements some methods from utility passes. |
| 381 | // |
| 382 | //===----------------------------------------------------------------------===// |
| 383 | |
| 384 | DominatorTree DominatorTreeAnalysis::run(Function &F, |
| 385 | FunctionAnalysisManager &) { |
| 386 | DominatorTree DT; |
| 387 | DT.recalculate(Func&: F); |
| 388 | return DT; |
| 389 | } |
| 390 | |
| 391 | AnalysisKey DominatorTreeAnalysis::Key; |
| 392 | |
| 393 | DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} |
| 394 | |
| 395 | PreservedAnalyses DominatorTreePrinterPass::run(Function &F, |
| 396 | FunctionAnalysisManager &AM) { |
| 397 | OS << "DominatorTree for function: " << F.getName() << "\n" ; |
| 398 | AM.getResult<DominatorTreeAnalysis>(IR&: F).print(O&: OS); |
| 399 | |
| 400 | return PreservedAnalyses::all(); |
| 401 | } |
| 402 | |
| 403 | PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, |
| 404 | FunctionAnalysisManager &AM) { |
| 405 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 406 | assert(DT.verify()); |
| 407 | (void)DT; |
| 408 | return PreservedAnalyses::all(); |
| 409 | } |
| 410 | |
| 411 | //===----------------------------------------------------------------------===// |
| 412 | // DominatorTreeWrapperPass Implementation |
| 413 | //===----------------------------------------------------------------------===// |
| 414 | // |
| 415 | // The implementation details of the wrapper pass that holds a DominatorTree |
| 416 | // suitable for use with the legacy pass manager. |
| 417 | // |
| 418 | //===----------------------------------------------------------------------===// |
| 419 | |
| 420 | char DominatorTreeWrapperPass::ID = 0; |
| 421 | |
| 422 | DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) { |
| 423 | initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 424 | } |
| 425 | |
| 426 | INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree" , |
| 427 | "Dominator Tree Construction" , true, true) |
| 428 | |
| 429 | bool DominatorTreeWrapperPass::runOnFunction(Function &F) { |
| 430 | DT.recalculate(Func&: F); |
| 431 | return false; |
| 432 | } |
| 433 | |
| 434 | void DominatorTreeWrapperPass::verifyAnalysis() const { |
| 435 | if (VerifyDomInfo) |
| 436 | assert(DT.verify(DominatorTree::VerificationLevel::Full)); |
| 437 | else if (ExpensiveChecksEnabled) |
| 438 | assert(DT.verify(DominatorTree::VerificationLevel::Basic)); |
| 439 | } |
| 440 | |
| 441 | void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { |
| 442 | DT.print(O&: OS); |
| 443 | } |
| 444 | |