| 1 | //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// Generic dominator tree construction - this file provides routines to |
| 11 | /// construct immediate dominator information for a flow-graph based on the |
| 12 | /// Semi-NCA algorithm described in this dissertation: |
| 13 | /// |
| 14 | /// [1] Linear-Time Algorithms for Dominators and Related Problems |
| 15 | /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: |
| 16 | /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf |
| 17 | /// |
| 18 | /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly |
| 19 | /// faster than Simple Lengauer-Tarjan in practice. |
| 20 | /// |
| 21 | /// O(n^2) worst cases happen when the computation of nearest common ancestors |
| 22 | /// requires O(n) average time, which is very unlikely in real world. If this |
| 23 | /// ever turns out to be an issue, consider implementing a hybrid algorithm |
| 24 | /// that uses SLT to perform full constructions and SemiNCA for incremental |
| 25 | /// updates. |
| 26 | /// |
| 27 | /// The file uses the Depth Based Search algorithm to perform incremental |
| 28 | /// updates (insertion and deletions). The implemented algorithm is based on |
| 29 | /// this publication: |
| 30 | /// |
| 31 | /// [2] An Experimental Study of Dynamic Dominators |
| 32 | /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: |
| 33 | /// https://arxiv.org/pdf/1604.02711.pdf |
| 34 | /// |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H |
| 38 | #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H |
| 39 | |
| 40 | #include "llvm/ADT/ArrayRef.h" |
| 41 | #include "llvm/ADT/DenseSet.h" |
| 42 | #include "llvm/ADT/DepthFirstIterator.h" |
| 43 | #include "llvm/ADT/SmallPtrSet.h" |
| 44 | #include "llvm/Support/Debug.h" |
| 45 | #include "llvm/Support/GenericDomTree.h" |
| 46 | #include <optional> |
| 47 | #include <queue> |
| 48 | |
| 49 | #define DEBUG_TYPE "dom-tree-builder" |
| 50 | |
| 51 | namespace llvm { |
| 52 | namespace DomTreeBuilder { |
| 53 | |
| 54 | template <typename DomTreeT> |
| 55 | struct SemiNCAInfo { |
| 56 | using NodePtr = typename DomTreeT::NodePtr; |
| 57 | using NodeT = typename DomTreeT::NodeType; |
| 58 | using TreeNodePtr = DomTreeNodeBase<NodeT> *; |
| 59 | using RootsT = decltype(DomTreeT::Roots); |
| 60 | static constexpr bool IsPostDom = DomTreeT::IsPostDominator; |
| 61 | using GraphDiffT = GraphDiff<NodePtr, IsPostDom>; |
| 62 | |
| 63 | // Information record used by Semi-NCA during tree construction. |
| 64 | struct InfoRec { |
| 65 | unsigned DFSNum = 0; |
| 66 | unsigned Parent = 0; |
| 67 | unsigned Semi = 0; |
| 68 | unsigned Label = 0; |
| 69 | NodePtr IDom = nullptr; |
| 70 | SmallVector<unsigned, 4> ReverseChildren; |
| 71 | }; |
| 72 | |
| 73 | // Number to node mapping is 1-based. Initialize the mapping to start with |
| 74 | // a dummy element. |
| 75 | SmallVector<NodePtr, 64> NumToNode = {nullptr}; |
| 76 | // If blocks have numbers (e.g., BasicBlock, MachineBasicBlock), store node |
| 77 | // infos in a vector. Otherwise, store them in a map. |
| 78 | std::conditional_t<GraphHasNodeNumbers<NodePtr>, SmallVector<InfoRec, 64>, |
| 79 | DenseMap<NodePtr, InfoRec>> |
| 80 | NodeInfos; |
| 81 | |
| 82 | using UpdateT = typename DomTreeT::UpdateType; |
| 83 | using UpdateKind = typename DomTreeT::UpdateKind; |
| 84 | struct BatchUpdateInfo { |
| 85 | // Note: Updates inside PreViewCFG are already legalized. |
| 86 | BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr) |
| 87 | : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG), |
| 88 | NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {} |
| 89 | |
| 90 | // Remembers if the whole tree was recalculated at some point during the |
| 91 | // current batch update. |
| 92 | bool IsRecalculated = false; |
| 93 | GraphDiffT &PreViewCFG; |
| 94 | GraphDiffT *PostViewCFG; |
| 95 | const size_t NumLegalized; |
| 96 | }; |
| 97 | |
| 98 | BatchUpdateInfo *BatchUpdates; |
| 99 | using BatchUpdatePtr = BatchUpdateInfo *; |
| 100 | |
| 101 | // If BUI is a nullptr, then there's no batch update in progress. |
| 102 | SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {} |
| 103 | |
| 104 | void clear() { |
| 105 | NumToNode = {nullptr}; // Restore to initial state with a dummy start node. |
| 106 | NodeInfos.clear(); |
| 107 | // Don't reset the pointer to BatchUpdateInfo here -- if there's an update |
| 108 | // in progress, we need this information to continue it. |
| 109 | } |
| 110 | |
| 111 | template <bool Inversed> |
| 112 | static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) { |
| 113 | if (BUI) |
| 114 | return BUI->PreViewCFG.template getChildren<Inversed>(N); |
| 115 | return getChildren<Inversed>(N); |
| 116 | } |
| 117 | |
| 118 | template <bool Inversed> |
| 119 | static SmallVector<NodePtr, 8> getChildren(NodePtr N) { |
| 120 | using DirectedNodeT = |
| 121 | std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>; |
| 122 | auto R = children<DirectedNodeT>(N); |
| 123 | SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R)); |
| 124 | |
| 125 | // Remove nullptr children for clang. |
| 126 | llvm::erase(Res, nullptr); |
| 127 | return Res; |
| 128 | } |
| 129 | |
| 130 | InfoRec &getNodeInfo(NodePtr BB) { |
| 131 | if constexpr (GraphHasNodeNumbers<NodePtr>) { |
| 132 | unsigned Idx = BB ? GraphTraits<NodePtr>::getNumber(BB) + 1 : 0; |
| 133 | if (Idx >= NodeInfos.size()) { |
| 134 | unsigned Max = 0; |
| 135 | if (BB) |
| 136 | Max = GraphTraits<decltype(BB->getParent())>::getMaxNumber( |
| 137 | BB->getParent()); |
| 138 | // Max might be zero, graphs might not support getMaxNumber(). |
| 139 | NodeInfos.resize(Max ? Max + 1 : Idx + 1); |
| 140 | } |
| 141 | return NodeInfos[Idx]; |
| 142 | } else { |
| 143 | return NodeInfos[BB]; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | NodePtr getIDom(NodePtr BB) { return getNodeInfo(BB).IDom; } |
| 148 | |
| 149 | TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { |
| 150 | if (TreeNodePtr Node = DT.getNode(BB)) return Node; |
| 151 | |
| 152 | // Haven't calculated this node yet? Get or calculate the node for the |
| 153 | // immediate dominator. |
| 154 | NodePtr IDom = getIDom(BB); |
| 155 | |
| 156 | assert(IDom || DT.getNode(nullptr)); |
| 157 | TreeNodePtr IDomNode = getNodeForBlock(BB: IDom, DT); |
| 158 | |
| 159 | // Add a new tree node for this NodeT, and link it as a child of |
| 160 | // IDomNode |
| 161 | return DT.createNode(BB, IDomNode); |
| 162 | } |
| 163 | |
| 164 | static bool AlwaysDescend(NodePtr, NodePtr) { return true; } |
| 165 | |
| 166 | struct BlockNamePrinter { |
| 167 | NodePtr N; |
| 168 | |
| 169 | BlockNamePrinter(NodePtr Block) : N(Block) {} |
| 170 | BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} |
| 171 | |
| 172 | friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { |
| 173 | if (!BP.N) |
| 174 | O << "nullptr" ; |
| 175 | else |
| 176 | BP.N->printAsOperand(O, false); |
| 177 | |
| 178 | return O; |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | using NodeOrderMap = DenseMap<NodePtr, unsigned>; |
| 183 | |
| 184 | // Custom DFS implementation which can skip nodes based on a provided |
| 185 | // predicate. It also collects ReverseChildren so that we don't have to spend |
| 186 | // time getting predecessors in SemiNCA. |
| 187 | // |
| 188 | // If IsReverse is set to true, the DFS walk will be performed backwards |
| 189 | // relative to IsPostDom -- using reverse edges for dominators and forward |
| 190 | // edges for postdominators. |
| 191 | // |
| 192 | // If SuccOrder is specified then in this order the DFS traverses the children |
| 193 | // otherwise the order is implied by the results of getChildren(). |
| 194 | template <bool IsReverse = false, typename DescendCondition> |
| 195 | unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, |
| 196 | unsigned AttachToNum, |
| 197 | const NodeOrderMap *SuccOrder = nullptr) { |
| 198 | assert(V); |
| 199 | SmallVector<std::pair<NodePtr, unsigned>, 64> WorkList = {{V, AttachToNum}}; |
| 200 | getNodeInfo(BB: V).Parent = AttachToNum; |
| 201 | |
| 202 | while (!WorkList.empty()) { |
| 203 | const auto [BB, ParentNum] = WorkList.pop_back_val(); |
| 204 | auto &BBInfo = getNodeInfo(BB); |
| 205 | BBInfo.ReverseChildren.push_back(ParentNum); |
| 206 | |
| 207 | // Visited nodes always have positive DFS numbers. |
| 208 | if (BBInfo.DFSNum != 0) continue; |
| 209 | BBInfo.Parent = ParentNum; |
| 210 | BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum; |
| 211 | NumToNode.push_back(BB); |
| 212 | |
| 213 | constexpr bool Direction = IsReverse != IsPostDom; // XOR. |
| 214 | auto Successors = getChildren<Direction>(BB, BatchUpdates); |
| 215 | if (SuccOrder && Successors.size() > 1) |
| 216 | llvm::sort( |
| 217 | Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) { |
| 218 | return SuccOrder->find(A)->second < SuccOrder->find(B)->second; |
| 219 | }); |
| 220 | |
| 221 | for (const NodePtr Succ : Successors) { |
| 222 | if (!Condition(BB, Succ)) continue; |
| 223 | |
| 224 | WorkList.push_back({Succ, LastNum}); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | return LastNum; |
| 229 | } |
| 230 | |
| 231 | // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum |
| 232 | // of sdom(U), where U > W and there is a virtual forest path from U to V. The |
| 233 | // virtual forest consists of linked edges of processed vertices. |
| 234 | // |
| 235 | // We can follow Parent pointers (virtual forest edges) to determine the |
| 236 | // ancestor U with minimum sdom(U). But it is slow and thus we employ the path |
| 237 | // compression technique to speed up to O(m*log(n)). Theoretically the virtual |
| 238 | // forest can be organized as balanced trees to achieve almost linear |
| 239 | // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size |
| 240 | // and Child) and is unlikely to be faster than the simple implementation. |
| 241 | // |
| 242 | // For each vertex V, its Label points to the vertex with the minimal sdom(U) |
| 243 | // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded). |
| 244 | unsigned eval(unsigned V, unsigned LastLinked, |
| 245 | SmallVectorImpl<InfoRec *> &Stack, |
| 246 | ArrayRef<InfoRec *> NumToInfo) { |
| 247 | InfoRec *VInfo = NumToInfo[V]; |
| 248 | if (VInfo->Parent < LastLinked) |
| 249 | return VInfo->Label; |
| 250 | |
| 251 | // Store ancestors except the last (root of a virtual tree) into a stack. |
| 252 | assert(Stack.empty()); |
| 253 | do { |
| 254 | Stack.push_back(VInfo); |
| 255 | VInfo = NumToInfo[VInfo->Parent]; |
| 256 | } while (VInfo->Parent >= LastLinked); |
| 257 | |
| 258 | // Path compression. Point each vertex's Parent to the root and update its |
| 259 | // Label if any of its ancestors (PInfo->Label) has a smaller Semi. |
| 260 | const InfoRec *PInfo = VInfo; |
| 261 | const InfoRec *PLabelInfo = NumToInfo[PInfo->Label]; |
| 262 | do { |
| 263 | VInfo = Stack.pop_back_val(); |
| 264 | VInfo->Parent = PInfo->Parent; |
| 265 | const InfoRec *VLabelInfo = NumToInfo[VInfo->Label]; |
| 266 | if (PLabelInfo->Semi < VLabelInfo->Semi) |
| 267 | VInfo->Label = PInfo->Label; |
| 268 | else |
| 269 | PLabelInfo = VLabelInfo; |
| 270 | PInfo = VInfo; |
| 271 | } while (!Stack.empty()); |
| 272 | return VInfo->Label; |
| 273 | } |
| 274 | |
| 275 | // This function requires DFS to be run before calling it. |
| 276 | void runSemiNCA() { |
| 277 | const unsigned NextDFSNum(NumToNode.size()); |
| 278 | SmallVector<InfoRec *, 8> NumToInfo = {nullptr}; |
| 279 | NumToInfo.reserve(NextDFSNum); |
| 280 | // Initialize IDoms to spanning tree parents. |
| 281 | for (unsigned i = 1; i < NextDFSNum; ++i) { |
| 282 | const NodePtr V = NumToNode[i]; |
| 283 | auto &VInfo = getNodeInfo(BB: V); |
| 284 | VInfo.IDom = NumToNode[VInfo.Parent]; |
| 285 | NumToInfo.push_back(&VInfo); |
| 286 | } |
| 287 | |
| 288 | // Step #1: Calculate the semidominators of all vertices. |
| 289 | SmallVector<InfoRec *, 32> EvalStack; |
| 290 | for (unsigned i = NextDFSNum - 1; i >= 2; --i) { |
| 291 | auto &WInfo = *NumToInfo[i]; |
| 292 | |
| 293 | // Initialize the semi dominator to point to the parent node. |
| 294 | WInfo.Semi = WInfo.Parent; |
| 295 | for (unsigned N : WInfo.ReverseChildren) { |
| 296 | unsigned SemiU = NumToInfo[eval(V: N, LastLinked: i + 1, Stack&: EvalStack, NumToInfo)]->Semi; |
| 297 | if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | // Step #2: Explicitly define the immediate dominator of each vertex. |
| 302 | // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). |
| 303 | // Note that the parents were stored in IDoms and later got invalidated |
| 304 | // during path compression in Eval. |
| 305 | for (unsigned i = 2; i < NextDFSNum; ++i) { |
| 306 | auto &WInfo = *NumToInfo[i]; |
| 307 | assert(WInfo.Semi != 0); |
| 308 | const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum; |
| 309 | NodePtr WIDomCandidate = WInfo.IDom; |
| 310 | while (true) { |
| 311 | auto &WIDomCandidateInfo = getNodeInfo(BB: WIDomCandidate); |
| 312 | if (WIDomCandidateInfo.DFSNum <= SDomNum) |
| 313 | break; |
| 314 | WIDomCandidate = WIDomCandidateInfo.IDom; |
| 315 | } |
| 316 | |
| 317 | WInfo.IDom = WIDomCandidate; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | // PostDominatorTree always has a virtual root that represents a virtual CFG |
| 322 | // node that serves as a single exit from the function. All the other exits |
| 323 | // (CFG nodes with terminators and nodes in infinite loops are logically |
| 324 | // connected to this virtual CFG exit node). |
| 325 | // This functions maps a nullptr CFG node to the virtual root tree node. |
| 326 | void addVirtualRoot() { |
| 327 | assert(IsPostDom && "Only postdominators have a virtual root" ); |
| 328 | assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed" ); |
| 329 | |
| 330 | auto &BBInfo = getNodeInfo(BB: nullptr); |
| 331 | BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1; |
| 332 | |
| 333 | NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; |
| 334 | } |
| 335 | |
| 336 | // For postdominators, nodes with no forward successors are trivial roots that |
| 337 | // are always selected as tree roots. Roots with forward successors correspond |
| 338 | // to CFG nodes within infinite loops. |
| 339 | static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { |
| 340 | assert(N && "N must be a valid node" ); |
| 341 | return !getChildren<false>(N, BUI).empty(); |
| 342 | } |
| 343 | |
| 344 | static NodePtr GetEntryNode(const DomTreeT &DT) { |
| 345 | assert(DT.Parent && "Parent not set" ); |
| 346 | return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); |
| 347 | } |
| 348 | |
| 349 | // Finds all roots without relaying on the set of roots already stored in the |
| 350 | // tree. |
| 351 | // We define roots to be some non-redundant set of the CFG nodes |
| 352 | static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { |
| 353 | assert(DT.Parent && "Parent pointer is not set" ); |
| 354 | RootsT Roots; |
| 355 | |
| 356 | // For dominators, function entry CFG node is always a tree root node. |
| 357 | if (!IsPostDom) { |
| 358 | Roots.push_back(GetEntryNode(DT)); |
| 359 | return Roots; |
| 360 | } |
| 361 | |
| 362 | SemiNCAInfo SNCA(BUI); |
| 363 | |
| 364 | // PostDominatorTree always has a virtual root. |
| 365 | SNCA.addVirtualRoot(); |
| 366 | unsigned Num = 1; |
| 367 | |
| 368 | LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n" ); |
| 369 | |
| 370 | // Step #1: Find all the trivial roots that are going to will definitely |
| 371 | // remain tree roots. |
| 372 | unsigned Total = 0; |
| 373 | // It may happen that there are some new nodes in the CFG that are result of |
| 374 | // the ongoing batch update, but we cannot really pretend that they don't |
| 375 | // exist -- we won't see any outgoing or incoming edges to them, so it's |
| 376 | // fine to discover them here, as they would end up appearing in the CFG at |
| 377 | // some point anyway. |
| 378 | for (const NodePtr N : nodes(DT.Parent)) { |
| 379 | ++Total; |
| 380 | // If it has no *successors*, it is definitely a root. |
| 381 | if (!HasForwardSuccessors(N, BUI)) { |
| 382 | Roots.push_back(N); |
| 383 | // Run DFS not to walk this part of CFG later. |
| 384 | Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); |
| 385 | LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) |
| 386 | << "\n" ); |
| 387 | LLVM_DEBUG(dbgs() << "Last visited node: " |
| 388 | << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n" ); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n" ); |
| 393 | |
| 394 | // Step #2: Find all non-trivial root candidates. Those are CFG nodes that |
| 395 | // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG |
| 396 | // nodes in infinite loops). |
| 397 | bool HasNonTrivialRoots = false; |
| 398 | // Accounting for the virtual exit, see if we had any reverse-unreachable |
| 399 | // nodes. |
| 400 | if (Total + 1 != Num) { |
| 401 | HasNonTrivialRoots = true; |
| 402 | |
| 403 | // SuccOrder is the order of blocks in the function. It is needed to make |
| 404 | // the calculation of the FurthestAway node and the whole PostDomTree |
| 405 | // immune to swap successors transformation (e.g. canonicalizing branch |
| 406 | // predicates). SuccOrder is initialized lazily only for successors of |
| 407 | // reverse unreachable nodes. |
| 408 | std::optional<NodeOrderMap> SuccOrder; |
| 409 | auto InitSuccOrderOnce = [&]() { |
| 410 | SuccOrder = NodeOrderMap(); |
| 411 | for (const auto Node : nodes(DT.Parent)) |
| 412 | if (SNCA.getNodeInfo(Node).DFSNum == 0) |
| 413 | for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates)) |
| 414 | SuccOrder->try_emplace(Succ, 0); |
| 415 | |
| 416 | // Add mapping for all entries of SuccOrder. |
| 417 | unsigned NodeNum = 0; |
| 418 | for (const auto Node : nodes(DT.Parent)) { |
| 419 | ++NodeNum; |
| 420 | auto Order = SuccOrder->find(Node); |
| 421 | if (Order != SuccOrder->end()) { |
| 422 | assert(Order->second == 0); |
| 423 | Order->second = NodeNum; |
| 424 | } |
| 425 | } |
| 426 | }; |
| 427 | |
| 428 | // Make another DFS pass over all other nodes to find the |
| 429 | // reverse-unreachable blocks, and find the furthest paths we'll be able |
| 430 | // to make. |
| 431 | // Note that this looks N^2, but it's really 2N worst case, if every node |
| 432 | // is unreachable. This is because we are still going to only visit each |
| 433 | // unreachable node once, we may just visit it in two directions, |
| 434 | // depending on how lucky we get. |
| 435 | for (const NodePtr I : nodes(DT.Parent)) { |
| 436 | if (SNCA.getNodeInfo(I).DFSNum == 0) { |
| 437 | LLVM_DEBUG(dbgs() |
| 438 | << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n" ); |
| 439 | // Find the furthest away we can get by following successors, then |
| 440 | // follow them in reverse. This gives us some reasonable answer about |
| 441 | // the post-dom tree inside any infinite loop. In particular, it |
| 442 | // guarantees we get to the farthest away point along *some* |
| 443 | // path. This also matches the GCC's behavior. |
| 444 | // If we really wanted a totally complete picture of dominance inside |
| 445 | // this infinite loop, we could do it with SCC-like algorithms to find |
| 446 | // the lowest and highest points in the infinite loop. In theory, it |
| 447 | // would be nice to give the canonical backedge for the loop, but it's |
| 448 | // expensive and does not always lead to a minimal set of roots. |
| 449 | LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n" ); |
| 450 | |
| 451 | if (!SuccOrder) |
| 452 | InitSuccOrderOnce(); |
| 453 | assert(SuccOrder); |
| 454 | |
| 455 | const unsigned NewNum = |
| 456 | SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder); |
| 457 | const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; |
| 458 | LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node " |
| 459 | << "(non-trivial root): " |
| 460 | << BlockNamePrinter(FurthestAway) << "\n" ); |
| 461 | Roots.push_back(FurthestAway); |
| 462 | LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " |
| 463 | << NewNum << "\n\t\t\tRemoving DFS info\n" ); |
| 464 | for (unsigned i = NewNum; i > Num; --i) { |
| 465 | const NodePtr N = SNCA.NumToNode[i]; |
| 466 | LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " |
| 467 | << BlockNamePrinter(N) << "\n" ); |
| 468 | SNCA.getNodeInfo(N) = {}; |
| 469 | SNCA.NumToNode.pop_back(); |
| 470 | } |
| 471 | const unsigned PrevNum = Num; |
| 472 | LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n" ); |
| 473 | Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); |
| 474 | for (unsigned i = PrevNum + 1; i <= Num; ++i) |
| 475 | LLVM_DEBUG(dbgs() << "\t\t\t\tfound node " |
| 476 | << BlockNamePrinter(SNCA.NumToNode[i]) << "\n" ); |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n" ); |
| 482 | LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n" ); |
| 483 | LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() |
| 484 | << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n" ); |
| 485 | |
| 486 | assert((Total + 1 == Num) && "Everything should have been visited" ); |
| 487 | |
| 488 | // Step #3: If we found some non-trivial roots, make them non-redundant. |
| 489 | if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots); |
| 490 | |
| 491 | LLVM_DEBUG(dbgs() << "Found roots: " ); |
| 492 | LLVM_DEBUG(for (auto *Root |
| 493 | : Roots) dbgs() |
| 494 | << BlockNamePrinter(Root) << " " ); |
| 495 | LLVM_DEBUG(dbgs() << "\n" ); |
| 496 | |
| 497 | return Roots; |
| 498 | } |
| 499 | |
| 500 | // This function only makes sense for postdominators. |
| 501 | // We define roots to be some set of CFG nodes where (reverse) DFS walks have |
| 502 | // to start in order to visit all the CFG nodes (including the |
| 503 | // reverse-unreachable ones). |
| 504 | // When the search for non-trivial roots is done it may happen that some of |
| 505 | // the non-trivial roots are reverse-reachable from other non-trivial roots, |
| 506 | // which makes them redundant. This function removes them from the set of |
| 507 | // input roots. |
| 508 | static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, |
| 509 | RootsT &Roots) { |
| 510 | assert(IsPostDom && "This function is for postdominators only" ); |
| 511 | LLVM_DEBUG(dbgs() << "Removing redundant roots\n" ); |
| 512 | |
| 513 | SemiNCAInfo SNCA(BUI); |
| 514 | |
| 515 | for (unsigned i = 0; i < Roots.size(); ++i) { |
| 516 | auto &Root = Roots[i]; |
| 517 | // Trivial roots are always non-redundant. |
| 518 | if (!HasForwardSuccessors(N: Root, BUI)) continue; |
| 519 | LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) |
| 520 | << " remains a root\n" ); |
| 521 | SNCA.clear(); |
| 522 | // Do a forward walk looking for the other roots. |
| 523 | const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); |
| 524 | // Skip the start node and begin from the second one (note that DFS uses |
| 525 | // 1-based indexing). |
| 526 | for (unsigned x = 2; x <= Num; ++x) { |
| 527 | const NodePtr N = SNCA.NumToNode[x]; |
| 528 | // If we wound another root in a (forward) DFS walk, remove the current |
| 529 | // root from the set of roots, as it is reverse-reachable from the other |
| 530 | // one. |
| 531 | if (llvm::is_contained(Roots, N)) { |
| 532 | LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root " |
| 533 | << BlockNamePrinter(N) << "\n\tRemoving root " |
| 534 | << BlockNamePrinter(Root) << "\n" ); |
| 535 | std::swap(Root, Roots.back()); |
| 536 | Roots.pop_back(); |
| 537 | |
| 538 | // Root at the back takes the current root's place. |
| 539 | // Start the next loop iteration with the same index. |
| 540 | --i; |
| 541 | break; |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | template <typename DescendCondition> |
| 548 | void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { |
| 549 | if (!IsPostDom) { |
| 550 | assert(DT.Roots.size() == 1 && "Dominators should have a singe root" ); |
| 551 | runDFS(DT.Roots[0], 0, DC, 0); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | addVirtualRoot(); |
| 556 | unsigned Num = 1; |
| 557 | for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1); |
| 558 | } |
| 559 | |
| 560 | static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { |
| 561 | auto *Parent = DT.Parent; |
| 562 | DT.reset(); |
| 563 | DT.Parent = Parent; |
| 564 | // If the update is using the actual CFG, BUI is null. If it's using a view, |
| 565 | // BUI is non-null and the PreCFGView is used. When calculating from |
| 566 | // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used. |
| 567 | BatchUpdatePtr PostViewBUI = nullptr; |
| 568 | if (BUI && BUI->PostViewCFG) { |
| 569 | BUI->PreViewCFG = *BUI->PostViewCFG; |
| 570 | PostViewBUI = BUI; |
| 571 | } |
| 572 | // This is rebuilding the whole tree, not incrementally, but PostViewBUI is |
| 573 | // used in case the caller needs a DT update with a CFGView. |
| 574 | SemiNCAInfo SNCA(PostViewBUI); |
| 575 | |
| 576 | // Step #0: Number blocks in depth-first order and initialize variables used |
| 577 | // in later stages of the algorithm. |
| 578 | DT.Roots = FindRoots(DT, BUI: PostViewBUI); |
| 579 | SNCA.doFullDFSWalk(DT, AlwaysDescend); |
| 580 | |
| 581 | SNCA.runSemiNCA(); |
| 582 | if (BUI) { |
| 583 | BUI->IsRecalculated = true; |
| 584 | LLVM_DEBUG( |
| 585 | dbgs() << "DomTree recalculated, skipping future batch updates\n" ); |
| 586 | } |
| 587 | |
| 588 | if (DT.Roots.empty()) return; |
| 589 | |
| 590 | // Add a node for the root. If the tree is a PostDominatorTree it will be |
| 591 | // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates |
| 592 | // all real exits (including multiple exit blocks, infinite loops). |
| 593 | NodePtr Root = IsPostDom ? nullptr : DT.Roots[0]; |
| 594 | |
| 595 | DT.RootNode = DT.createNode(Root); |
| 596 | SNCA.attachNewSubtree(DT, DT.RootNode); |
| 597 | } |
| 598 | |
| 599 | void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { |
| 600 | // Attach the first unreachable block to AttachTo. |
| 601 | getNodeInfo(BB: NumToNode[1]).IDom = AttachTo->getBlock(); |
| 602 | // Loop over all of the discovered blocks in the function... |
| 603 | for (NodePtr W : llvm::drop_begin(NumToNode)) { |
| 604 | if (DT.getNode(W)) |
| 605 | continue; // Already calculated the node before |
| 606 | |
| 607 | NodePtr ImmDom = getIDom(BB: W); |
| 608 | |
| 609 | // Get or calculate the node for the immediate dominator. |
| 610 | TreeNodePtr IDomNode = getNodeForBlock(BB: ImmDom, DT); |
| 611 | |
| 612 | // Add a new tree node for this BasicBlock, and link it as a child of |
| 613 | // IDomNode. |
| 614 | DT.createNode(W, IDomNode); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { |
| 619 | getNodeInfo(BB: NumToNode[1]).IDom = AttachTo->getBlock(); |
| 620 | for (const NodePtr N : llvm::drop_begin(NumToNode)) { |
| 621 | const TreeNodePtr TN = DT.getNode(N); |
| 622 | assert(TN); |
| 623 | const TreeNodePtr NewIDom = DT.getNode(getNodeInfo(BB: N).IDom); |
| 624 | TN->setIDom(NewIDom); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | // Helper struct used during edge insertions. |
| 629 | struct InsertionInfo { |
| 630 | struct Compare { |
| 631 | bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const { |
| 632 | return LHS->getLevel() < RHS->getLevel(); |
| 633 | } |
| 634 | }; |
| 635 | |
| 636 | // Bucket queue of tree nodes ordered by descending level. For simplicity, |
| 637 | // we use a priority_queue here. |
| 638 | std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>, |
| 639 | Compare> |
| 640 | Bucket; |
| 641 | SmallDenseSet<TreeNodePtr, 8> Visited; |
| 642 | SmallVector<TreeNodePtr, 8> Affected; |
| 643 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 644 | SmallVector<TreeNodePtr, 8> VisitedUnaffected; |
| 645 | #endif |
| 646 | }; |
| 647 | |
| 648 | static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 649 | const NodePtr From, const NodePtr To) { |
| 650 | assert((From || IsPostDom) && |
| 651 | "From has to be a valid CFG node or a virtual root" ); |
| 652 | assert(To && "Cannot be a nullptr" ); |
| 653 | LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " |
| 654 | << BlockNamePrinter(To) << "\n" ); |
| 655 | TreeNodePtr FromTN = DT.getNode(From); |
| 656 | |
| 657 | if (!FromTN) { |
| 658 | // Ignore edges from unreachable nodes for (forward) dominators. |
| 659 | if (!IsPostDom) return; |
| 660 | |
| 661 | // The unreachable node becomes a new root -- a tree node for it. |
| 662 | TreeNodePtr VirtualRoot = DT.getNode(nullptr); |
| 663 | FromTN = DT.createNode(From, VirtualRoot); |
| 664 | DT.Roots.push_back(From); |
| 665 | } |
| 666 | |
| 667 | DT.DFSInfoValid = false; |
| 668 | |
| 669 | const TreeNodePtr ToTN = DT.getNode(To); |
| 670 | if (!ToTN) |
| 671 | InsertUnreachable(DT, BUI, From: FromTN, To); |
| 672 | else |
| 673 | InsertReachable(DT, BUI, From: FromTN, To: ToTN); |
| 674 | } |
| 675 | |
| 676 | // Determines if some existing root becomes reverse-reachable after the |
| 677 | // insertion. Rebuilds the whole tree if that situation happens. |
| 678 | static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 679 | const TreeNodePtr From, |
| 680 | const TreeNodePtr To) { |
| 681 | assert(IsPostDom && "This function is only for postdominators" ); |
| 682 | // Destination node is not attached to the virtual root, so it cannot be a |
| 683 | // root. |
| 684 | if (!DT.isVirtualRoot(To->getIDom())) return false; |
| 685 | |
| 686 | if (!llvm::is_contained(DT.Roots, To->getBlock())) |
| 687 | return false; // To is not a root, nothing to update. |
| 688 | |
| 689 | LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) |
| 690 | << " is no longer a root\n\t\tRebuilding the tree!!!\n" ); |
| 691 | |
| 692 | CalculateFromScratch(DT, BUI); |
| 693 | return true; |
| 694 | } |
| 695 | |
| 696 | static bool isPermutation(const SmallVectorImpl<NodePtr> &A, |
| 697 | const SmallVectorImpl<NodePtr> &B) { |
| 698 | if (A.size() != B.size()) |
| 699 | return false; |
| 700 | SmallPtrSet<NodePtr, 4> Set(llvm::from_range, A); |
| 701 | for (NodePtr N : B) |
| 702 | if (Set.count(N) == 0) |
| 703 | return false; |
| 704 | return true; |
| 705 | } |
| 706 | |
| 707 | // Updates the set of roots after insertion or deletion. This ensures that |
| 708 | // roots are the same when after a series of updates and when the tree would |
| 709 | // be built from scratch. |
| 710 | static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { |
| 711 | assert(IsPostDom && "This function is only for postdominators" ); |
| 712 | |
| 713 | // The tree has only trivial roots -- nothing to update. |
| 714 | if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) { |
| 715 | return HasForwardSuccessors(N, BUI); |
| 716 | })) |
| 717 | return; |
| 718 | |
| 719 | // Recalculate the set of roots. |
| 720 | RootsT Roots = FindRoots(DT, BUI); |
| 721 | if (!isPermutation(A: DT.Roots, B: Roots)) { |
| 722 | // The roots chosen in the CFG have changed. This is because the |
| 723 | // incremental algorithm does not really know or use the set of roots and |
| 724 | // can make a different (implicit) decision about which node within an |
| 725 | // infinite loop becomes a root. |
| 726 | |
| 727 | LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n" |
| 728 | << "The entire tree needs to be rebuilt\n" ); |
| 729 | // It may be possible to update the tree without recalculating it, but |
| 730 | // we do not know yet how to do it, and it happens rarely in practice. |
| 731 | CalculateFromScratch(DT, BUI); |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | // Handles insertion to a node already in the dominator tree. |
| 736 | static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 737 | const TreeNodePtr From, const TreeNodePtr To) { |
| 738 | LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) |
| 739 | << " -> " << BlockNamePrinter(To->getBlock()) << "\n" ); |
| 740 | if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; |
| 741 | // DT.findNCD expects both pointers to be valid. When From is a virtual |
| 742 | // root, then its CFG block pointer is a nullptr, so we have to 'compute' |
| 743 | // the NCD manually. |
| 744 | const NodePtr NCDBlock = |
| 745 | (From->getBlock() && To->getBlock()) |
| 746 | ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) |
| 747 | : nullptr; |
| 748 | assert(NCDBlock || DT.isPostDominator()); |
| 749 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
| 750 | assert(NCD); |
| 751 | |
| 752 | LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n" ); |
| 753 | const unsigned NCDLevel = NCD->getLevel(); |
| 754 | |
| 755 | // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected |
| 756 | // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every |
| 757 | // w on P s.t. depth(v) <= depth(w) |
| 758 | // |
| 759 | // This reduces to a widest path problem (maximizing the depth of the |
| 760 | // minimum vertex in the path) which can be solved by a modified version of |
| 761 | // Dijkstra with a bucket queue (named depth-based search in [2]). |
| 762 | |
| 763 | // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing |
| 764 | // affected if this does not hold. |
| 765 | if (NCDLevel + 1 >= To->getLevel()) |
| 766 | return; |
| 767 | |
| 768 | InsertionInfo II; |
| 769 | SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel; |
| 770 | II.Bucket.push(To); |
| 771 | II.Visited.insert(To); |
| 772 | |
| 773 | while (!II.Bucket.empty()) { |
| 774 | TreeNodePtr TN = II.Bucket.top(); |
| 775 | II.Bucket.pop(); |
| 776 | II.Affected.push_back(TN); |
| 777 | |
| 778 | const unsigned CurrentLevel = TN->getLevel(); |
| 779 | LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) << |
| 780 | "as affected, CurrentLevel " << CurrentLevel << "\n" ); |
| 781 | |
| 782 | assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!" ); |
| 783 | |
| 784 | while (true) { |
| 785 | // Unlike regular Dijkstra, we have an inner loop to expand more |
| 786 | // vertices. The first iteration is for the (affected) vertex popped |
| 787 | // from II.Bucket and the rest are for vertices in |
| 788 | // UnaffectedOnCurrentLevel, which may eventually expand to affected |
| 789 | // vertices. |
| 790 | // |
| 791 | // Invariant: there is an optimal path from `To` to TN with the minimum |
| 792 | // depth being CurrentLevel. |
| 793 | for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) { |
| 794 | const TreeNodePtr SuccTN = DT.getNode(Succ); |
| 795 | assert(SuccTN && |
| 796 | "Unreachable successor found at reachable insertion" ); |
| 797 | const unsigned SuccLevel = SuccTN->getLevel(); |
| 798 | |
| 799 | LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) |
| 800 | << ", level = " << SuccLevel << "\n" ); |
| 801 | |
| 802 | // There is an optimal path from `To` to Succ with the minimum depth |
| 803 | // being min(CurrentLevel, SuccLevel). |
| 804 | // |
| 805 | // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected |
| 806 | // and no affected vertex may be reached by a path passing through it. |
| 807 | // Stop here. Also, Succ may be visited by other predecessors but the |
| 808 | // first visit has the optimal path. Stop if Succ has been visited. |
| 809 | if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second) |
| 810 | continue; |
| 811 | |
| 812 | if (SuccLevel > CurrentLevel) { |
| 813 | // Succ is unaffected but it may (transitively) expand to affected |
| 814 | // vertices. Store it in UnaffectedOnCurrentLevel. |
| 815 | LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected " |
| 816 | << BlockNamePrinter(Succ) << "\n" ); |
| 817 | UnaffectedOnCurrentLevel.push_back(SuccTN); |
| 818 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 819 | II.VisitedUnaffected.push_back(SuccTN); |
| 820 | #endif |
| 821 | } else { |
| 822 | // The condition is satisfied (Succ is affected). Add Succ to the |
| 823 | // bucket queue. |
| 824 | LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ) |
| 825 | << " to a Bucket\n" ); |
| 826 | II.Bucket.push(SuccTN); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | if (UnaffectedOnCurrentLevel.empty()) |
| 831 | break; |
| 832 | TN = UnaffectedOnCurrentLevel.pop_back_val(); |
| 833 | LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n" ); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | // Finish by updating immediate dominators and levels. |
| 838 | UpdateInsertion(DT, BUI, NCD, II); |
| 839 | } |
| 840 | |
| 841 | // Updates immediate dominators and levels after insertion. |
| 842 | static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 843 | const TreeNodePtr NCD, InsertionInfo &II) { |
| 844 | LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n" ); |
| 845 | |
| 846 | for (const TreeNodePtr TN : II.Affected) { |
| 847 | LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) |
| 848 | << ") = " << BlockNamePrinter(NCD) << "\n" ); |
| 849 | TN->setIDom(NCD); |
| 850 | } |
| 851 | |
| 852 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) |
| 853 | for (const TreeNodePtr TN : II.VisitedUnaffected) |
| 854 | assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 && |
| 855 | "TN should have been updated by an affected ancestor" ); |
| 856 | #endif |
| 857 | |
| 858 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); |
| 859 | } |
| 860 | |
| 861 | // Handles insertion to previously unreachable nodes. |
| 862 | static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 863 | const TreeNodePtr From, const NodePtr To) { |
| 864 | LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) |
| 865 | << " -> (unreachable) " << BlockNamePrinter(To) << "\n" ); |
| 866 | |
| 867 | // Collect discovered edges to already reachable nodes. |
| 868 | SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; |
| 869 | // Discover and connect nodes that became reachable with the insertion. |
| 870 | ComputeUnreachableDominators(DT, BUI, Root: To, Incoming: From, DiscoveredConnectingEdges&: DiscoveredEdgesToReachable); |
| 871 | |
| 872 | LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) |
| 873 | << " -> (prev unreachable) " << BlockNamePrinter(To) |
| 874 | << "\n" ); |
| 875 | |
| 876 | // Used the discovered edges and inset discovered connecting (incoming) |
| 877 | // edges. |
| 878 | for (const auto &Edge : DiscoveredEdgesToReachable) { |
| 879 | LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge " |
| 880 | << BlockNamePrinter(Edge.first) << " -> " |
| 881 | << BlockNamePrinter(Edge.second) << "\n" ); |
| 882 | InsertReachable(DT, BUI, From: DT.getNode(Edge.first), To: Edge.second); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | // Connects nodes that become reachable with an insertion. |
| 887 | static void ComputeUnreachableDominators( |
| 888 | DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, |
| 889 | const TreeNodePtr Incoming, |
| 890 | SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> |
| 891 | &DiscoveredConnectingEdges) { |
| 892 | assert(!DT.getNode(Root) && "Root must not be reachable" ); |
| 893 | |
| 894 | // Visit only previously unreachable nodes. |
| 895 | auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, |
| 896 | NodePtr To) { |
| 897 | const TreeNodePtr ToTN = DT.getNode(To); |
| 898 | if (!ToTN) return true; |
| 899 | |
| 900 | DiscoveredConnectingEdges.push_back({From, ToTN}); |
| 901 | return false; |
| 902 | }; |
| 903 | |
| 904 | SemiNCAInfo SNCA(BUI); |
| 905 | SNCA.runDFS(Root, 0, UnreachableDescender, 0); |
| 906 | SNCA.runSemiNCA(); |
| 907 | SNCA.attachNewSubtree(DT, Incoming); |
| 908 | |
| 909 | LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n" ); |
| 910 | } |
| 911 | |
| 912 | static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 913 | const NodePtr From, const NodePtr To) { |
| 914 | assert(From && To && "Cannot disconnect nullptrs" ); |
| 915 | LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " |
| 916 | << BlockNamePrinter(To) << "\n" ); |
| 917 | |
| 918 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 919 | // Ensure that the edge was in fact deleted from the CFG before informing |
| 920 | // the DomTree about it. |
| 921 | // The check is O(N), so run it only in debug configuration. |
| 922 | auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { |
| 923 | auto Successors = getChildren<IsPostDom>(Of, BUI); |
| 924 | return llvm::is_contained(Successors, SuccCandidate); |
| 925 | }; |
| 926 | (void)IsSuccessor; |
| 927 | assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!" ); |
| 928 | #endif |
| 929 | |
| 930 | const TreeNodePtr FromTN = DT.getNode(From); |
| 931 | // Deletion in an unreachable subtree -- nothing to do. |
| 932 | if (!FromTN) return; |
| 933 | |
| 934 | const TreeNodePtr ToTN = DT.getNode(To); |
| 935 | if (!ToTN) { |
| 936 | LLVM_DEBUG( |
| 937 | dbgs() << "\tTo (" << BlockNamePrinter(To) |
| 938 | << ") already unreachable -- there is no edge to delete\n" ); |
| 939 | return; |
| 940 | } |
| 941 | |
| 942 | const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); |
| 943 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
| 944 | |
| 945 | // If To dominates From -- nothing to do. |
| 946 | if (ToTN != NCD) { |
| 947 | DT.DFSInfoValid = false; |
| 948 | |
| 949 | const TreeNodePtr ToIDom = ToTN->getIDom(); |
| 950 | LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " |
| 951 | << BlockNamePrinter(ToIDom) << "\n" ); |
| 952 | |
| 953 | // To remains reachable after deletion. |
| 954 | // (Based on the caption under Figure 4. from [2].) |
| 955 | if (FromTN != ToIDom || HasProperSupport(DT, BUI, TN: ToTN)) |
| 956 | DeleteReachable(DT, BUI, FromTN, ToTN); |
| 957 | else |
| 958 | DeleteUnreachable(DT, BUI, ToTN); |
| 959 | } |
| 960 | |
| 961 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); |
| 962 | } |
| 963 | |
| 964 | // Handles deletions that leave destination nodes reachable. |
| 965 | static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 966 | const TreeNodePtr FromTN, |
| 967 | const TreeNodePtr ToTN) { |
| 968 | LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) |
| 969 | << " -> " << BlockNamePrinter(ToTN) << "\n" ); |
| 970 | LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n" ); |
| 971 | |
| 972 | // Find the top of the subtree that needs to be rebuilt. |
| 973 | // (Based on the lemma 2.6 from [2].) |
| 974 | const NodePtr ToIDom = |
| 975 | DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); |
| 976 | assert(ToIDom || DT.isPostDominator()); |
| 977 | const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); |
| 978 | assert(ToIDomTN); |
| 979 | const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); |
| 980 | // Top of the subtree to rebuild is the root node. Rebuild the tree from |
| 981 | // scratch. |
| 982 | if (!PrevIDomSubTree) { |
| 983 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n" ); |
| 984 | CalculateFromScratch(DT, BUI); |
| 985 | return; |
| 986 | } |
| 987 | |
| 988 | // Only visit nodes in the subtree starting at To. |
| 989 | const unsigned Level = ToIDomTN->getLevel(); |
| 990 | auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { |
| 991 | return DT.getNode(To)->getLevel() > Level; |
| 992 | }; |
| 993 | |
| 994 | LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) |
| 995 | << "\n" ); |
| 996 | |
| 997 | SemiNCAInfo SNCA(BUI); |
| 998 | SNCA.runDFS(ToIDom, 0, DescendBelow, 0); |
| 999 | LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n" ); |
| 1000 | SNCA.runSemiNCA(); |
| 1001 | SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); |
| 1002 | } |
| 1003 | |
| 1004 | // Checks if a node has proper support, as defined on the page 3 and later |
| 1005 | // explained on the page 7 of [2]. |
| 1006 | static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 1007 | const TreeNodePtr TN) { |
| 1008 | LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) |
| 1009 | << "\n" ); |
| 1010 | auto TNB = TN->getBlock(); |
| 1011 | for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) { |
| 1012 | LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n" ); |
| 1013 | if (!DT.getNode(Pred)) continue; |
| 1014 | |
| 1015 | const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred); |
| 1016 | LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n" ); |
| 1017 | if (Support != TNB) { |
| 1018 | LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) |
| 1019 | << " is reachable from support " |
| 1020 | << BlockNamePrinter(Support) << "\n" ); |
| 1021 | return true; |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | return false; |
| 1026 | } |
| 1027 | |
| 1028 | // Handle deletions that make destination node unreachable. |
| 1029 | // (Based on the lemma 2.7 from the [2].) |
| 1030 | static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
| 1031 | const TreeNodePtr ToTN) { |
| 1032 | LLVM_DEBUG(dbgs() << "Deleting unreachable subtree " |
| 1033 | << BlockNamePrinter(ToTN) << "\n" ); |
| 1034 | assert(ToTN); |
| 1035 | assert(ToTN->getBlock()); |
| 1036 | |
| 1037 | if (IsPostDom) { |
| 1038 | // Deletion makes a region reverse-unreachable and creates a new root. |
| 1039 | // Simulate that by inserting an edge from the virtual root to ToTN and |
| 1040 | // adding it as a new root. |
| 1041 | LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n" ); |
| 1042 | LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) |
| 1043 | << "\n" ); |
| 1044 | DT.Roots.push_back(ToTN->getBlock()); |
| 1045 | InsertReachable(DT, BUI, From: DT.getNode(nullptr), To: ToTN); |
| 1046 | return; |
| 1047 | } |
| 1048 | |
| 1049 | SmallVector<NodePtr, 16> AffectedQueue; |
| 1050 | const unsigned Level = ToTN->getLevel(); |
| 1051 | |
| 1052 | // Traverse destination node's descendants with greater level in the tree |
| 1053 | // and collect visited nodes. |
| 1054 | auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { |
| 1055 | const TreeNodePtr TN = DT.getNode(To); |
| 1056 | assert(TN); |
| 1057 | if (TN->getLevel() > Level) return true; |
| 1058 | if (!llvm::is_contained(AffectedQueue, To)) |
| 1059 | AffectedQueue.push_back(To); |
| 1060 | |
| 1061 | return false; |
| 1062 | }; |
| 1063 | |
| 1064 | SemiNCAInfo SNCA(BUI); |
| 1065 | unsigned LastDFSNum = |
| 1066 | SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); |
| 1067 | |
| 1068 | TreeNodePtr MinNode = ToTN; |
| 1069 | |
| 1070 | // Identify the top of the subtree to rebuild by finding the NCD of all |
| 1071 | // the affected nodes. |
| 1072 | for (const NodePtr N : AffectedQueue) { |
| 1073 | const TreeNodePtr TN = DT.getNode(N); |
| 1074 | const NodePtr NCDBlock = |
| 1075 | DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); |
| 1076 | assert(NCDBlock || DT.isPostDominator()); |
| 1077 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
| 1078 | assert(NCD); |
| 1079 | |
| 1080 | LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) |
| 1081 | << " with NCD = " << BlockNamePrinter(NCD) |
| 1082 | << ", MinNode =" << BlockNamePrinter(MinNode) << "\n" ); |
| 1083 | if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; |
| 1084 | } |
| 1085 | |
| 1086 | // Root reached, rebuild the whole tree from scratch. |
| 1087 | if (!MinNode->getIDom()) { |
| 1088 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n" ); |
| 1089 | CalculateFromScratch(DT, BUI); |
| 1090 | return; |
| 1091 | } |
| 1092 | |
| 1093 | // Erase the unreachable subtree in reverse preorder to process all children |
| 1094 | // before deleting their parent. |
| 1095 | for (unsigned i = LastDFSNum; i > 0; --i) { |
| 1096 | const NodePtr N = SNCA.NumToNode[i]; |
| 1097 | LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(DT.getNode(N)) |
| 1098 | << "\n" ); |
| 1099 | DT.eraseNode(N); |
| 1100 | } |
| 1101 | |
| 1102 | // The affected subtree start at the To node -- there's no extra work to do. |
| 1103 | if (MinNode == ToTN) return; |
| 1104 | |
| 1105 | LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " |
| 1106 | << BlockNamePrinter(MinNode) << "\n" ); |
| 1107 | const unsigned MinLevel = MinNode->getLevel(); |
| 1108 | const TreeNodePtr PrevIDom = MinNode->getIDom(); |
| 1109 | assert(PrevIDom); |
| 1110 | SNCA.clear(); |
| 1111 | |
| 1112 | // Identify nodes that remain in the affected subtree. |
| 1113 | auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { |
| 1114 | const TreeNodePtr ToTN = DT.getNode(To); |
| 1115 | return ToTN && ToTN->getLevel() > MinLevel; |
| 1116 | }; |
| 1117 | SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); |
| 1118 | |
| 1119 | LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = " |
| 1120 | << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n" ); |
| 1121 | |
| 1122 | // Rebuild the remaining part of affected subtree. |
| 1123 | SNCA.runSemiNCA(); |
| 1124 | SNCA.reattachExistingSubtree(DT, PrevIDom); |
| 1125 | } |
| 1126 | |
| 1127 | //~~ |
| 1128 | //===--------------------- DomTree Batch Updater --------------------------=== |
| 1129 | //~~ |
| 1130 | |
| 1131 | static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG, |
| 1132 | GraphDiffT *PostViewCFG) { |
| 1133 | // Note: the PostViewCFG is only used when computing from scratch. It's data |
| 1134 | // should already included in the PreViewCFG for incremental updates. |
| 1135 | const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates(); |
| 1136 | if (NumUpdates == 0) |
| 1137 | return; |
| 1138 | |
| 1139 | // Take the fast path for a single update and avoid running the batch update |
| 1140 | // machinery. |
| 1141 | if (NumUpdates == 1) { |
| 1142 | UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates(); |
| 1143 | if (!PostViewCFG) { |
| 1144 | if (Update.getKind() == UpdateKind::Insert) |
| 1145 | InsertEdge(DT, /*BUI=*/BUI: nullptr, From: Update.getFrom(), To: Update.getTo()); |
| 1146 | else |
| 1147 | DeleteEdge(DT, /*BUI=*/BUI: nullptr, From: Update.getFrom(), To: Update.getTo()); |
| 1148 | } else { |
| 1149 | BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG); |
| 1150 | if (Update.getKind() == UpdateKind::Insert) |
| 1151 | InsertEdge(DT, BUI: &BUI, From: Update.getFrom(), To: Update.getTo()); |
| 1152 | else |
| 1153 | DeleteEdge(DT, BUI: &BUI, From: Update.getFrom(), To: Update.getTo()); |
| 1154 | } |
| 1155 | return; |
| 1156 | } |
| 1157 | |
| 1158 | BatchUpdateInfo BUI(PreViewCFG, PostViewCFG); |
| 1159 | // Recalculate the DominatorTree when the number of updates |
| 1160 | // exceeds a threshold, which usually makes direct updating slower than |
| 1161 | // recalculation. We select this threshold proportional to the |
| 1162 | // size of the DominatorTree. The constant is selected |
| 1163 | // by choosing the one with an acceptable performance on some real-world |
| 1164 | // inputs. |
| 1165 | |
| 1166 | // Make unittests of the incremental algorithm work |
| 1167 | if (DT.DomTreeNodes.size() <= 100) { |
| 1168 | if (BUI.NumLegalized > DT.DomTreeNodes.size()) |
| 1169 | CalculateFromScratch(DT, BUI: &BUI); |
| 1170 | } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40) |
| 1171 | CalculateFromScratch(DT, BUI: &BUI); |
| 1172 | |
| 1173 | // If the DominatorTree was recalculated at some point, stop the batch |
| 1174 | // updates. Full recalculations ignore batch updates and look at the actual |
| 1175 | // CFG. |
| 1176 | for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i) |
| 1177 | ApplyNextUpdate(DT, BUI); |
| 1178 | } |
| 1179 | |
| 1180 | static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { |
| 1181 | // Popping the next update, will move the PreViewCFG to the next snapshot. |
| 1182 | UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates(); |
| 1183 | #if 0 |
| 1184 | // FIXME: The LLVM_DEBUG macro only plays well with a modular |
| 1185 | // build of LLVM when the header is marked as textual, but doing |
| 1186 | // so causes redefinition errors. |
| 1187 | LLVM_DEBUG(dbgs() << "Applying update: " ); |
| 1188 | LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n" ); |
| 1189 | #endif |
| 1190 | |
| 1191 | if (CurrentUpdate.getKind() == UpdateKind::Insert) |
| 1192 | InsertEdge(DT, BUI: &BUI, From: CurrentUpdate.getFrom(), To: CurrentUpdate.getTo()); |
| 1193 | else |
| 1194 | DeleteEdge(DT, BUI: &BUI, From: CurrentUpdate.getFrom(), To: CurrentUpdate.getTo()); |
| 1195 | } |
| 1196 | |
| 1197 | //~~ |
| 1198 | //===--------------- DomTree correctness verification ---------------------=== |
| 1199 | //~~ |
| 1200 | |
| 1201 | // Check if the tree has correct roots. A DominatorTree always has a single |
| 1202 | // root which is the function's entry node. A PostDominatorTree can have |
| 1203 | // multiple roots - one for each node with no successors and for infinite |
| 1204 | // loops. |
| 1205 | // Running time: O(N). |
| 1206 | bool verifyRoots(const DomTreeT &DT) { |
| 1207 | if (!DT.Parent && !DT.Roots.empty()) { |
| 1208 | errs() << "Tree has no parent but has roots!\n" ; |
| 1209 | errs().flush(); |
| 1210 | return false; |
| 1211 | } |
| 1212 | |
| 1213 | if (!IsPostDom) { |
| 1214 | if (DT.Roots.empty()) { |
| 1215 | errs() << "Tree doesn't have a root!\n" ; |
| 1216 | errs().flush(); |
| 1217 | return false; |
| 1218 | } |
| 1219 | |
| 1220 | if (DT.getRoot() != GetEntryNode(DT)) { |
| 1221 | errs() << "Tree's root is not its parent's entry node!\n" ; |
| 1222 | errs().flush(); |
| 1223 | return false; |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | RootsT ComputedRoots = FindRoots(DT, BUI: nullptr); |
| 1228 | if (!isPermutation(A: DT.Roots, B: ComputedRoots)) { |
| 1229 | errs() << "Tree has different roots than freshly computed ones!\n" ; |
| 1230 | errs() << "\tPDT roots: " ; |
| 1231 | for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", " ; |
| 1232 | errs() << "\n\tComputed roots: " ; |
| 1233 | for (const NodePtr N : ComputedRoots) |
| 1234 | errs() << BlockNamePrinter(N) << ", " ; |
| 1235 | errs() << "\n" ; |
| 1236 | errs().flush(); |
| 1237 | return false; |
| 1238 | } |
| 1239 | |
| 1240 | return true; |
| 1241 | } |
| 1242 | |
| 1243 | // Checks if the tree contains all reachable nodes in the input graph. |
| 1244 | // Running time: O(N). |
| 1245 | bool verifyReachability(const DomTreeT &DT) { |
| 1246 | clear(); |
| 1247 | doFullDFSWalk(DT, AlwaysDescend); |
| 1248 | |
| 1249 | for (auto &NodeToTN : DT.DomTreeNodes) { |
| 1250 | const TreeNodePtr TN = NodeToTN.get(); |
| 1251 | if (!TN) |
| 1252 | continue; |
| 1253 | const NodePtr BB = TN->getBlock(); |
| 1254 | |
| 1255 | // Virtual root has a corresponding virtual CFG node. |
| 1256 | if (DT.isVirtualRoot(TN)) continue; |
| 1257 | |
| 1258 | if (getNodeInfo(BB).DFSNum == 0) { |
| 1259 | errs() << "DomTree node " << BlockNamePrinter(BB) |
| 1260 | << " not found by DFS walk!\n" ; |
| 1261 | errs().flush(); |
| 1262 | |
| 1263 | return false; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | for (const NodePtr N : NumToNode) { |
| 1268 | if (N && !DT.getNode(N)) { |
| 1269 | errs() << "CFG node " << BlockNamePrinter(N) |
| 1270 | << " not found in the DomTree!\n" ; |
| 1271 | errs().flush(); |
| 1272 | |
| 1273 | return false; |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | return true; |
| 1278 | } |
| 1279 | |
| 1280 | // Check if for every parent with a level L in the tree all of its children |
| 1281 | // have level L + 1. |
| 1282 | // Running time: O(N). |
| 1283 | static bool VerifyLevels(const DomTreeT &DT) { |
| 1284 | for (auto &NodeToTN : DT.DomTreeNodes) { |
| 1285 | const TreeNodePtr TN = NodeToTN.get(); |
| 1286 | if (!TN) |
| 1287 | continue; |
| 1288 | const NodePtr BB = TN->getBlock(); |
| 1289 | if (!BB) continue; |
| 1290 | |
| 1291 | const TreeNodePtr IDom = TN->getIDom(); |
| 1292 | if (!IDom && TN->getLevel() != 0) { |
| 1293 | errs() << "Node without an IDom " << BlockNamePrinter(BB) |
| 1294 | << " has a nonzero level " << TN->getLevel() << "!\n" ; |
| 1295 | errs().flush(); |
| 1296 | |
| 1297 | return false; |
| 1298 | } |
| 1299 | |
| 1300 | if (IDom && TN->getLevel() != IDom->getLevel() + 1) { |
| 1301 | errs() << "Node " << BlockNamePrinter(BB) << " has level " |
| 1302 | << TN->getLevel() << " while its IDom " |
| 1303 | << BlockNamePrinter(IDom->getBlock()) << " has level " |
| 1304 | << IDom->getLevel() << "!\n" ; |
| 1305 | errs().flush(); |
| 1306 | |
| 1307 | return false; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | return true; |
| 1312 | } |
| 1313 | |
| 1314 | // Check if the computed DFS numbers are correct. Note that DFS info may not |
| 1315 | // be valid, and when that is the case, we don't verify the numbers. |
| 1316 | // Running time: O(N log(N)). |
| 1317 | static bool VerifyDFSNumbers(const DomTreeT &DT) { |
| 1318 | if (!DT.DFSInfoValid || !DT.Parent) |
| 1319 | return true; |
| 1320 | |
| 1321 | const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin(); |
| 1322 | const TreeNodePtr Root = DT.getNode(RootBB); |
| 1323 | |
| 1324 | auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { |
| 1325 | errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " |
| 1326 | << TN->getDFSNumOut() << '}'; |
| 1327 | }; |
| 1328 | |
| 1329 | // Verify the root's DFS In number. Although DFS numbering would also work |
| 1330 | // if we started from some other value, we assume 0-based numbering. |
| 1331 | if (Root->getDFSNumIn() != 0) { |
| 1332 | errs() << "DFSIn number for the tree root is not:\n\t" ; |
| 1333 | PrintNodeAndDFSNums(Root); |
| 1334 | errs() << '\n'; |
| 1335 | errs().flush(); |
| 1336 | return false; |
| 1337 | } |
| 1338 | |
| 1339 | // For each tree node verify if children's DFS numbers cover their parent's |
| 1340 | // DFS numbers with no gaps. |
| 1341 | for (const auto &NodeToTN : DT.DomTreeNodes) { |
| 1342 | const TreeNodePtr Node = NodeToTN.get(); |
| 1343 | if (!Node) |
| 1344 | continue; |
| 1345 | |
| 1346 | // Handle tree leaves. |
| 1347 | if (Node->isLeaf()) { |
| 1348 | if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { |
| 1349 | errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t" ; |
| 1350 | PrintNodeAndDFSNums(Node); |
| 1351 | errs() << '\n'; |
| 1352 | errs().flush(); |
| 1353 | return false; |
| 1354 | } |
| 1355 | |
| 1356 | continue; |
| 1357 | } |
| 1358 | |
| 1359 | // Make a copy and sort it such that it is possible to check if there are |
| 1360 | // no gaps between DFS numbers of adjacent children. |
| 1361 | SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); |
| 1362 | llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { |
| 1363 | return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); |
| 1364 | }); |
| 1365 | |
| 1366 | auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( |
| 1367 | const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { |
| 1368 | assert(FirstCh); |
| 1369 | |
| 1370 | errs() << "Incorrect DFS numbers for:\n\tParent " ; |
| 1371 | PrintNodeAndDFSNums(Node); |
| 1372 | |
| 1373 | errs() << "\n\tChild " ; |
| 1374 | PrintNodeAndDFSNums(FirstCh); |
| 1375 | |
| 1376 | if (SecondCh) { |
| 1377 | errs() << "\n\tSecond child " ; |
| 1378 | PrintNodeAndDFSNums(SecondCh); |
| 1379 | } |
| 1380 | |
| 1381 | errs() << "\nAll children: " ; |
| 1382 | for (const TreeNodePtr Ch : Children) { |
| 1383 | PrintNodeAndDFSNums(Ch); |
| 1384 | errs() << ", " ; |
| 1385 | } |
| 1386 | |
| 1387 | errs() << '\n'; |
| 1388 | errs().flush(); |
| 1389 | }; |
| 1390 | |
| 1391 | if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { |
| 1392 | PrintChildrenError(Children.front(), nullptr); |
| 1393 | return false; |
| 1394 | } |
| 1395 | |
| 1396 | if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { |
| 1397 | PrintChildrenError(Children.back(), nullptr); |
| 1398 | return false; |
| 1399 | } |
| 1400 | |
| 1401 | for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { |
| 1402 | if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { |
| 1403 | PrintChildrenError(Children[i], Children[i + 1]); |
| 1404 | return false; |
| 1405 | } |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | return true; |
| 1410 | } |
| 1411 | |
| 1412 | // The below routines verify the correctness of the dominator tree relative to |
| 1413 | // the CFG it's coming from. A tree is a dominator tree iff it has two |
| 1414 | // properties, called the parent property and the sibling property. Tarjan |
| 1415 | // and Lengauer prove (but don't explicitly name) the properties as part of |
| 1416 | // the proofs in their 1972 paper, but the proofs are mostly part of proving |
| 1417 | // things about semidominators and idoms, and some of them are simply asserted |
| 1418 | // based on even earlier papers (see, e.g., lemma 2). Some papers refer to |
| 1419 | // these properties as "valid" and "co-valid". See, e.g., "Dominators, |
| 1420 | // directed bipolar orders, and independent spanning trees" by Loukas |
| 1421 | // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification |
| 1422 | // and Vertex-Disjoint Paths " by the same authors. |
| 1423 | |
| 1424 | // A very simple and direct explanation of these properties can be found in |
| 1425 | // "An Experimental Study of Dynamic Dominators", found at |
| 1426 | // https://arxiv.org/abs/1604.02711 |
| 1427 | |
| 1428 | // The easiest way to think of the parent property is that it's a requirement |
| 1429 | // of being a dominator. Let's just take immediate dominators. For PARENT to |
| 1430 | // be an immediate dominator of CHILD, all paths in the CFG must go through |
| 1431 | // PARENT before they hit CHILD. This implies that if you were to cut PARENT |
| 1432 | // out of the CFG, there should be no paths to CHILD that are reachable. If |
| 1433 | // there are, then you now have a path from PARENT to CHILD that goes around |
| 1434 | // PARENT and still reaches CHILD, which by definition, means PARENT can't be |
| 1435 | // a dominator of CHILD (let alone an immediate one). |
| 1436 | |
| 1437 | // The sibling property is similar. It says that for each pair of sibling |
| 1438 | // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each |
| 1439 | // other. If sibling LEFT dominated sibling RIGHT, it means there are no |
| 1440 | // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through |
| 1441 | // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of |
| 1442 | // RIGHT, not a sibling. |
| 1443 | |
| 1444 | // It is possible to verify the parent and sibling properties in linear time, |
| 1445 | // but the algorithms are complex. Instead, we do it in a straightforward |
| 1446 | // N^2 and N^3 way below, using direct path reachability. |
| 1447 | |
| 1448 | // Checks if the tree has the parent property: if for all edges from V to W in |
| 1449 | // the input graph, such that V is reachable, the parent of W in the tree is |
| 1450 | // an ancestor of V in the tree. |
| 1451 | // Running time: O(N^2). |
| 1452 | // |
| 1453 | // This means that if a node gets disconnected from the graph, then all of |
| 1454 | // the nodes it dominated previously will now become unreachable. |
| 1455 | bool verifyParentProperty(const DomTreeT &DT) { |
| 1456 | for (auto &NodeToTN : DT.DomTreeNodes) { |
| 1457 | const TreeNodePtr TN = NodeToTN.get(); |
| 1458 | if (!TN) |
| 1459 | continue; |
| 1460 | const NodePtr BB = TN->getBlock(); |
| 1461 | if (!BB || TN->isLeaf()) |
| 1462 | continue; |
| 1463 | |
| 1464 | LLVM_DEBUG(dbgs() << "Verifying parent property of node " |
| 1465 | << BlockNamePrinter(TN) << "\n" ); |
| 1466 | clear(); |
| 1467 | doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { |
| 1468 | return From != BB && To != BB; |
| 1469 | }); |
| 1470 | |
| 1471 | for (TreeNodePtr Child : TN->children()) |
| 1472 | if (getNodeInfo(BB: Child->getBlock()).DFSNum != 0) { |
| 1473 | errs() << "Child " << BlockNamePrinter(Child) |
| 1474 | << " reachable after its parent " << BlockNamePrinter(BB) |
| 1475 | << " is removed!\n" ; |
| 1476 | errs().flush(); |
| 1477 | |
| 1478 | return false; |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | return true; |
| 1483 | } |
| 1484 | |
| 1485 | // Check if the tree has sibling property: if a node V does not dominate a |
| 1486 | // node W for all siblings V and W in the tree. |
| 1487 | // Running time: O(N^3). |
| 1488 | // |
| 1489 | // This means that if a node gets disconnected from the graph, then all of its |
| 1490 | // siblings will now still be reachable. |
| 1491 | bool verifySiblingProperty(const DomTreeT &DT) { |
| 1492 | for (auto &NodeToTN : DT.DomTreeNodes) { |
| 1493 | const TreeNodePtr TN = NodeToTN.get(); |
| 1494 | if (!TN) |
| 1495 | continue; |
| 1496 | const NodePtr BB = TN->getBlock(); |
| 1497 | if (!BB || TN->isLeaf()) |
| 1498 | continue; |
| 1499 | |
| 1500 | for (const TreeNodePtr N : TN->children()) { |
| 1501 | clear(); |
| 1502 | NodePtr BBN = N->getBlock(); |
| 1503 | doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { |
| 1504 | return From != BBN && To != BBN; |
| 1505 | }); |
| 1506 | |
| 1507 | for (const TreeNodePtr S : TN->children()) { |
| 1508 | if (S == N) continue; |
| 1509 | |
| 1510 | if (getNodeInfo(BB: S->getBlock()).DFSNum == 0) { |
| 1511 | errs() << "Node " << BlockNamePrinter(S) |
| 1512 | << " not reachable when its sibling " << BlockNamePrinter(N) |
| 1513 | << " is removed!\n" ; |
| 1514 | errs().flush(); |
| 1515 | |
| 1516 | return false; |
| 1517 | } |
| 1518 | } |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | return true; |
| 1523 | } |
| 1524 | |
| 1525 | // Check if the given tree is the same as a freshly computed one for the same |
| 1526 | // Parent. |
| 1527 | // Running time: O(N^2), but faster in practice (same as tree construction). |
| 1528 | // |
| 1529 | // Note that this does not check if that the tree construction algorithm is |
| 1530 | // correct and should be only used for fast (but possibly unsound) |
| 1531 | // verification. |
| 1532 | static bool IsSameAsFreshTree(const DomTreeT &DT) { |
| 1533 | DomTreeT FreshTree; |
| 1534 | FreshTree.recalculate(*DT.Parent); |
| 1535 | const bool Different = DT.compare(FreshTree); |
| 1536 | |
| 1537 | if (Different) { |
| 1538 | errs() << (DT.isPostDominator() ? "Post" : "" ) |
| 1539 | << "DominatorTree is different than a freshly computed one!\n" |
| 1540 | << "\tCurrent:\n" ; |
| 1541 | DT.print(errs()); |
| 1542 | errs() << "\n\tFreshly computed tree:\n" ; |
| 1543 | FreshTree.print(errs()); |
| 1544 | errs().flush(); |
| 1545 | } |
| 1546 | |
| 1547 | return !Different; |
| 1548 | } |
| 1549 | }; |
| 1550 | |
| 1551 | template <class DomTreeT> |
| 1552 | void Calculate(DomTreeT &DT) { |
| 1553 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); |
| 1554 | } |
| 1555 | |
| 1556 | template <typename DomTreeT> |
| 1557 | void CalculateWithUpdates(DomTreeT &DT, |
| 1558 | ArrayRef<typename DomTreeT::UpdateType> Updates) { |
| 1559 | // FIXME: Updated to use the PreViewCFG and behave the same as until now. |
| 1560 | // This behavior is however incorrect; this actually needs the PostViewCFG. |
| 1561 | GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG( |
| 1562 | Updates, /*ReverseApplyUpdates=*/true); |
| 1563 | typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG); |
| 1564 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI); |
| 1565 | } |
| 1566 | |
| 1567 | template <class DomTreeT> |
| 1568 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
| 1569 | typename DomTreeT::NodePtr To) { |
| 1570 | if (DT.isPostDominator()) std::swap(From, To); |
| 1571 | SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); |
| 1572 | } |
| 1573 | |
| 1574 | template <class DomTreeT> |
| 1575 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
| 1576 | typename DomTreeT::NodePtr To) { |
| 1577 | if (DT.isPostDominator()) std::swap(From, To); |
| 1578 | SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); |
| 1579 | } |
| 1580 | |
| 1581 | template <class DomTreeT> |
| 1582 | void ApplyUpdates(DomTreeT &DT, |
| 1583 | GraphDiff<typename DomTreeT::NodePtr, |
| 1584 | DomTreeT::IsPostDominator> &PreViewCFG, |
| 1585 | GraphDiff<typename DomTreeT::NodePtr, |
| 1586 | DomTreeT::IsPostDominator> *PostViewCFG) { |
| 1587 | SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG); |
| 1588 | } |
| 1589 | |
| 1590 | template <class DomTreeT> |
| 1591 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) { |
| 1592 | SemiNCAInfo<DomTreeT> SNCA(nullptr); |
| 1593 | |
| 1594 | // Simplist check is to compare against a new tree. This will also |
| 1595 | // usefully print the old and new trees, if they are different. |
| 1596 | if (!SNCA.IsSameAsFreshTree(DT)) |
| 1597 | return false; |
| 1598 | |
| 1599 | // Common checks to verify the properties of the tree. O(N log N) at worst. |
| 1600 | if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) || |
| 1601 | !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT)) |
| 1602 | return false; |
| 1603 | |
| 1604 | // Extra checks depending on VerificationLevel. Up to O(N^3). |
| 1605 | if (VL == DomTreeT::VerificationLevel::Basic || |
| 1606 | VL == DomTreeT::VerificationLevel::Full) |
| 1607 | if (!SNCA.verifyParentProperty(DT)) |
| 1608 | return false; |
| 1609 | if (VL == DomTreeT::VerificationLevel::Full) |
| 1610 | if (!SNCA.verifySiblingProperty(DT)) |
| 1611 | return false; |
| 1612 | |
| 1613 | return true; |
| 1614 | } |
| 1615 | |
| 1616 | } // namespace DomTreeBuilder |
| 1617 | } // namespace llvm |
| 1618 | |
| 1619 | #undef DEBUG_TYPE |
| 1620 | |
| 1621 | #endif |
| 1622 | |