1 | //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// Generic dominator tree construction - this file provides routines to |
11 | /// construct immediate dominator information for a flow-graph based on the |
12 | /// Semi-NCA algorithm described in this dissertation: |
13 | /// |
14 | /// [1] Linear-Time Algorithms for Dominators and Related Problems |
15 | /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: |
16 | /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf |
17 | /// |
18 | /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly |
19 | /// faster than Simple Lengauer-Tarjan in practice. |
20 | /// |
21 | /// O(n^2) worst cases happen when the computation of nearest common ancestors |
22 | /// requires O(n) average time, which is very unlikely in real world. If this |
23 | /// ever turns out to be an issue, consider implementing a hybrid algorithm |
24 | /// that uses SLT to perform full constructions and SemiNCA for incremental |
25 | /// updates. |
26 | /// |
27 | /// The file uses the Depth Based Search algorithm to perform incremental |
28 | /// updates (insertion and deletions). The implemented algorithm is based on |
29 | /// this publication: |
30 | /// |
31 | /// [2] An Experimental Study of Dynamic Dominators |
32 | /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: |
33 | /// https://arxiv.org/pdf/1604.02711.pdf |
34 | /// |
35 | //===----------------------------------------------------------------------===// |
36 | |
37 | #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H |
38 | #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H |
39 | |
40 | #include "llvm/ADT/ArrayRef.h" |
41 | #include "llvm/ADT/DenseSet.h" |
42 | #include "llvm/ADT/DepthFirstIterator.h" |
43 | #include "llvm/ADT/SmallPtrSet.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Support/GenericDomTree.h" |
46 | #include <optional> |
47 | #include <queue> |
48 | |
49 | #define DEBUG_TYPE "dom-tree-builder" |
50 | |
51 | namespace llvm { |
52 | namespace DomTreeBuilder { |
53 | |
54 | template <typename DomTreeT> |
55 | struct SemiNCAInfo { |
56 | using NodePtr = typename DomTreeT::NodePtr; |
57 | using NodeT = typename DomTreeT::NodeType; |
58 | using TreeNodePtr = DomTreeNodeBase<NodeT> *; |
59 | using RootsT = decltype(DomTreeT::Roots); |
60 | static constexpr bool IsPostDom = DomTreeT::IsPostDominator; |
61 | using GraphDiffT = GraphDiff<NodePtr, IsPostDom>; |
62 | |
63 | // Information record used by Semi-NCA during tree construction. |
64 | struct InfoRec { |
65 | unsigned DFSNum = 0; |
66 | unsigned Parent = 0; |
67 | unsigned Semi = 0; |
68 | unsigned Label = 0; |
69 | NodePtr IDom = nullptr; |
70 | SmallVector<unsigned, 4> ReverseChildren; |
71 | }; |
72 | |
73 | // Number to node mapping is 1-based. Initialize the mapping to start with |
74 | // a dummy element. |
75 | SmallVector<NodePtr, 64> NumToNode = {nullptr}; |
76 | // If blocks have numbers (e.g., BasicBlock, MachineBasicBlock), store node |
77 | // infos in a vector. Otherwise, store them in a map. |
78 | std::conditional_t<GraphHasNodeNumbers<NodePtr>, SmallVector<InfoRec, 64>, |
79 | DenseMap<NodePtr, InfoRec>> |
80 | NodeInfos; |
81 | |
82 | using UpdateT = typename DomTreeT::UpdateType; |
83 | using UpdateKind = typename DomTreeT::UpdateKind; |
84 | struct BatchUpdateInfo { |
85 | // Note: Updates inside PreViewCFG are already legalized. |
86 | BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr) |
87 | : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG), |
88 | NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {} |
89 | |
90 | // Remembers if the whole tree was recalculated at some point during the |
91 | // current batch update. |
92 | bool IsRecalculated = false; |
93 | GraphDiffT &PreViewCFG; |
94 | GraphDiffT *PostViewCFG; |
95 | const size_t NumLegalized; |
96 | }; |
97 | |
98 | BatchUpdateInfo *BatchUpdates; |
99 | using BatchUpdatePtr = BatchUpdateInfo *; |
100 | |
101 | // If BUI is a nullptr, then there's no batch update in progress. |
102 | SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {} |
103 | |
104 | void clear() { |
105 | NumToNode = {nullptr}; // Restore to initial state with a dummy start node. |
106 | NodeInfos.clear(); |
107 | // Don't reset the pointer to BatchUpdateInfo here -- if there's an update |
108 | // in progress, we need this information to continue it. |
109 | } |
110 | |
111 | template <bool Inversed> |
112 | static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) { |
113 | if (BUI) |
114 | return BUI->PreViewCFG.template getChildren<Inversed>(N); |
115 | return getChildren<Inversed>(N); |
116 | } |
117 | |
118 | template <bool Inversed> |
119 | static SmallVector<NodePtr, 8> getChildren(NodePtr N) { |
120 | using DirectedNodeT = |
121 | std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>; |
122 | auto R = children<DirectedNodeT>(N); |
123 | SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R)); |
124 | |
125 | // Remove nullptr children for clang. |
126 | llvm::erase(Res, nullptr); |
127 | return Res; |
128 | } |
129 | |
130 | InfoRec &getNodeInfo(NodePtr BB) { |
131 | if constexpr (GraphHasNodeNumbers<NodePtr>) { |
132 | unsigned Idx = BB ? GraphTraits<NodePtr>::getNumber(BB) + 1 : 0; |
133 | if (Idx >= NodeInfos.size()) { |
134 | unsigned Max = 0; |
135 | if (BB) |
136 | Max = GraphTraits<decltype(BB->getParent())>::getMaxNumber( |
137 | BB->getParent()); |
138 | // Max might be zero, graphs might not support getMaxNumber(). |
139 | NodeInfos.resize(Max ? Max + 1 : Idx + 1); |
140 | } |
141 | return NodeInfos[Idx]; |
142 | } else { |
143 | return NodeInfos[BB]; |
144 | } |
145 | } |
146 | |
147 | NodePtr getIDom(NodePtr BB) { return getNodeInfo(BB).IDom; } |
148 | |
149 | TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { |
150 | if (TreeNodePtr Node = DT.getNode(BB)) return Node; |
151 | |
152 | // Haven't calculated this node yet? Get or calculate the node for the |
153 | // immediate dominator. |
154 | NodePtr IDom = getIDom(BB); |
155 | |
156 | assert(IDom || DT.getNode(nullptr)); |
157 | TreeNodePtr IDomNode = getNodeForBlock(BB: IDom, DT); |
158 | |
159 | // Add a new tree node for this NodeT, and link it as a child of |
160 | // IDomNode |
161 | return DT.createNode(BB, IDomNode); |
162 | } |
163 | |
164 | static bool AlwaysDescend(NodePtr, NodePtr) { return true; } |
165 | |
166 | struct BlockNamePrinter { |
167 | NodePtr N; |
168 | |
169 | BlockNamePrinter(NodePtr Block) : N(Block) {} |
170 | BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} |
171 | |
172 | friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { |
173 | if (!BP.N) |
174 | O << "nullptr" ; |
175 | else |
176 | BP.N->printAsOperand(O, false); |
177 | |
178 | return O; |
179 | } |
180 | }; |
181 | |
182 | using NodeOrderMap = DenseMap<NodePtr, unsigned>; |
183 | |
184 | // Custom DFS implementation which can skip nodes based on a provided |
185 | // predicate. It also collects ReverseChildren so that we don't have to spend |
186 | // time getting predecessors in SemiNCA. |
187 | // |
188 | // If IsReverse is set to true, the DFS walk will be performed backwards |
189 | // relative to IsPostDom -- using reverse edges for dominators and forward |
190 | // edges for postdominators. |
191 | // |
192 | // If SuccOrder is specified then in this order the DFS traverses the children |
193 | // otherwise the order is implied by the results of getChildren(). |
194 | template <bool IsReverse = false, typename DescendCondition> |
195 | unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, |
196 | unsigned AttachToNum, |
197 | const NodeOrderMap *SuccOrder = nullptr) { |
198 | assert(V); |
199 | SmallVector<std::pair<NodePtr, unsigned>, 64> WorkList = {{V, AttachToNum}}; |
200 | getNodeInfo(BB: V).Parent = AttachToNum; |
201 | |
202 | while (!WorkList.empty()) { |
203 | const auto [BB, ParentNum] = WorkList.pop_back_val(); |
204 | auto &BBInfo = getNodeInfo(BB); |
205 | BBInfo.ReverseChildren.push_back(ParentNum); |
206 | |
207 | // Visited nodes always have positive DFS numbers. |
208 | if (BBInfo.DFSNum != 0) continue; |
209 | BBInfo.Parent = ParentNum; |
210 | BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum; |
211 | NumToNode.push_back(BB); |
212 | |
213 | constexpr bool Direction = IsReverse != IsPostDom; // XOR. |
214 | auto Successors = getChildren<Direction>(BB, BatchUpdates); |
215 | if (SuccOrder && Successors.size() > 1) |
216 | llvm::sort( |
217 | Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) { |
218 | return SuccOrder->find(A)->second < SuccOrder->find(B)->second; |
219 | }); |
220 | |
221 | for (const NodePtr Succ : Successors) { |
222 | if (!Condition(BB, Succ)) continue; |
223 | |
224 | WorkList.push_back({Succ, LastNum}); |
225 | } |
226 | } |
227 | |
228 | return LastNum; |
229 | } |
230 | |
231 | // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum |
232 | // of sdom(U), where U > W and there is a virtual forest path from U to V. The |
233 | // virtual forest consists of linked edges of processed vertices. |
234 | // |
235 | // We can follow Parent pointers (virtual forest edges) to determine the |
236 | // ancestor U with minimum sdom(U). But it is slow and thus we employ the path |
237 | // compression technique to speed up to O(m*log(n)). Theoretically the virtual |
238 | // forest can be organized as balanced trees to achieve almost linear |
239 | // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size |
240 | // and Child) and is unlikely to be faster than the simple implementation. |
241 | // |
242 | // For each vertex V, its Label points to the vertex with the minimal sdom(U) |
243 | // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded). |
244 | unsigned eval(unsigned V, unsigned LastLinked, |
245 | SmallVectorImpl<InfoRec *> &Stack, |
246 | ArrayRef<InfoRec *> NumToInfo) { |
247 | InfoRec *VInfo = NumToInfo[V]; |
248 | if (VInfo->Parent < LastLinked) |
249 | return VInfo->Label; |
250 | |
251 | // Store ancestors except the last (root of a virtual tree) into a stack. |
252 | assert(Stack.empty()); |
253 | do { |
254 | Stack.push_back(VInfo); |
255 | VInfo = NumToInfo[VInfo->Parent]; |
256 | } while (VInfo->Parent >= LastLinked); |
257 | |
258 | // Path compression. Point each vertex's Parent to the root and update its |
259 | // Label if any of its ancestors (PInfo->Label) has a smaller Semi. |
260 | const InfoRec *PInfo = VInfo; |
261 | const InfoRec *PLabelInfo = NumToInfo[PInfo->Label]; |
262 | do { |
263 | VInfo = Stack.pop_back_val(); |
264 | VInfo->Parent = PInfo->Parent; |
265 | const InfoRec *VLabelInfo = NumToInfo[VInfo->Label]; |
266 | if (PLabelInfo->Semi < VLabelInfo->Semi) |
267 | VInfo->Label = PInfo->Label; |
268 | else |
269 | PLabelInfo = VLabelInfo; |
270 | PInfo = VInfo; |
271 | } while (!Stack.empty()); |
272 | return VInfo->Label; |
273 | } |
274 | |
275 | // This function requires DFS to be run before calling it. |
276 | void runSemiNCA() { |
277 | const unsigned NextDFSNum(NumToNode.size()); |
278 | SmallVector<InfoRec *, 8> NumToInfo = {nullptr}; |
279 | NumToInfo.reserve(NextDFSNum); |
280 | // Initialize IDoms to spanning tree parents. |
281 | for (unsigned i = 1; i < NextDFSNum; ++i) { |
282 | const NodePtr V = NumToNode[i]; |
283 | auto &VInfo = getNodeInfo(BB: V); |
284 | VInfo.IDom = NumToNode[VInfo.Parent]; |
285 | NumToInfo.push_back(&VInfo); |
286 | } |
287 | |
288 | // Step #1: Calculate the semidominators of all vertices. |
289 | SmallVector<InfoRec *, 32> EvalStack; |
290 | for (unsigned i = NextDFSNum - 1; i >= 2; --i) { |
291 | auto &WInfo = *NumToInfo[i]; |
292 | |
293 | // Initialize the semi dominator to point to the parent node. |
294 | WInfo.Semi = WInfo.Parent; |
295 | for (unsigned N : WInfo.ReverseChildren) { |
296 | unsigned SemiU = NumToInfo[eval(V: N, LastLinked: i + 1, Stack&: EvalStack, NumToInfo)]->Semi; |
297 | if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; |
298 | } |
299 | } |
300 | |
301 | // Step #2: Explicitly define the immediate dominator of each vertex. |
302 | // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). |
303 | // Note that the parents were stored in IDoms and later got invalidated |
304 | // during path compression in Eval. |
305 | for (unsigned i = 2; i < NextDFSNum; ++i) { |
306 | auto &WInfo = *NumToInfo[i]; |
307 | assert(WInfo.Semi != 0); |
308 | const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum; |
309 | NodePtr WIDomCandidate = WInfo.IDom; |
310 | while (true) { |
311 | auto &WIDomCandidateInfo = getNodeInfo(BB: WIDomCandidate); |
312 | if (WIDomCandidateInfo.DFSNum <= SDomNum) |
313 | break; |
314 | WIDomCandidate = WIDomCandidateInfo.IDom; |
315 | } |
316 | |
317 | WInfo.IDom = WIDomCandidate; |
318 | } |
319 | } |
320 | |
321 | // PostDominatorTree always has a virtual root that represents a virtual CFG |
322 | // node that serves as a single exit from the function. All the other exits |
323 | // (CFG nodes with terminators and nodes in infinite loops are logically |
324 | // connected to this virtual CFG exit node). |
325 | // This functions maps a nullptr CFG node to the virtual root tree node. |
326 | void addVirtualRoot() { |
327 | assert(IsPostDom && "Only postdominators have a virtual root" ); |
328 | assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed" ); |
329 | |
330 | auto &BBInfo = getNodeInfo(BB: nullptr); |
331 | BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1; |
332 | |
333 | NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; |
334 | } |
335 | |
336 | // For postdominators, nodes with no forward successors are trivial roots that |
337 | // are always selected as tree roots. Roots with forward successors correspond |
338 | // to CFG nodes within infinite loops. |
339 | static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { |
340 | assert(N && "N must be a valid node" ); |
341 | return !getChildren<false>(N, BUI).empty(); |
342 | } |
343 | |
344 | static NodePtr GetEntryNode(const DomTreeT &DT) { |
345 | assert(DT.Parent && "Parent not set" ); |
346 | return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); |
347 | } |
348 | |
349 | // Finds all roots without relaying on the set of roots already stored in the |
350 | // tree. |
351 | // We define roots to be some non-redundant set of the CFG nodes |
352 | static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { |
353 | assert(DT.Parent && "Parent pointer is not set" ); |
354 | RootsT Roots; |
355 | |
356 | // For dominators, function entry CFG node is always a tree root node. |
357 | if (!IsPostDom) { |
358 | Roots.push_back(GetEntryNode(DT)); |
359 | return Roots; |
360 | } |
361 | |
362 | SemiNCAInfo SNCA(BUI); |
363 | |
364 | // PostDominatorTree always has a virtual root. |
365 | SNCA.addVirtualRoot(); |
366 | unsigned Num = 1; |
367 | |
368 | LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n" ); |
369 | |
370 | // Step #1: Find all the trivial roots that are going to will definitely |
371 | // remain tree roots. |
372 | unsigned Total = 0; |
373 | // It may happen that there are some new nodes in the CFG that are result of |
374 | // the ongoing batch update, but we cannot really pretend that they don't |
375 | // exist -- we won't see any outgoing or incoming edges to them, so it's |
376 | // fine to discover them here, as they would end up appearing in the CFG at |
377 | // some point anyway. |
378 | for (const NodePtr N : nodes(DT.Parent)) { |
379 | ++Total; |
380 | // If it has no *successors*, it is definitely a root. |
381 | if (!HasForwardSuccessors(N, BUI)) { |
382 | Roots.push_back(N); |
383 | // Run DFS not to walk this part of CFG later. |
384 | Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); |
385 | LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) |
386 | << "\n" ); |
387 | LLVM_DEBUG(dbgs() << "Last visited node: " |
388 | << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n" ); |
389 | } |
390 | } |
391 | |
392 | LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n" ); |
393 | |
394 | // Step #2: Find all non-trivial root candidates. Those are CFG nodes that |
395 | // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG |
396 | // nodes in infinite loops). |
397 | bool HasNonTrivialRoots = false; |
398 | // Accounting for the virtual exit, see if we had any reverse-unreachable |
399 | // nodes. |
400 | if (Total + 1 != Num) { |
401 | HasNonTrivialRoots = true; |
402 | |
403 | // SuccOrder is the order of blocks in the function. It is needed to make |
404 | // the calculation of the FurthestAway node and the whole PostDomTree |
405 | // immune to swap successors transformation (e.g. canonicalizing branch |
406 | // predicates). SuccOrder is initialized lazily only for successors of |
407 | // reverse unreachable nodes. |
408 | std::optional<NodeOrderMap> SuccOrder; |
409 | auto InitSuccOrderOnce = [&]() { |
410 | SuccOrder = NodeOrderMap(); |
411 | for (const auto Node : nodes(DT.Parent)) |
412 | if (SNCA.getNodeInfo(Node).DFSNum == 0) |
413 | for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates)) |
414 | SuccOrder->try_emplace(Succ, 0); |
415 | |
416 | // Add mapping for all entries of SuccOrder. |
417 | unsigned NodeNum = 0; |
418 | for (const auto Node : nodes(DT.Parent)) { |
419 | ++NodeNum; |
420 | auto Order = SuccOrder->find(Node); |
421 | if (Order != SuccOrder->end()) { |
422 | assert(Order->second == 0); |
423 | Order->second = NodeNum; |
424 | } |
425 | } |
426 | }; |
427 | |
428 | // Make another DFS pass over all other nodes to find the |
429 | // reverse-unreachable blocks, and find the furthest paths we'll be able |
430 | // to make. |
431 | // Note that this looks N^2, but it's really 2N worst case, if every node |
432 | // is unreachable. This is because we are still going to only visit each |
433 | // unreachable node once, we may just visit it in two directions, |
434 | // depending on how lucky we get. |
435 | for (const NodePtr I : nodes(DT.Parent)) { |
436 | if (SNCA.getNodeInfo(I).DFSNum == 0) { |
437 | LLVM_DEBUG(dbgs() |
438 | << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n" ); |
439 | // Find the furthest away we can get by following successors, then |
440 | // follow them in reverse. This gives us some reasonable answer about |
441 | // the post-dom tree inside any infinite loop. In particular, it |
442 | // guarantees we get to the farthest away point along *some* |
443 | // path. This also matches the GCC's behavior. |
444 | // If we really wanted a totally complete picture of dominance inside |
445 | // this infinite loop, we could do it with SCC-like algorithms to find |
446 | // the lowest and highest points in the infinite loop. In theory, it |
447 | // would be nice to give the canonical backedge for the loop, but it's |
448 | // expensive and does not always lead to a minimal set of roots. |
449 | LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n" ); |
450 | |
451 | if (!SuccOrder) |
452 | InitSuccOrderOnce(); |
453 | assert(SuccOrder); |
454 | |
455 | const unsigned NewNum = |
456 | SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder); |
457 | const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; |
458 | LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node " |
459 | << "(non-trivial root): " |
460 | << BlockNamePrinter(FurthestAway) << "\n" ); |
461 | Roots.push_back(FurthestAway); |
462 | LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " |
463 | << NewNum << "\n\t\t\tRemoving DFS info\n" ); |
464 | for (unsigned i = NewNum; i > Num; --i) { |
465 | const NodePtr N = SNCA.NumToNode[i]; |
466 | LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " |
467 | << BlockNamePrinter(N) << "\n" ); |
468 | SNCA.getNodeInfo(N) = {}; |
469 | SNCA.NumToNode.pop_back(); |
470 | } |
471 | const unsigned PrevNum = Num; |
472 | LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n" ); |
473 | Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); |
474 | for (unsigned i = PrevNum + 1; i <= Num; ++i) |
475 | LLVM_DEBUG(dbgs() << "\t\t\t\tfound node " |
476 | << BlockNamePrinter(SNCA.NumToNode[i]) << "\n" ); |
477 | } |
478 | } |
479 | } |
480 | |
481 | LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n" ); |
482 | LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n" ); |
483 | LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() |
484 | << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n" ); |
485 | |
486 | assert((Total + 1 == Num) && "Everything should have been visited" ); |
487 | |
488 | // Step #3: If we found some non-trivial roots, make them non-redundant. |
489 | if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots); |
490 | |
491 | LLVM_DEBUG(dbgs() << "Found roots: " ); |
492 | LLVM_DEBUG(for (auto *Root |
493 | : Roots) dbgs() |
494 | << BlockNamePrinter(Root) << " " ); |
495 | LLVM_DEBUG(dbgs() << "\n" ); |
496 | |
497 | return Roots; |
498 | } |
499 | |
500 | // This function only makes sense for postdominators. |
501 | // We define roots to be some set of CFG nodes where (reverse) DFS walks have |
502 | // to start in order to visit all the CFG nodes (including the |
503 | // reverse-unreachable ones). |
504 | // When the search for non-trivial roots is done it may happen that some of |
505 | // the non-trivial roots are reverse-reachable from other non-trivial roots, |
506 | // which makes them redundant. This function removes them from the set of |
507 | // input roots. |
508 | static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, |
509 | RootsT &Roots) { |
510 | assert(IsPostDom && "This function is for postdominators only" ); |
511 | LLVM_DEBUG(dbgs() << "Removing redundant roots\n" ); |
512 | |
513 | SemiNCAInfo SNCA(BUI); |
514 | |
515 | for (unsigned i = 0; i < Roots.size(); ++i) { |
516 | auto &Root = Roots[i]; |
517 | // Trivial roots are always non-redundant. |
518 | if (!HasForwardSuccessors(N: Root, BUI)) continue; |
519 | LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) |
520 | << " remains a root\n" ); |
521 | SNCA.clear(); |
522 | // Do a forward walk looking for the other roots. |
523 | const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); |
524 | // Skip the start node and begin from the second one (note that DFS uses |
525 | // 1-based indexing). |
526 | for (unsigned x = 2; x <= Num; ++x) { |
527 | const NodePtr N = SNCA.NumToNode[x]; |
528 | // If we wound another root in a (forward) DFS walk, remove the current |
529 | // root from the set of roots, as it is reverse-reachable from the other |
530 | // one. |
531 | if (llvm::is_contained(Roots, N)) { |
532 | LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root " |
533 | << BlockNamePrinter(N) << "\n\tRemoving root " |
534 | << BlockNamePrinter(Root) << "\n" ); |
535 | std::swap(Root, Roots.back()); |
536 | Roots.pop_back(); |
537 | |
538 | // Root at the back takes the current root's place. |
539 | // Start the next loop iteration with the same index. |
540 | --i; |
541 | break; |
542 | } |
543 | } |
544 | } |
545 | } |
546 | |
547 | template <typename DescendCondition> |
548 | void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { |
549 | if (!IsPostDom) { |
550 | assert(DT.Roots.size() == 1 && "Dominators should have a singe root" ); |
551 | runDFS(DT.Roots[0], 0, DC, 0); |
552 | return; |
553 | } |
554 | |
555 | addVirtualRoot(); |
556 | unsigned Num = 1; |
557 | for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1); |
558 | } |
559 | |
560 | static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { |
561 | auto *Parent = DT.Parent; |
562 | DT.reset(); |
563 | DT.Parent = Parent; |
564 | // If the update is using the actual CFG, BUI is null. If it's using a view, |
565 | // BUI is non-null and the PreCFGView is used. When calculating from |
566 | // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used. |
567 | BatchUpdatePtr PostViewBUI = nullptr; |
568 | if (BUI && BUI->PostViewCFG) { |
569 | BUI->PreViewCFG = *BUI->PostViewCFG; |
570 | PostViewBUI = BUI; |
571 | } |
572 | // This is rebuilding the whole tree, not incrementally, but PostViewBUI is |
573 | // used in case the caller needs a DT update with a CFGView. |
574 | SemiNCAInfo SNCA(PostViewBUI); |
575 | |
576 | // Step #0: Number blocks in depth-first order and initialize variables used |
577 | // in later stages of the algorithm. |
578 | DT.Roots = FindRoots(DT, BUI: PostViewBUI); |
579 | SNCA.doFullDFSWalk(DT, AlwaysDescend); |
580 | |
581 | SNCA.runSemiNCA(); |
582 | if (BUI) { |
583 | BUI->IsRecalculated = true; |
584 | LLVM_DEBUG( |
585 | dbgs() << "DomTree recalculated, skipping future batch updates\n" ); |
586 | } |
587 | |
588 | if (DT.Roots.empty()) return; |
589 | |
590 | // Add a node for the root. If the tree is a PostDominatorTree it will be |
591 | // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates |
592 | // all real exits (including multiple exit blocks, infinite loops). |
593 | NodePtr Root = IsPostDom ? nullptr : DT.Roots[0]; |
594 | |
595 | DT.RootNode = DT.createNode(Root); |
596 | SNCA.attachNewSubtree(DT, DT.RootNode); |
597 | } |
598 | |
599 | void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { |
600 | // Attach the first unreachable block to AttachTo. |
601 | getNodeInfo(BB: NumToNode[1]).IDom = AttachTo->getBlock(); |
602 | // Loop over all of the discovered blocks in the function... |
603 | for (NodePtr W : llvm::drop_begin(NumToNode)) { |
604 | if (DT.getNode(W)) |
605 | continue; // Already calculated the node before |
606 | |
607 | NodePtr ImmDom = getIDom(BB: W); |
608 | |
609 | // Get or calculate the node for the immediate dominator. |
610 | TreeNodePtr IDomNode = getNodeForBlock(BB: ImmDom, DT); |
611 | |
612 | // Add a new tree node for this BasicBlock, and link it as a child of |
613 | // IDomNode. |
614 | DT.createNode(W, IDomNode); |
615 | } |
616 | } |
617 | |
618 | void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { |
619 | getNodeInfo(BB: NumToNode[1]).IDom = AttachTo->getBlock(); |
620 | for (const NodePtr N : llvm::drop_begin(NumToNode)) { |
621 | const TreeNodePtr TN = DT.getNode(N); |
622 | assert(TN); |
623 | const TreeNodePtr NewIDom = DT.getNode(getNodeInfo(BB: N).IDom); |
624 | TN->setIDom(NewIDom); |
625 | } |
626 | } |
627 | |
628 | // Helper struct used during edge insertions. |
629 | struct InsertionInfo { |
630 | struct Compare { |
631 | bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const { |
632 | return LHS->getLevel() < RHS->getLevel(); |
633 | } |
634 | }; |
635 | |
636 | // Bucket queue of tree nodes ordered by descending level. For simplicity, |
637 | // we use a priority_queue here. |
638 | std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>, |
639 | Compare> |
640 | Bucket; |
641 | SmallDenseSet<TreeNodePtr, 8> Visited; |
642 | SmallVector<TreeNodePtr, 8> Affected; |
643 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
644 | SmallVector<TreeNodePtr, 8> VisitedUnaffected; |
645 | #endif |
646 | }; |
647 | |
648 | static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, |
649 | const NodePtr From, const NodePtr To) { |
650 | assert((From || IsPostDom) && |
651 | "From has to be a valid CFG node or a virtual root" ); |
652 | assert(To && "Cannot be a nullptr" ); |
653 | LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " |
654 | << BlockNamePrinter(To) << "\n" ); |
655 | TreeNodePtr FromTN = DT.getNode(From); |
656 | |
657 | if (!FromTN) { |
658 | // Ignore edges from unreachable nodes for (forward) dominators. |
659 | if (!IsPostDom) return; |
660 | |
661 | // The unreachable node becomes a new root -- a tree node for it. |
662 | TreeNodePtr VirtualRoot = DT.getNode(nullptr); |
663 | FromTN = DT.createNode(From, VirtualRoot); |
664 | DT.Roots.push_back(From); |
665 | } |
666 | |
667 | DT.DFSInfoValid = false; |
668 | |
669 | const TreeNodePtr ToTN = DT.getNode(To); |
670 | if (!ToTN) |
671 | InsertUnreachable(DT, BUI, From: FromTN, To); |
672 | else |
673 | InsertReachable(DT, BUI, From: FromTN, To: ToTN); |
674 | } |
675 | |
676 | // Determines if some existing root becomes reverse-reachable after the |
677 | // insertion. Rebuilds the whole tree if that situation happens. |
678 | static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, |
679 | const TreeNodePtr From, |
680 | const TreeNodePtr To) { |
681 | assert(IsPostDom && "This function is only for postdominators" ); |
682 | // Destination node is not attached to the virtual root, so it cannot be a |
683 | // root. |
684 | if (!DT.isVirtualRoot(To->getIDom())) return false; |
685 | |
686 | if (!llvm::is_contained(DT.Roots, To->getBlock())) |
687 | return false; // To is not a root, nothing to update. |
688 | |
689 | LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) |
690 | << " is no longer a root\n\t\tRebuilding the tree!!!\n" ); |
691 | |
692 | CalculateFromScratch(DT, BUI); |
693 | return true; |
694 | } |
695 | |
696 | static bool isPermutation(const SmallVectorImpl<NodePtr> &A, |
697 | const SmallVectorImpl<NodePtr> &B) { |
698 | if (A.size() != B.size()) |
699 | return false; |
700 | SmallPtrSet<NodePtr, 4> Set(llvm::from_range, A); |
701 | for (NodePtr N : B) |
702 | if (Set.count(N) == 0) |
703 | return false; |
704 | return true; |
705 | } |
706 | |
707 | // Updates the set of roots after insertion or deletion. This ensures that |
708 | // roots are the same when after a series of updates and when the tree would |
709 | // be built from scratch. |
710 | static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { |
711 | assert(IsPostDom && "This function is only for postdominators" ); |
712 | |
713 | // The tree has only trivial roots -- nothing to update. |
714 | if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) { |
715 | return HasForwardSuccessors(N, BUI); |
716 | })) |
717 | return; |
718 | |
719 | // Recalculate the set of roots. |
720 | RootsT Roots = FindRoots(DT, BUI); |
721 | if (!isPermutation(A: DT.Roots, B: Roots)) { |
722 | // The roots chosen in the CFG have changed. This is because the |
723 | // incremental algorithm does not really know or use the set of roots and |
724 | // can make a different (implicit) decision about which node within an |
725 | // infinite loop becomes a root. |
726 | |
727 | LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n" |
728 | << "The entire tree needs to be rebuilt\n" ); |
729 | // It may be possible to update the tree without recalculating it, but |
730 | // we do not know yet how to do it, and it happens rarely in practice. |
731 | CalculateFromScratch(DT, BUI); |
732 | } |
733 | } |
734 | |
735 | // Handles insertion to a node already in the dominator tree. |
736 | static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
737 | const TreeNodePtr From, const TreeNodePtr To) { |
738 | LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) |
739 | << " -> " << BlockNamePrinter(To->getBlock()) << "\n" ); |
740 | if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; |
741 | // DT.findNCD expects both pointers to be valid. When From is a virtual |
742 | // root, then its CFG block pointer is a nullptr, so we have to 'compute' |
743 | // the NCD manually. |
744 | const NodePtr NCDBlock = |
745 | (From->getBlock() && To->getBlock()) |
746 | ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) |
747 | : nullptr; |
748 | assert(NCDBlock || DT.isPostDominator()); |
749 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
750 | assert(NCD); |
751 | |
752 | LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n" ); |
753 | const unsigned NCDLevel = NCD->getLevel(); |
754 | |
755 | // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected |
756 | // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every |
757 | // w on P s.t. depth(v) <= depth(w) |
758 | // |
759 | // This reduces to a widest path problem (maximizing the depth of the |
760 | // minimum vertex in the path) which can be solved by a modified version of |
761 | // Dijkstra with a bucket queue (named depth-based search in [2]). |
762 | |
763 | // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing |
764 | // affected if this does not hold. |
765 | if (NCDLevel + 1 >= To->getLevel()) |
766 | return; |
767 | |
768 | InsertionInfo II; |
769 | SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel; |
770 | II.Bucket.push(To); |
771 | II.Visited.insert(To); |
772 | |
773 | while (!II.Bucket.empty()) { |
774 | TreeNodePtr TN = II.Bucket.top(); |
775 | II.Bucket.pop(); |
776 | II.Affected.push_back(TN); |
777 | |
778 | const unsigned CurrentLevel = TN->getLevel(); |
779 | LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) << |
780 | "as affected, CurrentLevel " << CurrentLevel << "\n" ); |
781 | |
782 | assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!" ); |
783 | |
784 | while (true) { |
785 | // Unlike regular Dijkstra, we have an inner loop to expand more |
786 | // vertices. The first iteration is for the (affected) vertex popped |
787 | // from II.Bucket and the rest are for vertices in |
788 | // UnaffectedOnCurrentLevel, which may eventually expand to affected |
789 | // vertices. |
790 | // |
791 | // Invariant: there is an optimal path from `To` to TN with the minimum |
792 | // depth being CurrentLevel. |
793 | for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) { |
794 | const TreeNodePtr SuccTN = DT.getNode(Succ); |
795 | assert(SuccTN && |
796 | "Unreachable successor found at reachable insertion" ); |
797 | const unsigned SuccLevel = SuccTN->getLevel(); |
798 | |
799 | LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) |
800 | << ", level = " << SuccLevel << "\n" ); |
801 | |
802 | // There is an optimal path from `To` to Succ with the minimum depth |
803 | // being min(CurrentLevel, SuccLevel). |
804 | // |
805 | // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected |
806 | // and no affected vertex may be reached by a path passing through it. |
807 | // Stop here. Also, Succ may be visited by other predecessors but the |
808 | // first visit has the optimal path. Stop if Succ has been visited. |
809 | if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second) |
810 | continue; |
811 | |
812 | if (SuccLevel > CurrentLevel) { |
813 | // Succ is unaffected but it may (transitively) expand to affected |
814 | // vertices. Store it in UnaffectedOnCurrentLevel. |
815 | LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected " |
816 | << BlockNamePrinter(Succ) << "\n" ); |
817 | UnaffectedOnCurrentLevel.push_back(SuccTN); |
818 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
819 | II.VisitedUnaffected.push_back(SuccTN); |
820 | #endif |
821 | } else { |
822 | // The condition is satisfied (Succ is affected). Add Succ to the |
823 | // bucket queue. |
824 | LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ) |
825 | << " to a Bucket\n" ); |
826 | II.Bucket.push(SuccTN); |
827 | } |
828 | } |
829 | |
830 | if (UnaffectedOnCurrentLevel.empty()) |
831 | break; |
832 | TN = UnaffectedOnCurrentLevel.pop_back_val(); |
833 | LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n" ); |
834 | } |
835 | } |
836 | |
837 | // Finish by updating immediate dominators and levels. |
838 | UpdateInsertion(DT, BUI, NCD, II); |
839 | } |
840 | |
841 | // Updates immediate dominators and levels after insertion. |
842 | static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, |
843 | const TreeNodePtr NCD, InsertionInfo &II) { |
844 | LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n" ); |
845 | |
846 | for (const TreeNodePtr TN : II.Affected) { |
847 | LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) |
848 | << ") = " << BlockNamePrinter(NCD) << "\n" ); |
849 | TN->setIDom(NCD); |
850 | } |
851 | |
852 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) |
853 | for (const TreeNodePtr TN : II.VisitedUnaffected) |
854 | assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 && |
855 | "TN should have been updated by an affected ancestor" ); |
856 | #endif |
857 | |
858 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); |
859 | } |
860 | |
861 | // Handles insertion to previously unreachable nodes. |
862 | static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
863 | const TreeNodePtr From, const NodePtr To) { |
864 | LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) |
865 | << " -> (unreachable) " << BlockNamePrinter(To) << "\n" ); |
866 | |
867 | // Collect discovered edges to already reachable nodes. |
868 | SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; |
869 | // Discover and connect nodes that became reachable with the insertion. |
870 | ComputeUnreachableDominators(DT, BUI, Root: To, Incoming: From, DiscoveredConnectingEdges&: DiscoveredEdgesToReachable); |
871 | |
872 | LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) |
873 | << " -> (prev unreachable) " << BlockNamePrinter(To) |
874 | << "\n" ); |
875 | |
876 | // Used the discovered edges and inset discovered connecting (incoming) |
877 | // edges. |
878 | for (const auto &Edge : DiscoveredEdgesToReachable) { |
879 | LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge " |
880 | << BlockNamePrinter(Edge.first) << " -> " |
881 | << BlockNamePrinter(Edge.second) << "\n" ); |
882 | InsertReachable(DT, BUI, From: DT.getNode(Edge.first), To: Edge.second); |
883 | } |
884 | } |
885 | |
886 | // Connects nodes that become reachable with an insertion. |
887 | static void ComputeUnreachableDominators( |
888 | DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, |
889 | const TreeNodePtr Incoming, |
890 | SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> |
891 | &DiscoveredConnectingEdges) { |
892 | assert(!DT.getNode(Root) && "Root must not be reachable" ); |
893 | |
894 | // Visit only previously unreachable nodes. |
895 | auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, |
896 | NodePtr To) { |
897 | const TreeNodePtr ToTN = DT.getNode(To); |
898 | if (!ToTN) return true; |
899 | |
900 | DiscoveredConnectingEdges.push_back({From, ToTN}); |
901 | return false; |
902 | }; |
903 | |
904 | SemiNCAInfo SNCA(BUI); |
905 | SNCA.runDFS(Root, 0, UnreachableDescender, 0); |
906 | SNCA.runSemiNCA(); |
907 | SNCA.attachNewSubtree(DT, Incoming); |
908 | |
909 | LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n" ); |
910 | } |
911 | |
912 | static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, |
913 | const NodePtr From, const NodePtr To) { |
914 | assert(From && To && "Cannot disconnect nullptrs" ); |
915 | LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " |
916 | << BlockNamePrinter(To) << "\n" ); |
917 | |
918 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
919 | // Ensure that the edge was in fact deleted from the CFG before informing |
920 | // the DomTree about it. |
921 | // The check is O(N), so run it only in debug configuration. |
922 | auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { |
923 | auto Successors = getChildren<IsPostDom>(Of, BUI); |
924 | return llvm::is_contained(Successors, SuccCandidate); |
925 | }; |
926 | (void)IsSuccessor; |
927 | assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!" ); |
928 | #endif |
929 | |
930 | const TreeNodePtr FromTN = DT.getNode(From); |
931 | // Deletion in an unreachable subtree -- nothing to do. |
932 | if (!FromTN) return; |
933 | |
934 | const TreeNodePtr ToTN = DT.getNode(To); |
935 | if (!ToTN) { |
936 | LLVM_DEBUG( |
937 | dbgs() << "\tTo (" << BlockNamePrinter(To) |
938 | << ") already unreachable -- there is no edge to delete\n" ); |
939 | return; |
940 | } |
941 | |
942 | const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); |
943 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
944 | |
945 | // If To dominates From -- nothing to do. |
946 | if (ToTN != NCD) { |
947 | DT.DFSInfoValid = false; |
948 | |
949 | const TreeNodePtr ToIDom = ToTN->getIDom(); |
950 | LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " |
951 | << BlockNamePrinter(ToIDom) << "\n" ); |
952 | |
953 | // To remains reachable after deletion. |
954 | // (Based on the caption under Figure 4. from [2].) |
955 | if (FromTN != ToIDom || HasProperSupport(DT, BUI, TN: ToTN)) |
956 | DeleteReachable(DT, BUI, FromTN, ToTN); |
957 | else |
958 | DeleteUnreachable(DT, BUI, ToTN); |
959 | } |
960 | |
961 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); |
962 | } |
963 | |
964 | // Handles deletions that leave destination nodes reachable. |
965 | static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
966 | const TreeNodePtr FromTN, |
967 | const TreeNodePtr ToTN) { |
968 | LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) |
969 | << " -> " << BlockNamePrinter(ToTN) << "\n" ); |
970 | LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n" ); |
971 | |
972 | // Find the top of the subtree that needs to be rebuilt. |
973 | // (Based on the lemma 2.6 from [2].) |
974 | const NodePtr ToIDom = |
975 | DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); |
976 | assert(ToIDom || DT.isPostDominator()); |
977 | const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); |
978 | assert(ToIDomTN); |
979 | const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); |
980 | // Top of the subtree to rebuild is the root node. Rebuild the tree from |
981 | // scratch. |
982 | if (!PrevIDomSubTree) { |
983 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n" ); |
984 | CalculateFromScratch(DT, BUI); |
985 | return; |
986 | } |
987 | |
988 | // Only visit nodes in the subtree starting at To. |
989 | const unsigned Level = ToIDomTN->getLevel(); |
990 | auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { |
991 | return DT.getNode(To)->getLevel() > Level; |
992 | }; |
993 | |
994 | LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) |
995 | << "\n" ); |
996 | |
997 | SemiNCAInfo SNCA(BUI); |
998 | SNCA.runDFS(ToIDom, 0, DescendBelow, 0); |
999 | LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n" ); |
1000 | SNCA.runSemiNCA(); |
1001 | SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); |
1002 | } |
1003 | |
1004 | // Checks if a node has proper support, as defined on the page 3 and later |
1005 | // explained on the page 7 of [2]. |
1006 | static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, |
1007 | const TreeNodePtr TN) { |
1008 | LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) |
1009 | << "\n" ); |
1010 | auto TNB = TN->getBlock(); |
1011 | for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) { |
1012 | LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n" ); |
1013 | if (!DT.getNode(Pred)) continue; |
1014 | |
1015 | const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred); |
1016 | LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n" ); |
1017 | if (Support != TNB) { |
1018 | LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) |
1019 | << " is reachable from support " |
1020 | << BlockNamePrinter(Support) << "\n" ); |
1021 | return true; |
1022 | } |
1023 | } |
1024 | |
1025 | return false; |
1026 | } |
1027 | |
1028 | // Handle deletions that make destination node unreachable. |
1029 | // (Based on the lemma 2.7 from the [2].) |
1030 | static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
1031 | const TreeNodePtr ToTN) { |
1032 | LLVM_DEBUG(dbgs() << "Deleting unreachable subtree " |
1033 | << BlockNamePrinter(ToTN) << "\n" ); |
1034 | assert(ToTN); |
1035 | assert(ToTN->getBlock()); |
1036 | |
1037 | if (IsPostDom) { |
1038 | // Deletion makes a region reverse-unreachable and creates a new root. |
1039 | // Simulate that by inserting an edge from the virtual root to ToTN and |
1040 | // adding it as a new root. |
1041 | LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n" ); |
1042 | LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) |
1043 | << "\n" ); |
1044 | DT.Roots.push_back(ToTN->getBlock()); |
1045 | InsertReachable(DT, BUI, From: DT.getNode(nullptr), To: ToTN); |
1046 | return; |
1047 | } |
1048 | |
1049 | SmallVector<NodePtr, 16> AffectedQueue; |
1050 | const unsigned Level = ToTN->getLevel(); |
1051 | |
1052 | // Traverse destination node's descendants with greater level in the tree |
1053 | // and collect visited nodes. |
1054 | auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { |
1055 | const TreeNodePtr TN = DT.getNode(To); |
1056 | assert(TN); |
1057 | if (TN->getLevel() > Level) return true; |
1058 | if (!llvm::is_contained(AffectedQueue, To)) |
1059 | AffectedQueue.push_back(To); |
1060 | |
1061 | return false; |
1062 | }; |
1063 | |
1064 | SemiNCAInfo SNCA(BUI); |
1065 | unsigned LastDFSNum = |
1066 | SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); |
1067 | |
1068 | TreeNodePtr MinNode = ToTN; |
1069 | |
1070 | // Identify the top of the subtree to rebuild by finding the NCD of all |
1071 | // the affected nodes. |
1072 | for (const NodePtr N : AffectedQueue) { |
1073 | const TreeNodePtr TN = DT.getNode(N); |
1074 | const NodePtr NCDBlock = |
1075 | DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); |
1076 | assert(NCDBlock || DT.isPostDominator()); |
1077 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
1078 | assert(NCD); |
1079 | |
1080 | LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) |
1081 | << " with NCD = " << BlockNamePrinter(NCD) |
1082 | << ", MinNode =" << BlockNamePrinter(MinNode) << "\n" ); |
1083 | if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; |
1084 | } |
1085 | |
1086 | // Root reached, rebuild the whole tree from scratch. |
1087 | if (!MinNode->getIDom()) { |
1088 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n" ); |
1089 | CalculateFromScratch(DT, BUI); |
1090 | return; |
1091 | } |
1092 | |
1093 | // Erase the unreachable subtree in reverse preorder to process all children |
1094 | // before deleting their parent. |
1095 | for (unsigned i = LastDFSNum; i > 0; --i) { |
1096 | const NodePtr N = SNCA.NumToNode[i]; |
1097 | LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(DT.getNode(N)) |
1098 | << "\n" ); |
1099 | DT.eraseNode(N); |
1100 | } |
1101 | |
1102 | // The affected subtree start at the To node -- there's no extra work to do. |
1103 | if (MinNode == ToTN) return; |
1104 | |
1105 | LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " |
1106 | << BlockNamePrinter(MinNode) << "\n" ); |
1107 | const unsigned MinLevel = MinNode->getLevel(); |
1108 | const TreeNodePtr PrevIDom = MinNode->getIDom(); |
1109 | assert(PrevIDom); |
1110 | SNCA.clear(); |
1111 | |
1112 | // Identify nodes that remain in the affected subtree. |
1113 | auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { |
1114 | const TreeNodePtr ToTN = DT.getNode(To); |
1115 | return ToTN && ToTN->getLevel() > MinLevel; |
1116 | }; |
1117 | SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); |
1118 | |
1119 | LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = " |
1120 | << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n" ); |
1121 | |
1122 | // Rebuild the remaining part of affected subtree. |
1123 | SNCA.runSemiNCA(); |
1124 | SNCA.reattachExistingSubtree(DT, PrevIDom); |
1125 | } |
1126 | |
1127 | //~~ |
1128 | //===--------------------- DomTree Batch Updater --------------------------=== |
1129 | //~~ |
1130 | |
1131 | static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG, |
1132 | GraphDiffT *PostViewCFG) { |
1133 | // Note: the PostViewCFG is only used when computing from scratch. It's data |
1134 | // should already included in the PreViewCFG for incremental updates. |
1135 | const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates(); |
1136 | if (NumUpdates == 0) |
1137 | return; |
1138 | |
1139 | // Take the fast path for a single update and avoid running the batch update |
1140 | // machinery. |
1141 | if (NumUpdates == 1) { |
1142 | UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates(); |
1143 | if (!PostViewCFG) { |
1144 | if (Update.getKind() == UpdateKind::Insert) |
1145 | InsertEdge(DT, /*BUI=*/BUI: nullptr, From: Update.getFrom(), To: Update.getTo()); |
1146 | else |
1147 | DeleteEdge(DT, /*BUI=*/BUI: nullptr, From: Update.getFrom(), To: Update.getTo()); |
1148 | } else { |
1149 | BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG); |
1150 | if (Update.getKind() == UpdateKind::Insert) |
1151 | InsertEdge(DT, BUI: &BUI, From: Update.getFrom(), To: Update.getTo()); |
1152 | else |
1153 | DeleteEdge(DT, BUI: &BUI, From: Update.getFrom(), To: Update.getTo()); |
1154 | } |
1155 | return; |
1156 | } |
1157 | |
1158 | BatchUpdateInfo BUI(PreViewCFG, PostViewCFG); |
1159 | // Recalculate the DominatorTree when the number of updates |
1160 | // exceeds a threshold, which usually makes direct updating slower than |
1161 | // recalculation. We select this threshold proportional to the |
1162 | // size of the DominatorTree. The constant is selected |
1163 | // by choosing the one with an acceptable performance on some real-world |
1164 | // inputs. |
1165 | |
1166 | // Make unittests of the incremental algorithm work |
1167 | if (DT.DomTreeNodes.size() <= 100) { |
1168 | if (BUI.NumLegalized > DT.DomTreeNodes.size()) |
1169 | CalculateFromScratch(DT, BUI: &BUI); |
1170 | } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40) |
1171 | CalculateFromScratch(DT, BUI: &BUI); |
1172 | |
1173 | // If the DominatorTree was recalculated at some point, stop the batch |
1174 | // updates. Full recalculations ignore batch updates and look at the actual |
1175 | // CFG. |
1176 | for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i) |
1177 | ApplyNextUpdate(DT, BUI); |
1178 | } |
1179 | |
1180 | static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { |
1181 | // Popping the next update, will move the PreViewCFG to the next snapshot. |
1182 | UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates(); |
1183 | #if 0 |
1184 | // FIXME: The LLVM_DEBUG macro only plays well with a modular |
1185 | // build of LLVM when the header is marked as textual, but doing |
1186 | // so causes redefinition errors. |
1187 | LLVM_DEBUG(dbgs() << "Applying update: " ); |
1188 | LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n" ); |
1189 | #endif |
1190 | |
1191 | if (CurrentUpdate.getKind() == UpdateKind::Insert) |
1192 | InsertEdge(DT, BUI: &BUI, From: CurrentUpdate.getFrom(), To: CurrentUpdate.getTo()); |
1193 | else |
1194 | DeleteEdge(DT, BUI: &BUI, From: CurrentUpdate.getFrom(), To: CurrentUpdate.getTo()); |
1195 | } |
1196 | |
1197 | //~~ |
1198 | //===--------------- DomTree correctness verification ---------------------=== |
1199 | //~~ |
1200 | |
1201 | // Check if the tree has correct roots. A DominatorTree always has a single |
1202 | // root which is the function's entry node. A PostDominatorTree can have |
1203 | // multiple roots - one for each node with no successors and for infinite |
1204 | // loops. |
1205 | // Running time: O(N). |
1206 | bool verifyRoots(const DomTreeT &DT) { |
1207 | if (!DT.Parent && !DT.Roots.empty()) { |
1208 | errs() << "Tree has no parent but has roots!\n" ; |
1209 | errs().flush(); |
1210 | return false; |
1211 | } |
1212 | |
1213 | if (!IsPostDom) { |
1214 | if (DT.Roots.empty()) { |
1215 | errs() << "Tree doesn't have a root!\n" ; |
1216 | errs().flush(); |
1217 | return false; |
1218 | } |
1219 | |
1220 | if (DT.getRoot() != GetEntryNode(DT)) { |
1221 | errs() << "Tree's root is not its parent's entry node!\n" ; |
1222 | errs().flush(); |
1223 | return false; |
1224 | } |
1225 | } |
1226 | |
1227 | RootsT ComputedRoots = FindRoots(DT, BUI: nullptr); |
1228 | if (!isPermutation(A: DT.Roots, B: ComputedRoots)) { |
1229 | errs() << "Tree has different roots than freshly computed ones!\n" ; |
1230 | errs() << "\tPDT roots: " ; |
1231 | for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", " ; |
1232 | errs() << "\n\tComputed roots: " ; |
1233 | for (const NodePtr N : ComputedRoots) |
1234 | errs() << BlockNamePrinter(N) << ", " ; |
1235 | errs() << "\n" ; |
1236 | errs().flush(); |
1237 | return false; |
1238 | } |
1239 | |
1240 | return true; |
1241 | } |
1242 | |
1243 | // Checks if the tree contains all reachable nodes in the input graph. |
1244 | // Running time: O(N). |
1245 | bool verifyReachability(const DomTreeT &DT) { |
1246 | clear(); |
1247 | doFullDFSWalk(DT, AlwaysDescend); |
1248 | |
1249 | for (auto &NodeToTN : DT.DomTreeNodes) { |
1250 | const TreeNodePtr TN = NodeToTN.get(); |
1251 | if (!TN) |
1252 | continue; |
1253 | const NodePtr BB = TN->getBlock(); |
1254 | |
1255 | // Virtual root has a corresponding virtual CFG node. |
1256 | if (DT.isVirtualRoot(TN)) continue; |
1257 | |
1258 | if (getNodeInfo(BB).DFSNum == 0) { |
1259 | errs() << "DomTree node " << BlockNamePrinter(BB) |
1260 | << " not found by DFS walk!\n" ; |
1261 | errs().flush(); |
1262 | |
1263 | return false; |
1264 | } |
1265 | } |
1266 | |
1267 | for (const NodePtr N : NumToNode) { |
1268 | if (N && !DT.getNode(N)) { |
1269 | errs() << "CFG node " << BlockNamePrinter(N) |
1270 | << " not found in the DomTree!\n" ; |
1271 | errs().flush(); |
1272 | |
1273 | return false; |
1274 | } |
1275 | } |
1276 | |
1277 | return true; |
1278 | } |
1279 | |
1280 | // Check if for every parent with a level L in the tree all of its children |
1281 | // have level L + 1. |
1282 | // Running time: O(N). |
1283 | static bool VerifyLevels(const DomTreeT &DT) { |
1284 | for (auto &NodeToTN : DT.DomTreeNodes) { |
1285 | const TreeNodePtr TN = NodeToTN.get(); |
1286 | if (!TN) |
1287 | continue; |
1288 | const NodePtr BB = TN->getBlock(); |
1289 | if (!BB) continue; |
1290 | |
1291 | const TreeNodePtr IDom = TN->getIDom(); |
1292 | if (!IDom && TN->getLevel() != 0) { |
1293 | errs() << "Node without an IDom " << BlockNamePrinter(BB) |
1294 | << " has a nonzero level " << TN->getLevel() << "!\n" ; |
1295 | errs().flush(); |
1296 | |
1297 | return false; |
1298 | } |
1299 | |
1300 | if (IDom && TN->getLevel() != IDom->getLevel() + 1) { |
1301 | errs() << "Node " << BlockNamePrinter(BB) << " has level " |
1302 | << TN->getLevel() << " while its IDom " |
1303 | << BlockNamePrinter(IDom->getBlock()) << " has level " |
1304 | << IDom->getLevel() << "!\n" ; |
1305 | errs().flush(); |
1306 | |
1307 | return false; |
1308 | } |
1309 | } |
1310 | |
1311 | return true; |
1312 | } |
1313 | |
1314 | // Check if the computed DFS numbers are correct. Note that DFS info may not |
1315 | // be valid, and when that is the case, we don't verify the numbers. |
1316 | // Running time: O(N log(N)). |
1317 | static bool VerifyDFSNumbers(const DomTreeT &DT) { |
1318 | if (!DT.DFSInfoValid || !DT.Parent) |
1319 | return true; |
1320 | |
1321 | const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin(); |
1322 | const TreeNodePtr Root = DT.getNode(RootBB); |
1323 | |
1324 | auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { |
1325 | errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " |
1326 | << TN->getDFSNumOut() << '}'; |
1327 | }; |
1328 | |
1329 | // Verify the root's DFS In number. Although DFS numbering would also work |
1330 | // if we started from some other value, we assume 0-based numbering. |
1331 | if (Root->getDFSNumIn() != 0) { |
1332 | errs() << "DFSIn number for the tree root is not:\n\t" ; |
1333 | PrintNodeAndDFSNums(Root); |
1334 | errs() << '\n'; |
1335 | errs().flush(); |
1336 | return false; |
1337 | } |
1338 | |
1339 | // For each tree node verify if children's DFS numbers cover their parent's |
1340 | // DFS numbers with no gaps. |
1341 | for (const auto &NodeToTN : DT.DomTreeNodes) { |
1342 | const TreeNodePtr Node = NodeToTN.get(); |
1343 | if (!Node) |
1344 | continue; |
1345 | |
1346 | // Handle tree leaves. |
1347 | if (Node->isLeaf()) { |
1348 | if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { |
1349 | errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t" ; |
1350 | PrintNodeAndDFSNums(Node); |
1351 | errs() << '\n'; |
1352 | errs().flush(); |
1353 | return false; |
1354 | } |
1355 | |
1356 | continue; |
1357 | } |
1358 | |
1359 | // Make a copy and sort it such that it is possible to check if there are |
1360 | // no gaps between DFS numbers of adjacent children. |
1361 | SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); |
1362 | llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { |
1363 | return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); |
1364 | }); |
1365 | |
1366 | auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( |
1367 | const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { |
1368 | assert(FirstCh); |
1369 | |
1370 | errs() << "Incorrect DFS numbers for:\n\tParent " ; |
1371 | PrintNodeAndDFSNums(Node); |
1372 | |
1373 | errs() << "\n\tChild " ; |
1374 | PrintNodeAndDFSNums(FirstCh); |
1375 | |
1376 | if (SecondCh) { |
1377 | errs() << "\n\tSecond child " ; |
1378 | PrintNodeAndDFSNums(SecondCh); |
1379 | } |
1380 | |
1381 | errs() << "\nAll children: " ; |
1382 | for (const TreeNodePtr Ch : Children) { |
1383 | PrintNodeAndDFSNums(Ch); |
1384 | errs() << ", " ; |
1385 | } |
1386 | |
1387 | errs() << '\n'; |
1388 | errs().flush(); |
1389 | }; |
1390 | |
1391 | if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { |
1392 | PrintChildrenError(Children.front(), nullptr); |
1393 | return false; |
1394 | } |
1395 | |
1396 | if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { |
1397 | PrintChildrenError(Children.back(), nullptr); |
1398 | return false; |
1399 | } |
1400 | |
1401 | for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { |
1402 | if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { |
1403 | PrintChildrenError(Children[i], Children[i + 1]); |
1404 | return false; |
1405 | } |
1406 | } |
1407 | } |
1408 | |
1409 | return true; |
1410 | } |
1411 | |
1412 | // The below routines verify the correctness of the dominator tree relative to |
1413 | // the CFG it's coming from. A tree is a dominator tree iff it has two |
1414 | // properties, called the parent property and the sibling property. Tarjan |
1415 | // and Lengauer prove (but don't explicitly name) the properties as part of |
1416 | // the proofs in their 1972 paper, but the proofs are mostly part of proving |
1417 | // things about semidominators and idoms, and some of them are simply asserted |
1418 | // based on even earlier papers (see, e.g., lemma 2). Some papers refer to |
1419 | // these properties as "valid" and "co-valid". See, e.g., "Dominators, |
1420 | // directed bipolar orders, and independent spanning trees" by Loukas |
1421 | // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification |
1422 | // and Vertex-Disjoint Paths " by the same authors. |
1423 | |
1424 | // A very simple and direct explanation of these properties can be found in |
1425 | // "An Experimental Study of Dynamic Dominators", found at |
1426 | // https://arxiv.org/abs/1604.02711 |
1427 | |
1428 | // The easiest way to think of the parent property is that it's a requirement |
1429 | // of being a dominator. Let's just take immediate dominators. For PARENT to |
1430 | // be an immediate dominator of CHILD, all paths in the CFG must go through |
1431 | // PARENT before they hit CHILD. This implies that if you were to cut PARENT |
1432 | // out of the CFG, there should be no paths to CHILD that are reachable. If |
1433 | // there are, then you now have a path from PARENT to CHILD that goes around |
1434 | // PARENT and still reaches CHILD, which by definition, means PARENT can't be |
1435 | // a dominator of CHILD (let alone an immediate one). |
1436 | |
1437 | // The sibling property is similar. It says that for each pair of sibling |
1438 | // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each |
1439 | // other. If sibling LEFT dominated sibling RIGHT, it means there are no |
1440 | // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through |
1441 | // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of |
1442 | // RIGHT, not a sibling. |
1443 | |
1444 | // It is possible to verify the parent and sibling properties in linear time, |
1445 | // but the algorithms are complex. Instead, we do it in a straightforward |
1446 | // N^2 and N^3 way below, using direct path reachability. |
1447 | |
1448 | // Checks if the tree has the parent property: if for all edges from V to W in |
1449 | // the input graph, such that V is reachable, the parent of W in the tree is |
1450 | // an ancestor of V in the tree. |
1451 | // Running time: O(N^2). |
1452 | // |
1453 | // This means that if a node gets disconnected from the graph, then all of |
1454 | // the nodes it dominated previously will now become unreachable. |
1455 | bool verifyParentProperty(const DomTreeT &DT) { |
1456 | for (auto &NodeToTN : DT.DomTreeNodes) { |
1457 | const TreeNodePtr TN = NodeToTN.get(); |
1458 | if (!TN) |
1459 | continue; |
1460 | const NodePtr BB = TN->getBlock(); |
1461 | if (!BB || TN->isLeaf()) |
1462 | continue; |
1463 | |
1464 | LLVM_DEBUG(dbgs() << "Verifying parent property of node " |
1465 | << BlockNamePrinter(TN) << "\n" ); |
1466 | clear(); |
1467 | doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { |
1468 | return From != BB && To != BB; |
1469 | }); |
1470 | |
1471 | for (TreeNodePtr Child : TN->children()) |
1472 | if (getNodeInfo(BB: Child->getBlock()).DFSNum != 0) { |
1473 | errs() << "Child " << BlockNamePrinter(Child) |
1474 | << " reachable after its parent " << BlockNamePrinter(BB) |
1475 | << " is removed!\n" ; |
1476 | errs().flush(); |
1477 | |
1478 | return false; |
1479 | } |
1480 | } |
1481 | |
1482 | return true; |
1483 | } |
1484 | |
1485 | // Check if the tree has sibling property: if a node V does not dominate a |
1486 | // node W for all siblings V and W in the tree. |
1487 | // Running time: O(N^3). |
1488 | // |
1489 | // This means that if a node gets disconnected from the graph, then all of its |
1490 | // siblings will now still be reachable. |
1491 | bool verifySiblingProperty(const DomTreeT &DT) { |
1492 | for (auto &NodeToTN : DT.DomTreeNodes) { |
1493 | const TreeNodePtr TN = NodeToTN.get(); |
1494 | if (!TN) |
1495 | continue; |
1496 | const NodePtr BB = TN->getBlock(); |
1497 | if (!BB || TN->isLeaf()) |
1498 | continue; |
1499 | |
1500 | for (const TreeNodePtr N : TN->children()) { |
1501 | clear(); |
1502 | NodePtr BBN = N->getBlock(); |
1503 | doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { |
1504 | return From != BBN && To != BBN; |
1505 | }); |
1506 | |
1507 | for (const TreeNodePtr S : TN->children()) { |
1508 | if (S == N) continue; |
1509 | |
1510 | if (getNodeInfo(BB: S->getBlock()).DFSNum == 0) { |
1511 | errs() << "Node " << BlockNamePrinter(S) |
1512 | << " not reachable when its sibling " << BlockNamePrinter(N) |
1513 | << " is removed!\n" ; |
1514 | errs().flush(); |
1515 | |
1516 | return false; |
1517 | } |
1518 | } |
1519 | } |
1520 | } |
1521 | |
1522 | return true; |
1523 | } |
1524 | |
1525 | // Check if the given tree is the same as a freshly computed one for the same |
1526 | // Parent. |
1527 | // Running time: O(N^2), but faster in practice (same as tree construction). |
1528 | // |
1529 | // Note that this does not check if that the tree construction algorithm is |
1530 | // correct and should be only used for fast (but possibly unsound) |
1531 | // verification. |
1532 | static bool IsSameAsFreshTree(const DomTreeT &DT) { |
1533 | DomTreeT FreshTree; |
1534 | FreshTree.recalculate(*DT.Parent); |
1535 | const bool Different = DT.compare(FreshTree); |
1536 | |
1537 | if (Different) { |
1538 | errs() << (DT.isPostDominator() ? "Post" : "" ) |
1539 | << "DominatorTree is different than a freshly computed one!\n" |
1540 | << "\tCurrent:\n" ; |
1541 | DT.print(errs()); |
1542 | errs() << "\n\tFreshly computed tree:\n" ; |
1543 | FreshTree.print(errs()); |
1544 | errs().flush(); |
1545 | } |
1546 | |
1547 | return !Different; |
1548 | } |
1549 | }; |
1550 | |
1551 | template <class DomTreeT> |
1552 | void Calculate(DomTreeT &DT) { |
1553 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); |
1554 | } |
1555 | |
1556 | template <typename DomTreeT> |
1557 | void CalculateWithUpdates(DomTreeT &DT, |
1558 | ArrayRef<typename DomTreeT::UpdateType> Updates) { |
1559 | // FIXME: Updated to use the PreViewCFG and behave the same as until now. |
1560 | // This behavior is however incorrect; this actually needs the PostViewCFG. |
1561 | GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG( |
1562 | Updates, /*ReverseApplyUpdates=*/true); |
1563 | typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG); |
1564 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI); |
1565 | } |
1566 | |
1567 | template <class DomTreeT> |
1568 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
1569 | typename DomTreeT::NodePtr To) { |
1570 | if (DT.isPostDominator()) std::swap(From, To); |
1571 | SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); |
1572 | } |
1573 | |
1574 | template <class DomTreeT> |
1575 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
1576 | typename DomTreeT::NodePtr To) { |
1577 | if (DT.isPostDominator()) std::swap(From, To); |
1578 | SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); |
1579 | } |
1580 | |
1581 | template <class DomTreeT> |
1582 | void ApplyUpdates(DomTreeT &DT, |
1583 | GraphDiff<typename DomTreeT::NodePtr, |
1584 | DomTreeT::IsPostDominator> &PreViewCFG, |
1585 | GraphDiff<typename DomTreeT::NodePtr, |
1586 | DomTreeT::IsPostDominator> *PostViewCFG) { |
1587 | SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG); |
1588 | } |
1589 | |
1590 | template <class DomTreeT> |
1591 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) { |
1592 | SemiNCAInfo<DomTreeT> SNCA(nullptr); |
1593 | |
1594 | // Simplist check is to compare against a new tree. This will also |
1595 | // usefully print the old and new trees, if they are different. |
1596 | if (!SNCA.IsSameAsFreshTree(DT)) |
1597 | return false; |
1598 | |
1599 | // Common checks to verify the properties of the tree. O(N log N) at worst. |
1600 | if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) || |
1601 | !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT)) |
1602 | return false; |
1603 | |
1604 | // Extra checks depending on VerificationLevel. Up to O(N^3). |
1605 | if (VL == DomTreeT::VerificationLevel::Basic || |
1606 | VL == DomTreeT::VerificationLevel::Full) |
1607 | if (!SNCA.verifyParentProperty(DT)) |
1608 | return false; |
1609 | if (VL == DomTreeT::VerificationLevel::Full) |
1610 | if (!SNCA.verifySiblingProperty(DT)) |
1611 | return false; |
1612 | |
1613 | return true; |
1614 | } |
1615 | |
1616 | } // namespace DomTreeBuilder |
1617 | } // namespace llvm |
1618 | |
1619 | #undef DEBUG_TYPE |
1620 | |
1621 | #endif |
1622 | |