1 | //===- VFABIDemangler.cpp - Vector Function ABI demangler -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/IR/VFABIDemangler.h" |
10 | #include "llvm/ADT/SetVector.h" |
11 | #include "llvm/ADT/SmallString.h" |
12 | #include "llvm/ADT/StringSwitch.h" |
13 | #include "llvm/IR/Module.h" |
14 | #include "llvm/IR/VectorTypeUtils.h" |
15 | #include "llvm/Support/Debug.h" |
16 | #include "llvm/Support/raw_ostream.h" |
17 | #include <limits> |
18 | |
19 | using namespace llvm; |
20 | |
21 | #define DEBUG_TYPE "vfabi-demangler" |
22 | |
23 | namespace { |
24 | /// Utilities for the Vector Function ABI name parser. |
25 | |
26 | /// Return types for the parser functions. |
27 | enum class ParseRet { |
28 | OK, // Found. |
29 | None, // Not found. |
30 | Error // Syntax error. |
31 | }; |
32 | |
33 | /// Extracts the `<isa>` information from the mangled string, and |
34 | /// sets the `ISA` accordingly. If successful, the <isa> token is removed |
35 | /// from the input string `MangledName`. |
36 | static ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) { |
37 | if (MangledName.empty()) |
38 | return ParseRet::Error; |
39 | |
40 | if (MangledName.consume_front(Prefix: VFABI::_LLVM_)) { |
41 | ISA = VFISAKind::LLVM; |
42 | } else { |
43 | ISA = StringSwitch<VFISAKind>(MangledName.take_front(N: 1)) |
44 | .Case(S: "n" , Value: VFISAKind::AdvancedSIMD) |
45 | .Case(S: "s" , Value: VFISAKind::SVE) |
46 | .Case(S: "r" , Value: VFISAKind::RVV) |
47 | .Case(S: "b" , Value: VFISAKind::SSE) |
48 | .Case(S: "c" , Value: VFISAKind::AVX) |
49 | .Case(S: "d" , Value: VFISAKind::AVX2) |
50 | .Case(S: "e" , Value: VFISAKind::AVX512) |
51 | .Default(Value: VFISAKind::Unknown); |
52 | MangledName = MangledName.drop_front(N: 1); |
53 | } |
54 | |
55 | return ParseRet::OK; |
56 | } |
57 | |
58 | /// Extracts the `<mask>` information from the mangled string, and |
59 | /// sets `IsMasked` accordingly. If successful, the <mask> token is removed |
60 | /// from the input string `MangledName`. |
61 | static ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) { |
62 | if (MangledName.consume_front(Prefix: "M" )) { |
63 | IsMasked = true; |
64 | return ParseRet::OK; |
65 | } |
66 | |
67 | if (MangledName.consume_front(Prefix: "N" )) { |
68 | IsMasked = false; |
69 | return ParseRet::OK; |
70 | } |
71 | |
72 | return ParseRet::Error; |
73 | } |
74 | |
75 | /// Extract the `<vlen>` information from the mangled string, and |
76 | /// sets `ParsedVF` accordingly. A `<vlen> == "x"` token is interpreted as a |
77 | /// scalable vector length and the boolean is set to true, otherwise a nonzero |
78 | /// unsigned integer will be directly used as a VF. On success, the `<vlen>` |
79 | /// token is removed from the input string `ParseString`. |
80 | static ParseRet tryParseVLEN(StringRef &ParseString, VFISAKind ISA, |
81 | std::pair<unsigned, bool> &ParsedVF) { |
82 | if (ParseString.consume_front(Prefix: "x" )) { |
83 | // SVE is the only scalable ISA currently supported. |
84 | if (ISA != VFISAKind::SVE && ISA != VFISAKind::RVV) { |
85 | LLVM_DEBUG(dbgs() << "Vector function variant declared with scalable VF " |
86 | << "but ISA supported for SVE and RVV only\n" ); |
87 | return ParseRet::Error; |
88 | } |
89 | // We can't determine the VF of a scalable vector by looking at the vlen |
90 | // string (just 'x'), so say we successfully parsed it but return a 'true' |
91 | // for the scalable field with an invalid VF field so that we know to look |
92 | // up the actual VF based on element types from the parameters or return. |
93 | ParsedVF = {0, true}; |
94 | return ParseRet::OK; |
95 | } |
96 | |
97 | unsigned VF = 0; |
98 | if (ParseString.consumeInteger(Radix: 10, Result&: VF)) |
99 | return ParseRet::Error; |
100 | |
101 | // The token `0` is invalid for VLEN. |
102 | if (VF == 0) |
103 | return ParseRet::Error; |
104 | |
105 | ParsedVF = {VF, false}; |
106 | return ParseRet::OK; |
107 | } |
108 | |
109 | /// The function looks for the following strings at the beginning of |
110 | /// the input string `ParseString`: |
111 | /// |
112 | /// <token> <number> |
113 | /// |
114 | /// On success, it removes the parsed parameter from `ParseString`, |
115 | /// sets `PKind` to the correspondent enum value, sets `Pos` to |
116 | /// <number>, and return success. On a syntax error, it return a |
117 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
118 | /// |
119 | /// The function expects <token> to be one of "ls", "Rs", "Us" or |
120 | /// "Ls". |
121 | static ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString, |
122 | VFParamKind &PKind, int &Pos, |
123 | const StringRef Token) { |
124 | if (ParseString.consume_front(Prefix: Token)) { |
125 | PKind = VFABI::getVFParamKindFromString(Token); |
126 | if (ParseString.consumeInteger(Radix: 10, Result&: Pos)) |
127 | return ParseRet::Error; |
128 | return ParseRet::OK; |
129 | } |
130 | |
131 | return ParseRet::None; |
132 | } |
133 | |
134 | /// The function looks for the following string at the beginning of |
135 | /// the input string `ParseString`: |
136 | /// |
137 | /// <token> <number> |
138 | /// |
139 | /// <token> is one of "ls", "Rs", "Us" or "Ls". |
140 | /// |
141 | /// On success, it removes the parsed parameter from `ParseString`, |
142 | /// sets `PKind` to the correspondent enum value, sets `StepOrPos` to |
143 | /// <number>, and return success. On a syntax error, it return a |
144 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
145 | static ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString, |
146 | VFParamKind &PKind, |
147 | int &StepOrPos) { |
148 | ParseRet Ret; |
149 | |
150 | // "ls" <RuntimeStepPos> |
151 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "ls" ); |
152 | if (Ret != ParseRet::None) |
153 | return Ret; |
154 | |
155 | // "Rs" <RuntimeStepPos> |
156 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "Rs" ); |
157 | if (Ret != ParseRet::None) |
158 | return Ret; |
159 | |
160 | // "Ls" <RuntimeStepPos> |
161 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "Ls" ); |
162 | if (Ret != ParseRet::None) |
163 | return Ret; |
164 | |
165 | // "Us" <RuntimeStepPos> |
166 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "Us" ); |
167 | if (Ret != ParseRet::None) |
168 | return Ret; |
169 | |
170 | return ParseRet::None; |
171 | } |
172 | |
173 | /// The function looks for the following strings at the beginning of |
174 | /// the input string `ParseString`: |
175 | /// |
176 | /// <token> {"n"} <number> |
177 | /// |
178 | /// On success, it removes the parsed parameter from `ParseString`, |
179 | /// sets `PKind` to the correspondent enum value, sets `LinearStep` to |
180 | /// <number>, and return success. On a syntax error, it return a |
181 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
182 | /// |
183 | /// The function expects <token> to be one of "l", "R", "U" or |
184 | /// "L". |
185 | static ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString, |
186 | VFParamKind &PKind, |
187 | int &LinearStep, |
188 | const StringRef Token) { |
189 | if (ParseString.consume_front(Prefix: Token)) { |
190 | PKind = VFABI::getVFParamKindFromString(Token); |
191 | const bool Negate = ParseString.consume_front(Prefix: "n" ); |
192 | if (ParseString.consumeInteger(Radix: 10, Result&: LinearStep)) |
193 | LinearStep = 1; |
194 | if (Negate) |
195 | LinearStep *= -1; |
196 | return ParseRet::OK; |
197 | } |
198 | |
199 | return ParseRet::None; |
200 | } |
201 | |
202 | /// The function looks for the following strings at the beginning of |
203 | /// the input string `ParseString`: |
204 | /// |
205 | /// ["l" | "R" | "U" | "L"] {"n"} <number> |
206 | /// |
207 | /// On success, it removes the parsed parameter from `ParseString`, |
208 | /// sets `PKind` to the correspondent enum value, sets `LinearStep` to |
209 | /// <number>, and return success. On a syntax error, it return a |
210 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
211 | static ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString, |
212 | VFParamKind &PKind, |
213 | int &StepOrPos) { |
214 | // "l" {"n"} <CompileTimeStep> |
215 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "l" ) == |
216 | ParseRet::OK) |
217 | return ParseRet::OK; |
218 | |
219 | // "R" {"n"} <CompileTimeStep> |
220 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "R" ) == |
221 | ParseRet::OK) |
222 | return ParseRet::OK; |
223 | |
224 | // "L" {"n"} <CompileTimeStep> |
225 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "L" ) == |
226 | ParseRet::OK) |
227 | return ParseRet::OK; |
228 | |
229 | // "U" {"n"} <CompileTimeStep> |
230 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "U" ) == |
231 | ParseRet::OK) |
232 | return ParseRet::OK; |
233 | |
234 | return ParseRet::None; |
235 | } |
236 | |
237 | /// Looks into the <parameters> part of the mangled name in search |
238 | /// for valid paramaters at the beginning of the string |
239 | /// `ParseString`. |
240 | /// |
241 | /// On success, it removes the parsed parameter from `ParseString`, |
242 | /// sets `PKind` to the correspondent enum value, sets `StepOrPos` |
243 | /// accordingly, and return success. On a syntax error, it return a |
244 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
245 | static ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind, |
246 | int &StepOrPos) { |
247 | if (ParseString.consume_front(Prefix: "v" )) { |
248 | PKind = VFParamKind::Vector; |
249 | StepOrPos = 0; |
250 | return ParseRet::OK; |
251 | } |
252 | |
253 | if (ParseString.consume_front(Prefix: "u" )) { |
254 | PKind = VFParamKind::OMP_Uniform; |
255 | StepOrPos = 0; |
256 | return ParseRet::OK; |
257 | } |
258 | |
259 | const ParseRet HasLinearRuntime = |
260 | tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos); |
261 | if (HasLinearRuntime != ParseRet::None) |
262 | return HasLinearRuntime; |
263 | |
264 | const ParseRet HasLinearCompileTime = |
265 | tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos); |
266 | if (HasLinearCompileTime != ParseRet::None) |
267 | return HasLinearCompileTime; |
268 | |
269 | return ParseRet::None; |
270 | } |
271 | |
272 | /// Looks into the <parameters> part of the mangled name in search |
273 | /// of a valid 'aligned' clause. The function should be invoked |
274 | /// after parsing a parameter via `tryParseParameter`. |
275 | /// |
276 | /// On success, it removes the parsed parameter from `ParseString`, |
277 | /// sets `PKind` to the correspondent enum value, sets `StepOrPos` |
278 | /// accordingly, and return success. On a syntax error, it return a |
279 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
280 | static ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) { |
281 | uint64_t Val; |
282 | // "a" <number> |
283 | if (ParseString.consume_front(Prefix: "a" )) { |
284 | if (ParseString.consumeInteger(Radix: 10, Result&: Val)) |
285 | return ParseRet::Error; |
286 | |
287 | if (!isPowerOf2_64(Value: Val)) |
288 | return ParseRet::Error; |
289 | |
290 | Alignment = Align(Val); |
291 | |
292 | return ParseRet::OK; |
293 | } |
294 | |
295 | return ParseRet::None; |
296 | } |
297 | |
298 | // Returns the 'natural' VF for a given scalar element type, based on the |
299 | // current architecture. |
300 | // |
301 | // For SVE (currently the only scalable architecture with a defined name |
302 | // mangling), we assume a minimum vector size of 128b and return a VF based on |
303 | // the number of elements of the given type which would fit in such a vector. |
304 | static std::optional<ElementCount> getElementCountForTy(const VFISAKind ISA, |
305 | const Type *Ty) { |
306 | assert((ISA == VFISAKind::SVE || ISA == VFISAKind::RVV) && |
307 | "Scalable VF decoding only implemented for SVE and RVV\n" ); |
308 | |
309 | if (Ty->isIntegerTy(Bitwidth: 64) || Ty->isDoubleTy() || Ty->isPointerTy()) |
310 | return ElementCount::getScalable(MinVal: 2); |
311 | if (Ty->isIntegerTy(Bitwidth: 32) || Ty->isFloatTy()) |
312 | return ElementCount::getScalable(MinVal: 4); |
313 | if (Ty->isIntegerTy(Bitwidth: 16) || Ty->is16bitFPTy()) |
314 | return ElementCount::getScalable(MinVal: 8); |
315 | if (Ty->isIntegerTy(Bitwidth: 8)) |
316 | return ElementCount::getScalable(MinVal: 16); |
317 | |
318 | return std::nullopt; |
319 | } |
320 | |
321 | // Extract the VectorizationFactor from a given function signature, based |
322 | // on the widest scalar element types that will become vector parameters. |
323 | static std::optional<ElementCount> |
324 | getScalableECFromSignature(const FunctionType *Signature, const VFISAKind ISA, |
325 | const SmallVectorImpl<VFParameter> &Params) { |
326 | // Start with a very wide EC and drop when we find smaller ECs based on type. |
327 | ElementCount MinEC = |
328 | ElementCount::getScalable(MinVal: std::numeric_limits<unsigned int>::max()); |
329 | for (auto &Param : Params) { |
330 | // Only vector parameters are used when determining the VF; uniform or |
331 | // linear are left as scalars, so do not affect VF. |
332 | if (Param.ParamKind == VFParamKind::Vector) { |
333 | Type *PTy = Signature->getParamType(i: Param.ParamPos); |
334 | |
335 | std::optional<ElementCount> EC = getElementCountForTy(ISA, Ty: PTy); |
336 | // If we have an unknown scalar element type we can't find a reasonable |
337 | // VF. |
338 | if (!EC) |
339 | return std::nullopt; |
340 | |
341 | // Find the smallest VF, based on the widest scalar type. |
342 | if (ElementCount::isKnownLT(LHS: *EC, RHS: MinEC)) |
343 | MinEC = *EC; |
344 | } |
345 | } |
346 | |
347 | // Also check the return type if not void. |
348 | Type *RetTy = Signature->getReturnType(); |
349 | if (!RetTy->isVoidTy()) { |
350 | // If the return type is a struct, only allow unpacked struct literals. |
351 | StructType *StructTy = dyn_cast<StructType>(Val: RetTy); |
352 | if (StructTy && !isUnpackedStructLiteral(StructTy)) |
353 | return std::nullopt; |
354 | |
355 | for (Type *RetTy : getContainedTypes(Ty: RetTy)) { |
356 | std::optional<ElementCount> ReturnEC = getElementCountForTy(ISA, Ty: RetTy); |
357 | // If we have an unknown scalar element type we can't find a reasonable |
358 | // VF. |
359 | if (!ReturnEC) |
360 | return std::nullopt; |
361 | if (ElementCount::isKnownLT(LHS: *ReturnEC, RHS: MinEC)) |
362 | MinEC = *ReturnEC; |
363 | } |
364 | } |
365 | |
366 | // The SVE Vector function call ABI bases the VF on the widest element types |
367 | // present, and vector arguments containing types of that width are always |
368 | // considered to be packed. Arguments with narrower elements are considered |
369 | // to be unpacked. |
370 | if (MinEC.getKnownMinValue() < std::numeric_limits<unsigned int>::max()) |
371 | return MinEC; |
372 | |
373 | return std::nullopt; |
374 | } |
375 | } // namespace |
376 | |
377 | // Format of the ABI name: |
378 | // _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)] |
379 | std::optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName, |
380 | const FunctionType *FTy) { |
381 | const StringRef OriginalName = MangledName; |
382 | // Assume there is no custom name <redirection>, and therefore the |
383 | // vector name consists of |
384 | // _ZGV<isa><mask><vlen><parameters>_<scalarname>. |
385 | StringRef VectorName = MangledName; |
386 | |
387 | // Parse the fixed size part of the mangled name |
388 | if (!MangledName.consume_front(Prefix: "_ZGV" )) |
389 | return std::nullopt; |
390 | |
391 | // Extract ISA. An unknow ISA is also supported, so we accept all |
392 | // values. |
393 | VFISAKind ISA; |
394 | if (tryParseISA(MangledName, ISA) != ParseRet::OK) |
395 | return std::nullopt; |
396 | |
397 | // Extract <mask>. |
398 | bool IsMasked; |
399 | if (tryParseMask(MangledName, IsMasked) != ParseRet::OK) |
400 | return std::nullopt; |
401 | |
402 | // Parse the variable size, starting from <vlen>. |
403 | std::pair<unsigned, bool> ParsedVF; |
404 | if (tryParseVLEN(ParseString&: MangledName, ISA, ParsedVF) != ParseRet::OK) |
405 | return std::nullopt; |
406 | |
407 | // Parse the <parameters>. |
408 | ParseRet ParamFound; |
409 | SmallVector<VFParameter, 8> Parameters; |
410 | do { |
411 | const unsigned ParameterPos = Parameters.size(); |
412 | VFParamKind PKind; |
413 | int StepOrPos; |
414 | ParamFound = tryParseParameter(ParseString&: MangledName, PKind, StepOrPos); |
415 | |
416 | // Bail off if there is a parsing error in the parsing of the parameter. |
417 | if (ParamFound == ParseRet::Error) |
418 | return std::nullopt; |
419 | |
420 | if (ParamFound == ParseRet::OK) { |
421 | Align Alignment; |
422 | // Look for the alignment token "a <number>". |
423 | const ParseRet AlignFound = tryParseAlign(ParseString&: MangledName, Alignment); |
424 | // Bail off if there is a syntax error in the align token. |
425 | if (AlignFound == ParseRet::Error) |
426 | return std::nullopt; |
427 | |
428 | // Add the parameter. |
429 | Parameters.push_back(Elt: {.ParamPos: ParameterPos, .ParamKind: PKind, .LinearStepOrPos: StepOrPos, .Alignment: Alignment}); |
430 | } |
431 | } while (ParamFound == ParseRet::OK); |
432 | |
433 | // A valid MangledName must have at least one valid entry in the |
434 | // <parameters>. |
435 | if (Parameters.empty()) |
436 | return std::nullopt; |
437 | |
438 | // If the number of arguments of the scalar function does not match the |
439 | // vector variant we have just demangled then reject the mapping. |
440 | if (Parameters.size() != FTy->getNumParams()) |
441 | return std::nullopt; |
442 | |
443 | // Figure out the number of lanes in vectors for this function variant. This |
444 | // is easy for fixed length, as the vlen encoding just gives us the value |
445 | // directly. However, if the vlen mangling indicated that this function |
446 | // variant expects scalable vectors we need to work it out based on the |
447 | // demangled parameter types and the scalar function signature. |
448 | std::optional<ElementCount> EC; |
449 | if (ParsedVF.second) { |
450 | EC = getScalableECFromSignature(Signature: FTy, ISA, Params: Parameters); |
451 | if (!EC) |
452 | return std::nullopt; |
453 | } else |
454 | EC = ElementCount::getFixed(MinVal: ParsedVF.first); |
455 | |
456 | // Check for the <scalarname> and the optional <redirection>, which |
457 | // are separated from the prefix with "_" |
458 | if (!MangledName.consume_front(Prefix: "_" )) |
459 | return std::nullopt; |
460 | |
461 | // The rest of the string must be in the format: |
462 | // <scalarname>[(<redirection>)] |
463 | const StringRef ScalarName = |
464 | MangledName.take_while(F: [](char In) { return In != '('; }); |
465 | |
466 | if (ScalarName.empty()) |
467 | return std::nullopt; |
468 | |
469 | // Reduce MangledName to [(<redirection>)]. |
470 | MangledName = MangledName.ltrim(Chars: ScalarName); |
471 | // Find the optional custom name redirection. |
472 | if (MangledName.consume_front(Prefix: "(" )) { |
473 | if (!MangledName.consume_back(Suffix: ")" )) |
474 | return std::nullopt; |
475 | // Update the vector variant with the one specified by the user. |
476 | VectorName = MangledName; |
477 | // If the vector name is missing, bail out. |
478 | if (VectorName.empty()) |
479 | return std::nullopt; |
480 | } |
481 | |
482 | // LLVM internal mapping via the TargetLibraryInfo (TLI) must be |
483 | // redirected to an existing name. |
484 | if (ISA == VFISAKind::LLVM && VectorName == OriginalName) |
485 | return std::nullopt; |
486 | |
487 | // When <mask> is "M", we need to add a parameter that is used as |
488 | // global predicate for the function. |
489 | if (IsMasked) { |
490 | const unsigned Pos = Parameters.size(); |
491 | Parameters.push_back(Elt: {.ParamPos: Pos, .ParamKind: VFParamKind::GlobalPredicate}); |
492 | } |
493 | |
494 | // Asserts for parameters of type `VFParamKind::GlobalPredicate`, as |
495 | // prescribed by the Vector Function ABI specifications supported by |
496 | // this parser: |
497 | // 1. Uniqueness. |
498 | // 2. Must be the last in the parameter list. |
499 | const auto NGlobalPreds = |
500 | llvm::count_if(Range&: Parameters, P: [](const VFParameter &PK) { |
501 | return PK.ParamKind == VFParamKind::GlobalPredicate; |
502 | }); |
503 | assert(NGlobalPreds < 2 && "Cannot have more than one global predicate." ); |
504 | if (NGlobalPreds) |
505 | assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate && |
506 | "The global predicate must be the last parameter" ); |
507 | |
508 | const VFShape Shape({.VF: *EC, .Parameters: Parameters}); |
509 | return VFInfo({.Shape: Shape, .ScalarName: std::string(ScalarName), .VectorName: std::string(VectorName), .ISA: ISA}); |
510 | } |
511 | |
512 | VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) { |
513 | const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token) |
514 | .Case(S: "v" , Value: VFParamKind::Vector) |
515 | .Case(S: "l" , Value: VFParamKind::OMP_Linear) |
516 | .Case(S: "R" , Value: VFParamKind::OMP_LinearRef) |
517 | .Case(S: "L" , Value: VFParamKind::OMP_LinearVal) |
518 | .Case(S: "U" , Value: VFParamKind::OMP_LinearUVal) |
519 | .Case(S: "ls" , Value: VFParamKind::OMP_LinearPos) |
520 | .Case(S: "Ls" , Value: VFParamKind::OMP_LinearValPos) |
521 | .Case(S: "Rs" , Value: VFParamKind::OMP_LinearRefPos) |
522 | .Case(S: "Us" , Value: VFParamKind::OMP_LinearUValPos) |
523 | .Case(S: "u" , Value: VFParamKind::OMP_Uniform) |
524 | .Default(Value: VFParamKind::Unknown); |
525 | |
526 | if (ParamKind != VFParamKind::Unknown) |
527 | return ParamKind; |
528 | |
529 | // This function should never be invoked with an invalid input. |
530 | llvm_unreachable("This fuction should be invoken only on parameters" |
531 | " that have a textual representation in the mangled name" |
532 | " of the Vector Function ABI" ); |
533 | } |
534 | |
535 | void VFABI::getVectorVariantNames( |
536 | const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { |
537 | const StringRef S = CI.getFnAttr(Kind: VFABI::MappingsAttrName).getValueAsString(); |
538 | if (S.empty()) |
539 | return; |
540 | |
541 | SmallVector<StringRef, 8> ListAttr; |
542 | S.split(A&: ListAttr, Separator: "," ); |
543 | |
544 | for (const auto &S : SetVector<StringRef>(llvm::from_range, ListAttr)) { |
545 | std::optional<VFInfo> Info = |
546 | VFABI::tryDemangleForVFABI(MangledName: S, FTy: CI.getFunctionType()); |
547 | if (Info && CI.getModule()->getFunction(Name: Info->VectorName)) { |
548 | LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI |
549 | << "\n" ); |
550 | VariantMappings.push_back(Elt: std::string(S)); |
551 | } else |
552 | LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n" ); |
553 | } |
554 | } |
555 | |
556 | FunctionType *VFABI::createFunctionType(const VFInfo &Info, |
557 | const FunctionType *ScalarFTy) { |
558 | // Create vector parameter types |
559 | SmallVector<Type *, 8> VecTypes; |
560 | ElementCount VF = Info.Shape.VF; |
561 | int ScalarParamIndex = 0; |
562 | for (auto VFParam : Info.Shape.Parameters) { |
563 | if (VFParam.ParamKind == VFParamKind::GlobalPredicate) { |
564 | VectorType *MaskTy = |
565 | VectorType::get(ElementType: Type::getInt1Ty(C&: ScalarFTy->getContext()), EC: VF); |
566 | VecTypes.push_back(Elt: MaskTy); |
567 | continue; |
568 | } |
569 | |
570 | Type *OperandTy = ScalarFTy->getParamType(i: ScalarParamIndex++); |
571 | if (VFParam.ParamKind == VFParamKind::Vector) |
572 | OperandTy = VectorType::get(ElementType: OperandTy, EC: VF); |
573 | VecTypes.push_back(Elt: OperandTy); |
574 | } |
575 | |
576 | auto *RetTy = ScalarFTy->getReturnType(); |
577 | if (!RetTy->isVoidTy()) |
578 | RetTy = toVectorizedTy(Ty: RetTy, EC: VF); |
579 | return FunctionType::get(Result: RetTy, Params: VecTypes, isVarArg: false); |
580 | } |
581 | |
582 | void VFABI::setVectorVariantNames(CallInst *CI, |
583 | ArrayRef<std::string> VariantMappings) { |
584 | if (VariantMappings.empty()) |
585 | return; |
586 | |
587 | SmallString<256> Buffer; |
588 | llvm::raw_svector_ostream Out(Buffer); |
589 | for (const std::string &VariantMapping : VariantMappings) |
590 | Out << VariantMapping << "," ; |
591 | // Get rid of the trailing ','. |
592 | assert(!Buffer.str().empty() && "Must have at least one char." ); |
593 | Buffer.pop_back(); |
594 | |
595 | Module *M = CI->getModule(); |
596 | #ifndef NDEBUG |
597 | for (const std::string &VariantMapping : VariantMappings) { |
598 | LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << VariantMapping << "'\n" ); |
599 | std::optional<VFInfo> VI = |
600 | VFABI::tryDemangleForVFABI(VariantMapping, CI->getFunctionType()); |
601 | assert(VI && "Cannot add an invalid VFABI name." ); |
602 | assert(M->getNamedValue(VI->VectorName) && |
603 | "Cannot add variant to attribute: " |
604 | "vector function declaration is missing." ); |
605 | } |
606 | #endif |
607 | CI->addFnAttr( |
608 | Attr: Attribute::get(Context&: M->getContext(), Kind: MappingsAttrName, Val: Buffer.str())); |
609 | } |
610 | |
611 | bool VFShape::hasValidParameterList() const { |
612 | for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; |
613 | ++Pos) { |
614 | assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list." ); |
615 | |
616 | switch (Parameters[Pos].ParamKind) { |
617 | default: // Nothing to check. |
618 | break; |
619 | case VFParamKind::OMP_Linear: |
620 | case VFParamKind::OMP_LinearRef: |
621 | case VFParamKind::OMP_LinearVal: |
622 | case VFParamKind::OMP_LinearUVal: |
623 | // Compile time linear steps must be non-zero. |
624 | if (Parameters[Pos].LinearStepOrPos == 0) |
625 | return false; |
626 | break; |
627 | case VFParamKind::OMP_LinearPos: |
628 | case VFParamKind::OMP_LinearRefPos: |
629 | case VFParamKind::OMP_LinearValPos: |
630 | case VFParamKind::OMP_LinearUValPos: |
631 | // The runtime linear step must be referring to some other |
632 | // parameters in the signature. |
633 | if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) |
634 | return false; |
635 | // The linear step parameter must be marked as uniform. |
636 | if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != |
637 | VFParamKind::OMP_Uniform) |
638 | return false; |
639 | // The linear step parameter can't point at itself. |
640 | if (Parameters[Pos].LinearStepOrPos == int(Pos)) |
641 | return false; |
642 | break; |
643 | case VFParamKind::GlobalPredicate: |
644 | // The global predicate must be the unique. Can be placed anywhere in the |
645 | // signature. |
646 | for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) |
647 | if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) |
648 | return false; |
649 | break; |
650 | } |
651 | } |
652 | return true; |
653 | } |
654 | |