| 1 | //===- VFABIDemangler.cpp - Vector Function ABI demangler -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/IR/VFABIDemangler.h" |
| 10 | #include "llvm/ADT/SetVector.h" |
| 11 | #include "llvm/ADT/SmallString.h" |
| 12 | #include "llvm/ADT/StringSwitch.h" |
| 13 | #include "llvm/IR/Module.h" |
| 14 | #include "llvm/IR/VectorTypeUtils.h" |
| 15 | #include "llvm/Support/Debug.h" |
| 16 | #include "llvm/Support/raw_ostream.h" |
| 17 | #include <limits> |
| 18 | |
| 19 | using namespace llvm; |
| 20 | |
| 21 | #define DEBUG_TYPE "vfabi-demangler" |
| 22 | |
| 23 | namespace { |
| 24 | /// Utilities for the Vector Function ABI name parser. |
| 25 | |
| 26 | /// Return types for the parser functions. |
| 27 | enum class ParseRet { |
| 28 | OK, // Found. |
| 29 | None, // Not found. |
| 30 | Error // Syntax error. |
| 31 | }; |
| 32 | |
| 33 | /// Extracts the `<isa>` information from the mangled string, and |
| 34 | /// sets the `ISA` accordingly. If successful, the <isa> token is removed |
| 35 | /// from the input string `MangledName`. |
| 36 | static ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) { |
| 37 | if (MangledName.empty()) |
| 38 | return ParseRet::Error; |
| 39 | |
| 40 | if (MangledName.consume_front(Prefix: VFABI::_LLVM_)) { |
| 41 | ISA = VFISAKind::LLVM; |
| 42 | } else { |
| 43 | ISA = StringSwitch<VFISAKind>(MangledName.take_front(N: 1)) |
| 44 | .Case(S: "n" , Value: VFISAKind::AdvancedSIMD) |
| 45 | .Case(S: "s" , Value: VFISAKind::SVE) |
| 46 | .Case(S: "r" , Value: VFISAKind::RVV) |
| 47 | .Case(S: "b" , Value: VFISAKind::SSE) |
| 48 | .Case(S: "c" , Value: VFISAKind::AVX) |
| 49 | .Case(S: "d" , Value: VFISAKind::AVX2) |
| 50 | .Case(S: "e" , Value: VFISAKind::AVX512) |
| 51 | .Default(Value: VFISAKind::Unknown); |
| 52 | MangledName = MangledName.drop_front(N: 1); |
| 53 | } |
| 54 | |
| 55 | return ParseRet::OK; |
| 56 | } |
| 57 | |
| 58 | /// Extracts the `<mask>` information from the mangled string, and |
| 59 | /// sets `IsMasked` accordingly. If successful, the <mask> token is removed |
| 60 | /// from the input string `MangledName`. |
| 61 | static ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) { |
| 62 | if (MangledName.consume_front(Prefix: "M" )) { |
| 63 | IsMasked = true; |
| 64 | return ParseRet::OK; |
| 65 | } |
| 66 | |
| 67 | if (MangledName.consume_front(Prefix: "N" )) { |
| 68 | IsMasked = false; |
| 69 | return ParseRet::OK; |
| 70 | } |
| 71 | |
| 72 | return ParseRet::Error; |
| 73 | } |
| 74 | |
| 75 | /// Extract the `<vlen>` information from the mangled string, and |
| 76 | /// sets `ParsedVF` accordingly. A `<vlen> == "x"` token is interpreted as a |
| 77 | /// scalable vector length and the boolean is set to true, otherwise a nonzero |
| 78 | /// unsigned integer will be directly used as a VF. On success, the `<vlen>` |
| 79 | /// token is removed from the input string `ParseString`. |
| 80 | static ParseRet tryParseVLEN(StringRef &ParseString, VFISAKind ISA, |
| 81 | std::pair<unsigned, bool> &ParsedVF) { |
| 82 | if (ParseString.consume_front(Prefix: "x" )) { |
| 83 | // SVE is the only scalable ISA currently supported. |
| 84 | if (ISA != VFISAKind::SVE && ISA != VFISAKind::RVV) { |
| 85 | LLVM_DEBUG(dbgs() << "Vector function variant declared with scalable VF " |
| 86 | << "but ISA supported for SVE and RVV only\n" ); |
| 87 | return ParseRet::Error; |
| 88 | } |
| 89 | // We can't determine the VF of a scalable vector by looking at the vlen |
| 90 | // string (just 'x'), so say we successfully parsed it but return a 'true' |
| 91 | // for the scalable field with an invalid VF field so that we know to look |
| 92 | // up the actual VF based on element types from the parameters or return. |
| 93 | ParsedVF = {0, true}; |
| 94 | return ParseRet::OK; |
| 95 | } |
| 96 | |
| 97 | unsigned VF = 0; |
| 98 | if (ParseString.consumeInteger(Radix: 10, Result&: VF)) |
| 99 | return ParseRet::Error; |
| 100 | |
| 101 | // The token `0` is invalid for VLEN. |
| 102 | if (VF == 0) |
| 103 | return ParseRet::Error; |
| 104 | |
| 105 | ParsedVF = {VF, false}; |
| 106 | return ParseRet::OK; |
| 107 | } |
| 108 | |
| 109 | /// The function looks for the following strings at the beginning of |
| 110 | /// the input string `ParseString`: |
| 111 | /// |
| 112 | /// <token> <number> |
| 113 | /// |
| 114 | /// On success, it removes the parsed parameter from `ParseString`, |
| 115 | /// sets `PKind` to the correspondent enum value, sets `Pos` to |
| 116 | /// <number>, and return success. On a syntax error, it return a |
| 117 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
| 118 | /// |
| 119 | /// The function expects <token> to be one of "ls", "Rs", "Us" or |
| 120 | /// "Ls". |
| 121 | static ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString, |
| 122 | VFParamKind &PKind, int &Pos, |
| 123 | const StringRef Token) { |
| 124 | if (ParseString.consume_front(Prefix: Token)) { |
| 125 | PKind = VFABI::getVFParamKindFromString(Token); |
| 126 | if (ParseString.consumeInteger(Radix: 10, Result&: Pos)) |
| 127 | return ParseRet::Error; |
| 128 | return ParseRet::OK; |
| 129 | } |
| 130 | |
| 131 | return ParseRet::None; |
| 132 | } |
| 133 | |
| 134 | /// The function looks for the following string at the beginning of |
| 135 | /// the input string `ParseString`: |
| 136 | /// |
| 137 | /// <token> <number> |
| 138 | /// |
| 139 | /// <token> is one of "ls", "Rs", "Us" or "Ls". |
| 140 | /// |
| 141 | /// On success, it removes the parsed parameter from `ParseString`, |
| 142 | /// sets `PKind` to the correspondent enum value, sets `StepOrPos` to |
| 143 | /// <number>, and return success. On a syntax error, it return a |
| 144 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
| 145 | static ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString, |
| 146 | VFParamKind &PKind, |
| 147 | int &StepOrPos) { |
| 148 | ParseRet Ret; |
| 149 | |
| 150 | // "ls" <RuntimeStepPos> |
| 151 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "ls" ); |
| 152 | if (Ret != ParseRet::None) |
| 153 | return Ret; |
| 154 | |
| 155 | // "Rs" <RuntimeStepPos> |
| 156 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "Rs" ); |
| 157 | if (Ret != ParseRet::None) |
| 158 | return Ret; |
| 159 | |
| 160 | // "Ls" <RuntimeStepPos> |
| 161 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "Ls" ); |
| 162 | if (Ret != ParseRet::None) |
| 163 | return Ret; |
| 164 | |
| 165 | // "Us" <RuntimeStepPos> |
| 166 | Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, Pos&: StepOrPos, Token: "Us" ); |
| 167 | if (Ret != ParseRet::None) |
| 168 | return Ret; |
| 169 | |
| 170 | return ParseRet::None; |
| 171 | } |
| 172 | |
| 173 | /// The function looks for the following strings at the beginning of |
| 174 | /// the input string `ParseString`: |
| 175 | /// |
| 176 | /// <token> {"n"} <number> |
| 177 | /// |
| 178 | /// On success, it removes the parsed parameter from `ParseString`, |
| 179 | /// sets `PKind` to the correspondent enum value, sets `LinearStep` to |
| 180 | /// <number>, and return success. On a syntax error, it return a |
| 181 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
| 182 | /// |
| 183 | /// The function expects <token> to be one of "l", "R", "U" or |
| 184 | /// "L". |
| 185 | static ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString, |
| 186 | VFParamKind &PKind, |
| 187 | int &LinearStep, |
| 188 | const StringRef Token) { |
| 189 | if (ParseString.consume_front(Prefix: Token)) { |
| 190 | PKind = VFABI::getVFParamKindFromString(Token); |
| 191 | const bool Negate = ParseString.consume_front(Prefix: "n" ); |
| 192 | if (ParseString.consumeInteger(Radix: 10, Result&: LinearStep)) |
| 193 | LinearStep = 1; |
| 194 | if (Negate) |
| 195 | LinearStep *= -1; |
| 196 | return ParseRet::OK; |
| 197 | } |
| 198 | |
| 199 | return ParseRet::None; |
| 200 | } |
| 201 | |
| 202 | /// The function looks for the following strings at the beginning of |
| 203 | /// the input string `ParseString`: |
| 204 | /// |
| 205 | /// ["l" | "R" | "U" | "L"] {"n"} <number> |
| 206 | /// |
| 207 | /// On success, it removes the parsed parameter from `ParseString`, |
| 208 | /// sets `PKind` to the correspondent enum value, sets `LinearStep` to |
| 209 | /// <number>, and return success. On a syntax error, it return a |
| 210 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
| 211 | static ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString, |
| 212 | VFParamKind &PKind, |
| 213 | int &StepOrPos) { |
| 214 | // "l" {"n"} <CompileTimeStep> |
| 215 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "l" ) == |
| 216 | ParseRet::OK) |
| 217 | return ParseRet::OK; |
| 218 | |
| 219 | // "R" {"n"} <CompileTimeStep> |
| 220 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "R" ) == |
| 221 | ParseRet::OK) |
| 222 | return ParseRet::OK; |
| 223 | |
| 224 | // "L" {"n"} <CompileTimeStep> |
| 225 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "L" ) == |
| 226 | ParseRet::OK) |
| 227 | return ParseRet::OK; |
| 228 | |
| 229 | // "U" {"n"} <CompileTimeStep> |
| 230 | if (tryParseCompileTimeLinearToken(ParseString, PKind, LinearStep&: StepOrPos, Token: "U" ) == |
| 231 | ParseRet::OK) |
| 232 | return ParseRet::OK; |
| 233 | |
| 234 | return ParseRet::None; |
| 235 | } |
| 236 | |
| 237 | /// Looks into the <parameters> part of the mangled name in search |
| 238 | /// for valid paramaters at the beginning of the string |
| 239 | /// `ParseString`. |
| 240 | /// |
| 241 | /// On success, it removes the parsed parameter from `ParseString`, |
| 242 | /// sets `PKind` to the correspondent enum value, sets `StepOrPos` |
| 243 | /// accordingly, and return success. On a syntax error, it return a |
| 244 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
| 245 | static ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind, |
| 246 | int &StepOrPos) { |
| 247 | if (ParseString.consume_front(Prefix: "v" )) { |
| 248 | PKind = VFParamKind::Vector; |
| 249 | StepOrPos = 0; |
| 250 | return ParseRet::OK; |
| 251 | } |
| 252 | |
| 253 | if (ParseString.consume_front(Prefix: "u" )) { |
| 254 | PKind = VFParamKind::OMP_Uniform; |
| 255 | StepOrPos = 0; |
| 256 | return ParseRet::OK; |
| 257 | } |
| 258 | |
| 259 | const ParseRet HasLinearRuntime = |
| 260 | tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos); |
| 261 | if (HasLinearRuntime != ParseRet::None) |
| 262 | return HasLinearRuntime; |
| 263 | |
| 264 | const ParseRet HasLinearCompileTime = |
| 265 | tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos); |
| 266 | if (HasLinearCompileTime != ParseRet::None) |
| 267 | return HasLinearCompileTime; |
| 268 | |
| 269 | return ParseRet::None; |
| 270 | } |
| 271 | |
| 272 | /// Looks into the <parameters> part of the mangled name in search |
| 273 | /// of a valid 'aligned' clause. The function should be invoked |
| 274 | /// after parsing a parameter via `tryParseParameter`. |
| 275 | /// |
| 276 | /// On success, it removes the parsed parameter from `ParseString`, |
| 277 | /// sets `PKind` to the correspondent enum value, sets `StepOrPos` |
| 278 | /// accordingly, and return success. On a syntax error, it return a |
| 279 | /// parsing error. If nothing is parsed, it returns std::nullopt. |
| 280 | static ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) { |
| 281 | uint64_t Val; |
| 282 | // "a" <number> |
| 283 | if (ParseString.consume_front(Prefix: "a" )) { |
| 284 | if (ParseString.consumeInteger(Radix: 10, Result&: Val)) |
| 285 | return ParseRet::Error; |
| 286 | |
| 287 | if (!isPowerOf2_64(Value: Val)) |
| 288 | return ParseRet::Error; |
| 289 | |
| 290 | Alignment = Align(Val); |
| 291 | |
| 292 | return ParseRet::OK; |
| 293 | } |
| 294 | |
| 295 | return ParseRet::None; |
| 296 | } |
| 297 | |
| 298 | // Returns the 'natural' VF for a given scalar element type, based on the |
| 299 | // current architecture. |
| 300 | // |
| 301 | // For SVE (currently the only scalable architecture with a defined name |
| 302 | // mangling), we assume a minimum vector size of 128b and return a VF based on |
| 303 | // the number of elements of the given type which would fit in such a vector. |
| 304 | static std::optional<ElementCount> getElementCountForTy(const VFISAKind ISA, |
| 305 | const Type *Ty) { |
| 306 | assert((ISA == VFISAKind::SVE || ISA == VFISAKind::RVV) && |
| 307 | "Scalable VF decoding only implemented for SVE and RVV\n" ); |
| 308 | |
| 309 | if (Ty->isIntegerTy(Bitwidth: 64) || Ty->isDoubleTy() || Ty->isPointerTy()) |
| 310 | return ElementCount::getScalable(MinVal: 2); |
| 311 | if (Ty->isIntegerTy(Bitwidth: 32) || Ty->isFloatTy()) |
| 312 | return ElementCount::getScalable(MinVal: 4); |
| 313 | if (Ty->isIntegerTy(Bitwidth: 16) || Ty->is16bitFPTy()) |
| 314 | return ElementCount::getScalable(MinVal: 8); |
| 315 | if (Ty->isIntegerTy(Bitwidth: 8)) |
| 316 | return ElementCount::getScalable(MinVal: 16); |
| 317 | |
| 318 | return std::nullopt; |
| 319 | } |
| 320 | |
| 321 | // Extract the VectorizationFactor from a given function signature, based |
| 322 | // on the widest scalar element types that will become vector parameters. |
| 323 | static std::optional<ElementCount> |
| 324 | getScalableECFromSignature(const FunctionType *Signature, const VFISAKind ISA, |
| 325 | const SmallVectorImpl<VFParameter> &Params) { |
| 326 | // Start with a very wide EC and drop when we find smaller ECs based on type. |
| 327 | ElementCount MinEC = |
| 328 | ElementCount::getScalable(MinVal: std::numeric_limits<unsigned int>::max()); |
| 329 | for (auto &Param : Params) { |
| 330 | // Only vector parameters are used when determining the VF; uniform or |
| 331 | // linear are left as scalars, so do not affect VF. |
| 332 | if (Param.ParamKind == VFParamKind::Vector) { |
| 333 | Type *PTy = Signature->getParamType(i: Param.ParamPos); |
| 334 | |
| 335 | std::optional<ElementCount> EC = getElementCountForTy(ISA, Ty: PTy); |
| 336 | // If we have an unknown scalar element type we can't find a reasonable |
| 337 | // VF. |
| 338 | if (!EC) |
| 339 | return std::nullopt; |
| 340 | |
| 341 | // Find the smallest VF, based on the widest scalar type. |
| 342 | if (ElementCount::isKnownLT(LHS: *EC, RHS: MinEC)) |
| 343 | MinEC = *EC; |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | // Also check the return type if not void. |
| 348 | Type *RetTy = Signature->getReturnType(); |
| 349 | if (!RetTy->isVoidTy()) { |
| 350 | // If the return type is a struct, only allow unpacked struct literals. |
| 351 | StructType *StructTy = dyn_cast<StructType>(Val: RetTy); |
| 352 | if (StructTy && !isUnpackedStructLiteral(StructTy)) |
| 353 | return std::nullopt; |
| 354 | |
| 355 | for (Type *RetTy : getContainedTypes(Ty: RetTy)) { |
| 356 | std::optional<ElementCount> ReturnEC = getElementCountForTy(ISA, Ty: RetTy); |
| 357 | // If we have an unknown scalar element type we can't find a reasonable |
| 358 | // VF. |
| 359 | if (!ReturnEC) |
| 360 | return std::nullopt; |
| 361 | if (ElementCount::isKnownLT(LHS: *ReturnEC, RHS: MinEC)) |
| 362 | MinEC = *ReturnEC; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | // The SVE Vector function call ABI bases the VF on the widest element types |
| 367 | // present, and vector arguments containing types of that width are always |
| 368 | // considered to be packed. Arguments with narrower elements are considered |
| 369 | // to be unpacked. |
| 370 | if (MinEC.getKnownMinValue() < std::numeric_limits<unsigned int>::max()) |
| 371 | return MinEC; |
| 372 | |
| 373 | return std::nullopt; |
| 374 | } |
| 375 | } // namespace |
| 376 | |
| 377 | // Format of the ABI name: |
| 378 | // _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)] |
| 379 | std::optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName, |
| 380 | const FunctionType *FTy) { |
| 381 | const StringRef OriginalName = MangledName; |
| 382 | // Assume there is no custom name <redirection>, and therefore the |
| 383 | // vector name consists of |
| 384 | // _ZGV<isa><mask><vlen><parameters>_<scalarname>. |
| 385 | StringRef VectorName = MangledName; |
| 386 | |
| 387 | // Parse the fixed size part of the mangled name |
| 388 | if (!MangledName.consume_front(Prefix: "_ZGV" )) |
| 389 | return std::nullopt; |
| 390 | |
| 391 | // Extract ISA. An unknow ISA is also supported, so we accept all |
| 392 | // values. |
| 393 | VFISAKind ISA; |
| 394 | if (tryParseISA(MangledName, ISA) != ParseRet::OK) |
| 395 | return std::nullopt; |
| 396 | |
| 397 | // Extract <mask>. |
| 398 | bool IsMasked; |
| 399 | if (tryParseMask(MangledName, IsMasked) != ParseRet::OK) |
| 400 | return std::nullopt; |
| 401 | |
| 402 | // Parse the variable size, starting from <vlen>. |
| 403 | std::pair<unsigned, bool> ParsedVF; |
| 404 | if (tryParseVLEN(ParseString&: MangledName, ISA, ParsedVF) != ParseRet::OK) |
| 405 | return std::nullopt; |
| 406 | |
| 407 | // Parse the <parameters>. |
| 408 | ParseRet ParamFound; |
| 409 | SmallVector<VFParameter, 8> Parameters; |
| 410 | do { |
| 411 | const unsigned ParameterPos = Parameters.size(); |
| 412 | VFParamKind PKind; |
| 413 | int StepOrPos; |
| 414 | ParamFound = tryParseParameter(ParseString&: MangledName, PKind, StepOrPos); |
| 415 | |
| 416 | // Bail off if there is a parsing error in the parsing of the parameter. |
| 417 | if (ParamFound == ParseRet::Error) |
| 418 | return std::nullopt; |
| 419 | |
| 420 | if (ParamFound == ParseRet::OK) { |
| 421 | Align Alignment; |
| 422 | // Look for the alignment token "a <number>". |
| 423 | const ParseRet AlignFound = tryParseAlign(ParseString&: MangledName, Alignment); |
| 424 | // Bail off if there is a syntax error in the align token. |
| 425 | if (AlignFound == ParseRet::Error) |
| 426 | return std::nullopt; |
| 427 | |
| 428 | // Add the parameter. |
| 429 | Parameters.push_back(Elt: {.ParamPos: ParameterPos, .ParamKind: PKind, .LinearStepOrPos: StepOrPos, .Alignment: Alignment}); |
| 430 | } |
| 431 | } while (ParamFound == ParseRet::OK); |
| 432 | |
| 433 | // A valid MangledName must have at least one valid entry in the |
| 434 | // <parameters>. |
| 435 | if (Parameters.empty()) |
| 436 | return std::nullopt; |
| 437 | |
| 438 | // If the number of arguments of the scalar function does not match the |
| 439 | // vector variant we have just demangled then reject the mapping. |
| 440 | if (Parameters.size() != FTy->getNumParams()) |
| 441 | return std::nullopt; |
| 442 | |
| 443 | // Figure out the number of lanes in vectors for this function variant. This |
| 444 | // is easy for fixed length, as the vlen encoding just gives us the value |
| 445 | // directly. However, if the vlen mangling indicated that this function |
| 446 | // variant expects scalable vectors we need to work it out based on the |
| 447 | // demangled parameter types and the scalar function signature. |
| 448 | std::optional<ElementCount> EC; |
| 449 | if (ParsedVF.second) { |
| 450 | EC = getScalableECFromSignature(Signature: FTy, ISA, Params: Parameters); |
| 451 | if (!EC) |
| 452 | return std::nullopt; |
| 453 | } else |
| 454 | EC = ElementCount::getFixed(MinVal: ParsedVF.first); |
| 455 | |
| 456 | // Check for the <scalarname> and the optional <redirection>, which |
| 457 | // are separated from the prefix with "_" |
| 458 | if (!MangledName.consume_front(Prefix: "_" )) |
| 459 | return std::nullopt; |
| 460 | |
| 461 | // The rest of the string must be in the format: |
| 462 | // <scalarname>[(<redirection>)] |
| 463 | const StringRef ScalarName = |
| 464 | MangledName.take_while(F: [](char In) { return In != '('; }); |
| 465 | |
| 466 | if (ScalarName.empty()) |
| 467 | return std::nullopt; |
| 468 | |
| 469 | // Reduce MangledName to [(<redirection>)]. |
| 470 | MangledName = MangledName.ltrim(Chars: ScalarName); |
| 471 | // Find the optional custom name redirection. |
| 472 | if (MangledName.consume_front(Prefix: "(" )) { |
| 473 | if (!MangledName.consume_back(Suffix: ")" )) |
| 474 | return std::nullopt; |
| 475 | // Update the vector variant with the one specified by the user. |
| 476 | VectorName = MangledName; |
| 477 | // If the vector name is missing, bail out. |
| 478 | if (VectorName.empty()) |
| 479 | return std::nullopt; |
| 480 | } |
| 481 | |
| 482 | // LLVM internal mapping via the TargetLibraryInfo (TLI) must be |
| 483 | // redirected to an existing name. |
| 484 | if (ISA == VFISAKind::LLVM && VectorName == OriginalName) |
| 485 | return std::nullopt; |
| 486 | |
| 487 | // When <mask> is "M", we need to add a parameter that is used as |
| 488 | // global predicate for the function. |
| 489 | if (IsMasked) { |
| 490 | const unsigned Pos = Parameters.size(); |
| 491 | Parameters.push_back(Elt: {.ParamPos: Pos, .ParamKind: VFParamKind::GlobalPredicate}); |
| 492 | } |
| 493 | |
| 494 | // Asserts for parameters of type `VFParamKind::GlobalPredicate`, as |
| 495 | // prescribed by the Vector Function ABI specifications supported by |
| 496 | // this parser: |
| 497 | // 1. Uniqueness. |
| 498 | // 2. Must be the last in the parameter list. |
| 499 | const auto NGlobalPreds = |
| 500 | llvm::count_if(Range&: Parameters, P: [](const VFParameter &PK) { |
| 501 | return PK.ParamKind == VFParamKind::GlobalPredicate; |
| 502 | }); |
| 503 | assert(NGlobalPreds < 2 && "Cannot have more than one global predicate." ); |
| 504 | if (NGlobalPreds) |
| 505 | assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate && |
| 506 | "The global predicate must be the last parameter" ); |
| 507 | |
| 508 | const VFShape Shape({.VF: *EC, .Parameters: Parameters}); |
| 509 | return VFInfo({.Shape: Shape, .ScalarName: std::string(ScalarName), .VectorName: std::string(VectorName), .ISA: ISA}); |
| 510 | } |
| 511 | |
| 512 | VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) { |
| 513 | const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token) |
| 514 | .Case(S: "v" , Value: VFParamKind::Vector) |
| 515 | .Case(S: "l" , Value: VFParamKind::OMP_Linear) |
| 516 | .Case(S: "R" , Value: VFParamKind::OMP_LinearRef) |
| 517 | .Case(S: "L" , Value: VFParamKind::OMP_LinearVal) |
| 518 | .Case(S: "U" , Value: VFParamKind::OMP_LinearUVal) |
| 519 | .Case(S: "ls" , Value: VFParamKind::OMP_LinearPos) |
| 520 | .Case(S: "Ls" , Value: VFParamKind::OMP_LinearValPos) |
| 521 | .Case(S: "Rs" , Value: VFParamKind::OMP_LinearRefPos) |
| 522 | .Case(S: "Us" , Value: VFParamKind::OMP_LinearUValPos) |
| 523 | .Case(S: "u" , Value: VFParamKind::OMP_Uniform) |
| 524 | .Default(Value: VFParamKind::Unknown); |
| 525 | |
| 526 | if (ParamKind != VFParamKind::Unknown) |
| 527 | return ParamKind; |
| 528 | |
| 529 | // This function should never be invoked with an invalid input. |
| 530 | llvm_unreachable("This fuction should be invoken only on parameters" |
| 531 | " that have a textual representation in the mangled name" |
| 532 | " of the Vector Function ABI" ); |
| 533 | } |
| 534 | |
| 535 | void VFABI::getVectorVariantNames( |
| 536 | const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { |
| 537 | const StringRef S = CI.getFnAttr(Kind: VFABI::MappingsAttrName).getValueAsString(); |
| 538 | if (S.empty()) |
| 539 | return; |
| 540 | |
| 541 | SmallVector<StringRef, 8> ListAttr; |
| 542 | S.split(A&: ListAttr, Separator: "," ); |
| 543 | |
| 544 | for (const auto &S : SetVector<StringRef>(llvm::from_range, ListAttr)) { |
| 545 | std::optional<VFInfo> Info = |
| 546 | VFABI::tryDemangleForVFABI(MangledName: S, FTy: CI.getFunctionType()); |
| 547 | if (Info && CI.getModule()->getFunction(Name: Info->VectorName)) { |
| 548 | LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI |
| 549 | << "\n" ); |
| 550 | VariantMappings.push_back(Elt: std::string(S)); |
| 551 | } else |
| 552 | LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n" ); |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | FunctionType *VFABI::createFunctionType(const VFInfo &Info, |
| 557 | const FunctionType *ScalarFTy) { |
| 558 | // Create vector parameter types |
| 559 | SmallVector<Type *, 8> VecTypes; |
| 560 | ElementCount VF = Info.Shape.VF; |
| 561 | int ScalarParamIndex = 0; |
| 562 | for (auto VFParam : Info.Shape.Parameters) { |
| 563 | if (VFParam.ParamKind == VFParamKind::GlobalPredicate) { |
| 564 | VectorType *MaskTy = |
| 565 | VectorType::get(ElementType: Type::getInt1Ty(C&: ScalarFTy->getContext()), EC: VF); |
| 566 | VecTypes.push_back(Elt: MaskTy); |
| 567 | continue; |
| 568 | } |
| 569 | |
| 570 | Type *OperandTy = ScalarFTy->getParamType(i: ScalarParamIndex++); |
| 571 | if (VFParam.ParamKind == VFParamKind::Vector) |
| 572 | OperandTy = VectorType::get(ElementType: OperandTy, EC: VF); |
| 573 | VecTypes.push_back(Elt: OperandTy); |
| 574 | } |
| 575 | |
| 576 | auto *RetTy = ScalarFTy->getReturnType(); |
| 577 | if (!RetTy->isVoidTy()) |
| 578 | RetTy = toVectorizedTy(Ty: RetTy, EC: VF); |
| 579 | return FunctionType::get(Result: RetTy, Params: VecTypes, isVarArg: false); |
| 580 | } |
| 581 | |
| 582 | void VFABI::setVectorVariantNames(CallInst *CI, |
| 583 | ArrayRef<std::string> VariantMappings) { |
| 584 | if (VariantMappings.empty()) |
| 585 | return; |
| 586 | |
| 587 | SmallString<256> Buffer; |
| 588 | llvm::raw_svector_ostream Out(Buffer); |
| 589 | for (const std::string &VariantMapping : VariantMappings) |
| 590 | Out << VariantMapping << "," ; |
| 591 | // Get rid of the trailing ','. |
| 592 | assert(!Buffer.str().empty() && "Must have at least one char." ); |
| 593 | Buffer.pop_back(); |
| 594 | |
| 595 | Module *M = CI->getModule(); |
| 596 | #ifndef NDEBUG |
| 597 | for (const std::string &VariantMapping : VariantMappings) { |
| 598 | LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << VariantMapping << "'\n" ); |
| 599 | std::optional<VFInfo> VI = |
| 600 | VFABI::tryDemangleForVFABI(VariantMapping, CI->getFunctionType()); |
| 601 | assert(VI && "Cannot add an invalid VFABI name." ); |
| 602 | assert(M->getNamedValue(VI->VectorName) && |
| 603 | "Cannot add variant to attribute: " |
| 604 | "vector function declaration is missing." ); |
| 605 | } |
| 606 | #endif |
| 607 | CI->addFnAttr( |
| 608 | Attr: Attribute::get(Context&: M->getContext(), Kind: MappingsAttrName, Val: Buffer.str())); |
| 609 | } |
| 610 | |
| 611 | bool VFShape::hasValidParameterList() const { |
| 612 | for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; |
| 613 | ++Pos) { |
| 614 | assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list." ); |
| 615 | |
| 616 | switch (Parameters[Pos].ParamKind) { |
| 617 | default: // Nothing to check. |
| 618 | break; |
| 619 | case VFParamKind::OMP_Linear: |
| 620 | case VFParamKind::OMP_LinearRef: |
| 621 | case VFParamKind::OMP_LinearVal: |
| 622 | case VFParamKind::OMP_LinearUVal: |
| 623 | // Compile time linear steps must be non-zero. |
| 624 | if (Parameters[Pos].LinearStepOrPos == 0) |
| 625 | return false; |
| 626 | break; |
| 627 | case VFParamKind::OMP_LinearPos: |
| 628 | case VFParamKind::OMP_LinearRefPos: |
| 629 | case VFParamKind::OMP_LinearValPos: |
| 630 | case VFParamKind::OMP_LinearUValPos: |
| 631 | // The runtime linear step must be referring to some other |
| 632 | // parameters in the signature. |
| 633 | if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) |
| 634 | return false; |
| 635 | // The linear step parameter must be marked as uniform. |
| 636 | if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != |
| 637 | VFParamKind::OMP_Uniform) |
| 638 | return false; |
| 639 | // The linear step parameter can't point at itself. |
| 640 | if (Parameters[Pos].LinearStepOrPos == int(Pos)) |
| 641 | return false; |
| 642 | break; |
| 643 | case VFParamKind::GlobalPredicate: |
| 644 | // The global predicate must be the unique. Can be placed anywhere in the |
| 645 | // signature. |
| 646 | for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) |
| 647 | if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) |
| 648 | return false; |
| 649 | break; |
| 650 | } |
| 651 | } |
| 652 | return true; |
| 653 | } |
| 654 | |