| 1 | //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the performOptimizedStructLayout interface. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Support/OptimizedStructLayout.h" |
| 14 | #include <optional> |
| 15 | |
| 16 | using namespace llvm; |
| 17 | |
| 18 | using Field = OptimizedStructLayoutField; |
| 19 | |
| 20 | #ifndef NDEBUG |
| 21 | static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size, |
| 22 | Align MaxAlign) { |
| 23 | uint64_t LastEnd = 0; |
| 24 | Align ComputedMaxAlign; |
| 25 | for (auto &Field : Fields) { |
| 26 | assert(Field.hasFixedOffset() && |
| 27 | "didn't assign a fixed offset to field" ); |
| 28 | assert(isAligned(Field.Alignment, Field.Offset) && |
| 29 | "didn't assign a correctly-aligned offset to field" ); |
| 30 | assert(Field.Offset >= LastEnd && |
| 31 | "didn't assign offsets in ascending order" ); |
| 32 | LastEnd = Field.getEndOffset(); |
| 33 | assert(Field.Alignment <= MaxAlign && |
| 34 | "didn't compute MaxAlign correctly" ); |
| 35 | ComputedMaxAlign = std::max(Field.Alignment, MaxAlign); |
| 36 | } |
| 37 | assert(LastEnd == Size && "didn't compute LastEnd correctly" ); |
| 38 | assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly" ); |
| 39 | } |
| 40 | #endif |
| 41 | |
| 42 | std::pair<uint64_t, Align> |
| 43 | llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) { |
| 44 | #ifndef NDEBUG |
| 45 | // Do some simple precondition checks. |
| 46 | { |
| 47 | bool InFixedPrefix = true; |
| 48 | size_t LastEnd = 0; |
| 49 | for (auto &Field : Fields) { |
| 50 | assert(Field.Size > 0 && "field of zero size" ); |
| 51 | if (Field.hasFixedOffset()) { |
| 52 | assert(InFixedPrefix && |
| 53 | "fixed-offset fields are not a strict prefix of array" ); |
| 54 | assert(LastEnd <= Field.Offset && |
| 55 | "fixed-offset fields overlap or are not in order" ); |
| 56 | LastEnd = Field.getEndOffset(); |
| 57 | assert(LastEnd > Field.Offset && |
| 58 | "overflow in fixed-offset end offset" ); |
| 59 | } else { |
| 60 | InFixedPrefix = false; |
| 61 | } |
| 62 | } |
| 63 | } |
| 64 | #endif |
| 65 | |
| 66 | // Do an initial pass over the fields. |
| 67 | Align MaxAlign; |
| 68 | |
| 69 | // Find the first flexible-offset field, tracking MaxAlign. |
| 70 | auto FirstFlexible = Fields.begin(), E = Fields.end(); |
| 71 | while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) { |
| 72 | MaxAlign = std::max(a: MaxAlign, b: FirstFlexible->Alignment); |
| 73 | ++FirstFlexible; |
| 74 | } |
| 75 | |
| 76 | // If there are no flexible fields, we're done. |
| 77 | if (FirstFlexible == E) { |
| 78 | uint64_t Size = 0; |
| 79 | if (!Fields.empty()) |
| 80 | Size = Fields.back().getEndOffset(); |
| 81 | |
| 82 | #ifndef NDEBUG |
| 83 | checkValidLayout(Fields, Size, MaxAlign); |
| 84 | #endif |
| 85 | return std::make_pair(x&: Size, y&: MaxAlign); |
| 86 | } |
| 87 | |
| 88 | // Walk over the flexible-offset fields, tracking MaxAlign and |
| 89 | // assigning them a unique number in order of their appearance. |
| 90 | // We'll use this unique number in the comparison below so that |
| 91 | // we can use array_pod_sort, which isn't stable. We won't use it |
| 92 | // past that point. |
| 93 | { |
| 94 | uintptr_t UniqueNumber = 0; |
| 95 | for (auto I = FirstFlexible; I != E; ++I) { |
| 96 | I->Scratch = reinterpret_cast<void*>(UniqueNumber++); |
| 97 | MaxAlign = std::max(a: MaxAlign, b: I->Alignment); |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | // Sort the flexible elements in order of decreasing alignment, |
| 102 | // then decreasing size, and then the original order as recorded |
| 103 | // in Scratch. The decreasing-size aspect of this is only really |
| 104 | // important if we get into the gap-filling stage below, but it |
| 105 | // doesn't hurt here. |
| 106 | array_pod_sort(Start: FirstFlexible, End: E, |
| 107 | Compare: [](const Field *lhs, const Field *rhs) -> int { |
| 108 | // Decreasing alignment. |
| 109 | if (lhs->Alignment != rhs->Alignment) |
| 110 | return (lhs->Alignment < rhs->Alignment ? 1 : -1); |
| 111 | |
| 112 | // Decreasing size. |
| 113 | if (lhs->Size != rhs->Size) |
| 114 | return (lhs->Size < rhs->Size ? 1 : -1); |
| 115 | |
| 116 | // Original order. |
| 117 | auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch); |
| 118 | auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch); |
| 119 | if (lhsNumber != rhsNumber) |
| 120 | return (lhsNumber < rhsNumber ? -1 : 1); |
| 121 | |
| 122 | return 0; |
| 123 | }); |
| 124 | |
| 125 | // Do a quick check for whether that sort alone has given us a perfect |
| 126 | // layout with no interior padding. This is very common: if the |
| 127 | // fixed-layout fields have no interior padding, and they end at a |
| 128 | // sufficiently-aligned offset for all the flexible-layout fields, |
| 129 | // and the flexible-layout fields all have sizes that are multiples |
| 130 | // of their alignment, then this will reliably trigger. |
| 131 | { |
| 132 | bool HasPadding = false; |
| 133 | uint64_t LastEnd = 0; |
| 134 | |
| 135 | // Walk the fixed-offset fields. |
| 136 | for (auto I = Fields.begin(); I != FirstFlexible; ++I) { |
| 137 | assert(I->hasFixedOffset()); |
| 138 | if (LastEnd != I->Offset) { |
| 139 | HasPadding = true; |
| 140 | break; |
| 141 | } |
| 142 | LastEnd = I->getEndOffset(); |
| 143 | } |
| 144 | |
| 145 | // Walk the flexible-offset fields, optimistically assigning fixed |
| 146 | // offsets. Note that we maintain a strict division between the |
| 147 | // fixed-offset and flexible-offset fields, so if we end up |
| 148 | // discovering padding later in this loop, we can just abandon this |
| 149 | // work and we'll ignore the offsets we already assigned. |
| 150 | if (!HasPadding) { |
| 151 | for (auto I = FirstFlexible; I != E; ++I) { |
| 152 | auto Offset = alignTo(Size: LastEnd, A: I->Alignment); |
| 153 | if (LastEnd != Offset) { |
| 154 | HasPadding = true; |
| 155 | break; |
| 156 | } |
| 157 | I->Offset = Offset; |
| 158 | LastEnd = I->getEndOffset(); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | // If we already have a perfect layout, we're done. |
| 163 | if (!HasPadding) { |
| 164 | #ifndef NDEBUG |
| 165 | checkValidLayout(Fields, LastEnd, MaxAlign); |
| 166 | #endif |
| 167 | return std::make_pair(x&: LastEnd, y&: MaxAlign); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | // The algorithm sketch at this point is as follows. |
| 172 | // |
| 173 | // Consider the padding gaps between fixed-offset fields in ascending |
| 174 | // order. Let LastEnd be the offset of the first byte following the |
| 175 | // field before the gap, or 0 if the gap is at the beginning of the |
| 176 | // structure. Find the "best" flexible-offset field according to the |
| 177 | // criteria below. If no such field exists, proceed to the next gap. |
| 178 | // Otherwise, add the field at the first properly-aligned offset for |
| 179 | // that field that is >= LastEnd, then update LastEnd and repeat in |
| 180 | // order to fill any remaining gap following that field. |
| 181 | // |
| 182 | // Next, let LastEnd to be the offset of the first byte following the |
| 183 | // last fixed-offset field, or 0 if there are no fixed-offset fields. |
| 184 | // While there are flexible-offset fields remaining, find the "best" |
| 185 | // flexible-offset field according to the criteria below, add it at |
| 186 | // the first properly-aligned offset for that field that is >= LastEnd, |
| 187 | // and update LastEnd to the first byte following the field. |
| 188 | // |
| 189 | // The "best" field is chosen by the following criteria, considered |
| 190 | // strictly in order: |
| 191 | // |
| 192 | // - When filling a gap betweeen fields, the field must fit. |
| 193 | // - A field is preferred if it requires less padding following LastEnd. |
| 194 | // - A field is preferred if it is more aligned. |
| 195 | // - A field is preferred if it is larger. |
| 196 | // - A field is preferred if it appeared earlier in the initial order. |
| 197 | // |
| 198 | // Minimizing leading padding is a greedy attempt to avoid padding |
| 199 | // entirely. Preferring more-aligned fields is an attempt to eliminate |
| 200 | // stricter constraints earlier, with the idea that weaker alignment |
| 201 | // constraints may be resolvable with less padding elsewhere. These |
| 202 | // These two rules are sufficient to ensure that we get the optimal |
| 203 | // layout in the "C-style" case. Preferring larger fields tends to take |
| 204 | // better advantage of large gaps and may be more likely to have a size |
| 205 | // that's a multiple of a useful alignment. Preferring the initial |
| 206 | // order may help somewhat with locality but is mostly just a way of |
| 207 | // ensuring deterministic output. |
| 208 | // |
| 209 | // Note that this algorithm does not guarantee a minimal layout. Picking |
| 210 | // a larger object greedily may leave a gap that cannot be filled as |
| 211 | // efficiently. Unfortunately, solving this perfectly is an NP-complete |
| 212 | // problem (by reduction from bin-packing: let B_i be the bin sizes and |
| 213 | // O_j be the object sizes; add fixed-offset fields such that the gaps |
| 214 | // between them have size B_i, and add flexible-offset fields with |
| 215 | // alignment 1 and size O_j; if the layout size is equal to the end of |
| 216 | // the last fixed-layout field, the objects fit in the bins; note that |
| 217 | // this doesn't even require the complexity of alignment). |
| 218 | |
| 219 | // The implementation below is essentially just an optimized version of |
| 220 | // scanning the list of remaining fields looking for the best, which |
| 221 | // would be O(n^2). In the worst case, it doesn't improve on that. |
| 222 | // However, in practice it'll just scan the array of alignment bins |
| 223 | // and consider the first few elements from one or two bins. The |
| 224 | // number of bins is bounded by a small constant: alignments are powers |
| 225 | // of two that are vanishingly unlikely to be over 64 and fairly unlikely |
| 226 | // to be over 8. And multiple elements only need to be considered when |
| 227 | // filling a gap between fixed-offset fields, which doesn't happen very |
| 228 | // often. We could use a data structure within bins that optimizes for |
| 229 | // finding the best-sized match, but it would require allocating memory |
| 230 | // and copying data, so it's unlikely to be worthwhile. |
| 231 | |
| 232 | |
| 233 | // Start by organizing the flexible-offset fields into bins according to |
| 234 | // their alignment. We expect a small enough number of bins that we |
| 235 | // don't care about the asymptotic costs of walking this. |
| 236 | struct AlignmentQueue { |
| 237 | /// The minimum size of anything currently in this queue. |
| 238 | uint64_t MinSize; |
| 239 | |
| 240 | /// The head of the queue. A singly-linked list. The order here should |
| 241 | /// be consistent with the earlier sort, i.e. the elements should be |
| 242 | /// monotonically descending in size and otherwise in the original order. |
| 243 | /// |
| 244 | /// We remove the queue from the array as soon as this is empty. |
| 245 | OptimizedStructLayoutField *Head; |
| 246 | |
| 247 | /// The alignment requirement of the queue. |
| 248 | Align Alignment; |
| 249 | |
| 250 | static Field *getNext(Field *Cur) { |
| 251 | return static_cast<Field *>(Cur->Scratch); |
| 252 | } |
| 253 | }; |
| 254 | SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment; |
| 255 | for (auto I = FirstFlexible; I != E; ) { |
| 256 | auto Head = I; |
| 257 | auto Alignment = I->Alignment; |
| 258 | |
| 259 | uint64_t MinSize = I->Size; |
| 260 | auto LastInQueue = I; |
| 261 | for (++I; I != E && I->Alignment == Alignment; ++I) { |
| 262 | LastInQueue->Scratch = I; |
| 263 | LastInQueue = I; |
| 264 | MinSize = std::min(a: MinSize, b: I->Size); |
| 265 | } |
| 266 | LastInQueue->Scratch = nullptr; |
| 267 | |
| 268 | FlexibleFieldsByAlignment.push_back(Elt: {.MinSize: MinSize, .Head: Head, .Alignment: Alignment}); |
| 269 | } |
| 270 | |
| 271 | #ifndef NDEBUG |
| 272 | // Verify that we set the queues up correctly. |
| 273 | auto checkQueues = [&]{ |
| 274 | bool FirstQueue = true; |
| 275 | Align LastQueueAlignment; |
| 276 | for (auto &Queue : FlexibleFieldsByAlignment) { |
| 277 | assert((FirstQueue || Queue.Alignment < LastQueueAlignment) && |
| 278 | "bins not in order of descending alignment" ); |
| 279 | LastQueueAlignment = Queue.Alignment; |
| 280 | FirstQueue = false; |
| 281 | |
| 282 | assert(Queue.Head && "queue was empty" ); |
| 283 | uint64_t LastSize = ~(uint64_t)0; |
| 284 | for (auto I = Queue.Head; I; I = Queue.getNext(I)) { |
| 285 | assert(I->Alignment == Queue.Alignment && "bad field in queue" ); |
| 286 | assert(I->Size <= LastSize && "queue not in descending size order" ); |
| 287 | LastSize = I->Size; |
| 288 | } |
| 289 | } |
| 290 | }; |
| 291 | checkQueues(); |
| 292 | #endif |
| 293 | |
| 294 | /// Helper function to remove a field from a queue. |
| 295 | auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) { |
| 296 | assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur); |
| 297 | |
| 298 | // If we're removing Cur from a non-initial position, splice it out |
| 299 | // of the linked list. |
| 300 | if (Last) { |
| 301 | Last->Scratch = Cur->Scratch; |
| 302 | |
| 303 | // If Cur was the last field in the list, we need to update MinSize. |
| 304 | // We can just use the last field's size because the list is in |
| 305 | // descending order of size. |
| 306 | if (!Cur->Scratch) |
| 307 | Queue->MinSize = Last->Size; |
| 308 | |
| 309 | // Otherwise, replace the head. |
| 310 | } else { |
| 311 | if (auto NewHead = Queue->getNext(Cur)) |
| 312 | Queue->Head = NewHead; |
| 313 | |
| 314 | // If we just emptied the queue, destroy its bin. |
| 315 | else |
| 316 | FlexibleFieldsByAlignment.erase(CI: Queue); |
| 317 | } |
| 318 | }; |
| 319 | |
| 320 | // Do layout into a local array. Doing this in-place on Fields is |
| 321 | // not really feasible. |
| 322 | SmallVector<Field, 16> Layout; |
| 323 | Layout.reserve(N: Fields.size()); |
| 324 | |
| 325 | // The offset that we're currently looking to insert at (or after). |
| 326 | uint64_t LastEnd = 0; |
| 327 | |
| 328 | // Helper function to splice Cur out of the given queue and add it |
| 329 | // to the layout at the given offset. |
| 330 | auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur, |
| 331 | uint64_t Offset) -> bool { |
| 332 | assert(Offset == alignTo(LastEnd, Cur->Alignment)); |
| 333 | |
| 334 | // Splice out. This potentially invalidates Queue. |
| 335 | spliceFromQueue(Queue, Last, Cur); |
| 336 | |
| 337 | // Add Cur to the layout. |
| 338 | Layout.push_back(Elt: *Cur); |
| 339 | Layout.back().Offset = Offset; |
| 340 | LastEnd = Layout.back().getEndOffset(); |
| 341 | |
| 342 | // Always return true so that we can be tail-called. |
| 343 | return true; |
| 344 | }; |
| 345 | |
| 346 | // Helper function to try to find a field in the given queue that'll |
| 347 | // fit starting at StartOffset but before EndOffset (if present). |
| 348 | // Note that this never fails if EndOffset is not provided. |
| 349 | auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue, uint64_t StartOffset, |
| 350 | std::optional<uint64_t> EndOffset) -> bool { |
| 351 | assert(Queue->Head); |
| 352 | assert(StartOffset == alignTo(LastEnd, Queue->Alignment)); |
| 353 | assert(!EndOffset || StartOffset < *EndOffset); |
| 354 | |
| 355 | // Figure out the maximum size that a field can be, and ignore this |
| 356 | // queue if there's nothing in it that small. |
| 357 | auto MaxViableSize = |
| 358 | (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0); |
| 359 | if (Queue->MinSize > MaxViableSize) |
| 360 | return false; |
| 361 | |
| 362 | // Find the matching field. Note that this should always find |
| 363 | // something because of the MinSize check above. |
| 364 | for (Field *Cur = Queue->Head, *Last = nullptr; true; |
| 365 | Last = Cur, Cur = Queue->getNext(Cur)) { |
| 366 | assert(Cur && "didn't find a match in queue despite its MinSize" ); |
| 367 | if (Cur->Size <= MaxViableSize) |
| 368 | return addToLayout(Queue, Last, Cur, StartOffset); |
| 369 | } |
| 370 | |
| 371 | llvm_unreachable("didn't find a match in queue despite its MinSize" ); |
| 372 | }; |
| 373 | |
| 374 | // Helper function to find the "best" flexible-offset field according |
| 375 | // to the criteria described above. |
| 376 | auto tryAddBestField = [&](std::optional<uint64_t> BeforeOffset) -> bool { |
| 377 | assert(!BeforeOffset || LastEnd < *BeforeOffset); |
| 378 | auto QueueB = FlexibleFieldsByAlignment.begin(); |
| 379 | auto QueueE = FlexibleFieldsByAlignment.end(); |
| 380 | |
| 381 | // Start by looking for the most-aligned queue that doesn't need any |
| 382 | // leading padding after LastEnd. |
| 383 | auto FirstQueueToSearch = QueueB; |
| 384 | for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) { |
| 385 | if (isAligned(Lhs: FirstQueueToSearch->Alignment, SizeInBytes: LastEnd)) |
| 386 | break; |
| 387 | } |
| 388 | |
| 389 | uint64_t Offset = LastEnd; |
| 390 | while (true) { |
| 391 | // Invariant: all of the queues in [FirstQueueToSearch, QueueE) |
| 392 | // require the same initial padding offset. |
| 393 | |
| 394 | // Search those queues in descending order of alignment for a |
| 395 | // satisfactory field. |
| 396 | for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) { |
| 397 | if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset)) |
| 398 | return true; |
| 399 | } |
| 400 | |
| 401 | // Okay, we don't need to scan those again. |
| 402 | QueueE = FirstQueueToSearch; |
| 403 | |
| 404 | // If we started from the first queue, we're done. |
| 405 | if (FirstQueueToSearch == QueueB) |
| 406 | return false; |
| 407 | |
| 408 | // Otherwise, scan backwards to find the most-aligned queue that |
| 409 | // still has minimal leading padding after LastEnd. If that |
| 410 | // minimal padding is already at or past the end point, we're done. |
| 411 | --FirstQueueToSearch; |
| 412 | Offset = alignTo(Size: LastEnd, A: FirstQueueToSearch->Alignment); |
| 413 | if (BeforeOffset && Offset >= *BeforeOffset) |
| 414 | return false; |
| 415 | while (FirstQueueToSearch != QueueB && |
| 416 | Offset == alignTo(Size: LastEnd, A: FirstQueueToSearch[-1].Alignment)) |
| 417 | --FirstQueueToSearch; |
| 418 | } |
| 419 | }; |
| 420 | |
| 421 | // Phase 1: fill the gaps between fixed-offset fields with the best |
| 422 | // flexible-offset field that fits. |
| 423 | for (auto I = Fields.begin(); I != FirstFlexible; ++I) { |
| 424 | assert(LastEnd <= I->Offset); |
| 425 | while (LastEnd != I->Offset) { |
| 426 | if (!tryAddBestField(I->Offset)) |
| 427 | break; |
| 428 | } |
| 429 | Layout.push_back(Elt: *I); |
| 430 | LastEnd = I->getEndOffset(); |
| 431 | } |
| 432 | |
| 433 | #ifndef NDEBUG |
| 434 | checkQueues(); |
| 435 | #endif |
| 436 | |
| 437 | // Phase 2: repeatedly add the best flexible-offset field until |
| 438 | // they're all gone. |
| 439 | while (!FlexibleFieldsByAlignment.empty()) { |
| 440 | bool Success = tryAddBestField(std::nullopt); |
| 441 | assert(Success && "didn't find a field with no fixed limit?" ); |
| 442 | (void) Success; |
| 443 | } |
| 444 | |
| 445 | // Copy the layout back into place. |
| 446 | assert(Layout.size() == Fields.size()); |
| 447 | memcpy(dest: Fields.data(), src: Layout.data(), |
| 448 | n: Fields.size() * sizeof(OptimizedStructLayoutField)); |
| 449 | |
| 450 | #ifndef NDEBUG |
| 451 | // Make a final check that the layout is valid. |
| 452 | checkValidLayout(Fields, LastEnd, MaxAlign); |
| 453 | #endif |
| 454 | |
| 455 | return std::make_pair(x&: LastEnd, y&: MaxAlign); |
| 456 | } |
| 457 | |