1 | //===- TrieRawHashMap.cpp -------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/ADT/TrieRawHashMap.h" |
10 | #include "llvm/ADT/LazyAtomicPointer.h" |
11 | #include "llvm/ADT/StringExtras.h" |
12 | #include "llvm/ADT/TrieHashIndexGenerator.h" |
13 | #include "llvm/Support/Allocator.h" |
14 | #include "llvm/Support/Casting.h" |
15 | #include "llvm/Support/Debug.h" |
16 | #include "llvm/Support/ThreadSafeAllocator.h" |
17 | #include "llvm/Support/TrailingObjects.h" |
18 | #include "llvm/Support/raw_ostream.h" |
19 | #include <memory> |
20 | |
21 | using namespace llvm; |
22 | |
23 | namespace { |
24 | struct TrieNode { |
25 | const bool IsSubtrie = false; |
26 | |
27 | TrieNode(bool IsSubtrie) : IsSubtrie(IsSubtrie) {} |
28 | |
29 | static void *operator new(size_t Size) { return ::operator new(Size); } |
30 | void operator delete(void *Ptr) { ::operator delete(Ptr); } |
31 | }; |
32 | |
33 | struct TrieContent final : public TrieNode { |
34 | const uint8_t ContentOffset; |
35 | const uint8_t HashSize; |
36 | const uint8_t HashOffset; |
37 | |
38 | void *getValuePointer() const { |
39 | auto *Content = reinterpret_cast<const uint8_t *>(this) + ContentOffset; |
40 | return const_cast<uint8_t *>(Content); |
41 | } |
42 | |
43 | ArrayRef<uint8_t> getHash() const { |
44 | auto *Begin = reinterpret_cast<const uint8_t *>(this) + HashOffset; |
45 | return ArrayRef(Begin, Begin + HashSize); |
46 | } |
47 | |
48 | TrieContent(size_t ContentOffset, size_t HashSize, size_t HashOffset) |
49 | : TrieNode(/*IsSubtrie=*/false), ContentOffset(ContentOffset), |
50 | HashSize(HashSize), HashOffset(HashOffset) {} |
51 | |
52 | static bool classof(const TrieNode *TN) { return !TN->IsSubtrie; } |
53 | }; |
54 | |
55 | static_assert(sizeof(TrieContent) == |
56 | ThreadSafeTrieRawHashMapBase::TrieContentBaseSize, |
57 | "Check header assumption!" ); |
58 | |
59 | class TrieSubtrie final |
60 | : public TrieNode, |
61 | private TrailingObjects<TrieSubtrie, LazyAtomicPointer<TrieNode>> { |
62 | public: |
63 | using Slot = LazyAtomicPointer<TrieNode>; |
64 | |
65 | Slot &get(size_t I) { return getTrailingObjects()[I]; } |
66 | TrieNode *load(size_t I) { return get(I).load(); } |
67 | |
68 | unsigned size() const { return Size; } |
69 | |
70 | TrieSubtrie * |
71 | sink(size_t I, TrieContent &Content, size_t NumSubtrieBits, size_t NewI, |
72 | function_ref<TrieSubtrie *(std::unique_ptr<TrieSubtrie>)> Saver); |
73 | |
74 | static std::unique_ptr<TrieSubtrie> create(size_t StartBit, size_t NumBits); |
75 | |
76 | explicit TrieSubtrie(size_t StartBit, size_t NumBits); |
77 | |
78 | static bool classof(const TrieNode *TN) { return TN->IsSubtrie; } |
79 | |
80 | static constexpr size_t sizeToAlloc(unsigned NumBits) { |
81 | assert(NumBits < 20 && "Tries should have fewer than ~1M slots" ); |
82 | unsigned Count = 1u << NumBits; |
83 | return totalSizeToAlloc<LazyAtomicPointer<TrieNode>>(Counts: Count); |
84 | } |
85 | |
86 | private: |
87 | // FIXME: Use a bitset to speed up access: |
88 | // |
89 | // std::array<std::atomic<uint64_t>, NumSlots/64> IsSet; |
90 | // |
91 | // This will avoid needing to visit sparsely filled slots in |
92 | // \a ThreadSafeTrieRawHashMapBase::destroyImpl() when there's a non-trivial |
93 | // destructor. |
94 | // |
95 | // It would also greatly speed up iteration, if we add that some day, and |
96 | // allow get() to return one level sooner. |
97 | // |
98 | // This would be the algorithm for updating IsSet (after updating Slots): |
99 | // |
100 | // std::atomic<uint64_t> &Bits = IsSet[I.High]; |
101 | // const uint64_t NewBit = 1ULL << I.Low; |
102 | // uint64_t Old = 0; |
103 | // while (!Bits.compare_exchange_weak(Old, Old | NewBit)) |
104 | // ; |
105 | |
106 | // For debugging. |
107 | unsigned StartBit = 0; |
108 | unsigned NumBits = 0; |
109 | unsigned Size = 0; |
110 | friend class llvm::ThreadSafeTrieRawHashMapBase; |
111 | friend class TrailingObjects; |
112 | |
113 | public: |
114 | /// Linked list for ownership of tries. The pointer is owned by TrieSubtrie. |
115 | std::atomic<TrieSubtrie *> Next; |
116 | }; |
117 | } // end namespace |
118 | |
119 | std::unique_ptr<TrieSubtrie> TrieSubtrie::create(size_t StartBit, |
120 | size_t NumBits) { |
121 | void *Memory = ::operator new(sizeToAlloc(NumBits)); |
122 | TrieSubtrie *S = ::new (Memory) TrieSubtrie(StartBit, NumBits); |
123 | return std::unique_ptr<TrieSubtrie>(S); |
124 | } |
125 | |
126 | TrieSubtrie::TrieSubtrie(size_t StartBit, size_t NumBits) |
127 | : TrieNode(true), StartBit(StartBit), NumBits(NumBits), Size(1u << NumBits), |
128 | Next(nullptr) { |
129 | for (unsigned I = 0; I < Size; ++I) |
130 | new (&get(I)) Slot(nullptr); |
131 | |
132 | static_assert( |
133 | std::is_trivially_destructible<LazyAtomicPointer<TrieNode>>::value, |
134 | "Expected no work in destructor for TrieNode" ); |
135 | } |
136 | |
137 | // Sink the nodes down sub-trie when the object being inserted collides with |
138 | // the index of existing object in the trie. In this case, a new sub-trie needs |
139 | // to be allocated to hold existing object. |
140 | TrieSubtrie *TrieSubtrie::sink( |
141 | size_t I, TrieContent &Content, size_t NumSubtrieBits, size_t NewI, |
142 | function_ref<TrieSubtrie *(std::unique_ptr<TrieSubtrie>)> Saver) { |
143 | // Create a new sub-trie that points to the existing object with the new |
144 | // index for the next level. |
145 | assert(NumSubtrieBits > 0); |
146 | std::unique_ptr<TrieSubtrie> S = create(StartBit: StartBit + NumBits, NumBits: NumSubtrieBits); |
147 | |
148 | assert(NewI < Size); |
149 | S->get(I: NewI).store(Value: &Content); |
150 | |
151 | // Using compare_exchange to atomically add back the new sub-trie to the trie |
152 | // in the place of the exsiting object. |
153 | TrieNode *ExistingNode = &Content; |
154 | assert(I < Size); |
155 | if (get(I).compare_exchange_strong(ExistingValue&: ExistingNode, NewValue: S.get())) |
156 | return Saver(std::move(S)); |
157 | |
158 | // Another thread created a subtrie already. Return it and let "S" be |
159 | // destructed. |
160 | return cast<TrieSubtrie>(Val: ExistingNode); |
161 | } |
162 | |
163 | class ThreadSafeTrieRawHashMapBase::ImplType final |
164 | : private TrailingObjects<ThreadSafeTrieRawHashMapBase::ImplType, |
165 | TrieSubtrie> { |
166 | public: |
167 | static std::unique_ptr<ImplType> create(size_t StartBit, size_t NumBits) { |
168 | size_t Size = sizeof(ImplType) + TrieSubtrie::sizeToAlloc(NumBits); |
169 | void *Memory = ::operator new(Size); |
170 | ImplType *Impl = ::new (Memory) ImplType(StartBit, NumBits); |
171 | return std::unique_ptr<ImplType>(Impl); |
172 | } |
173 | |
174 | // Save the Subtrie into the ownship list of the trie structure in a |
175 | // thread-safe way. The ownership transfer is done by compare_exchange the |
176 | // pointer value inside the unique_ptr. |
177 | TrieSubtrie *save(std::unique_ptr<TrieSubtrie> S) { |
178 | assert(!S->Next && "Expected S to a freshly-constructed leaf" ); |
179 | |
180 | TrieSubtrie *CurrentHead = nullptr; |
181 | // Add ownership of "S" to front of the list, so that Root -> S -> |
182 | // Root.Next. This works by repeatedly setting S->Next to a candidate value |
183 | // of Root.Next (initially nullptr), then setting Root.Next to S once the |
184 | // candidate matches reality. |
185 | while (!getRoot()->Next.compare_exchange_weak(p1&: CurrentHead, p2: S.get())) |
186 | S->Next.exchange(p: CurrentHead); |
187 | |
188 | // Ownership transferred to subtrie successfully. Release the unique_ptr. |
189 | return S.release(); |
190 | } |
191 | |
192 | // Get the root which is the trailing object. |
193 | TrieSubtrie *getRoot() { return getTrailingObjects(); } |
194 | |
195 | static void *operator new(size_t Size) { return ::operator new(Size); } |
196 | void operator delete(void *Ptr) { ::operator delete(Ptr); } |
197 | |
198 | /// FIXME: This should take a function that allocates and constructs the |
199 | /// content lazily (taking the hash as a separate parameter), in case of |
200 | /// collision. |
201 | ThreadSafeAllocator<BumpPtrAllocator> ContentAlloc; |
202 | |
203 | private: |
204 | friend class TrailingObjects; |
205 | |
206 | ImplType(size_t StartBit, size_t NumBits) { |
207 | ::new (getRoot()) TrieSubtrie(StartBit, NumBits); |
208 | } |
209 | }; |
210 | |
211 | ThreadSafeTrieRawHashMapBase::ImplType & |
212 | ThreadSafeTrieRawHashMapBase::getOrCreateImpl() { |
213 | if (ImplType *Impl = ImplPtr.load()) |
214 | return *Impl; |
215 | |
216 | // Create a new ImplType and store it if another thread doesn't do so first. |
217 | // If another thread wins this one is destroyed locally. |
218 | std::unique_ptr<ImplType> Impl = ImplType::create(StartBit: 0, NumBits: NumRootBits); |
219 | ImplType *ExistingImpl = nullptr; |
220 | |
221 | // If the ownership transferred succesfully, release unique_ptr and return |
222 | // the pointer to the new ImplType. |
223 | if (ImplPtr.compare_exchange_strong(p1&: ExistingImpl, p2: Impl.get())) |
224 | return *Impl.release(); |
225 | |
226 | // Already created, return the existing ImplType. |
227 | return *ExistingImpl; |
228 | } |
229 | |
230 | ThreadSafeTrieRawHashMapBase::PointerBase |
231 | ThreadSafeTrieRawHashMapBase::find(ArrayRef<uint8_t> Hash) const { |
232 | assert(!Hash.empty() && "Uninitialized hash" ); |
233 | |
234 | ImplType *Impl = ImplPtr.load(); |
235 | if (!Impl) |
236 | return PointerBase(); |
237 | |
238 | TrieSubtrie *S = Impl->getRoot(); |
239 | TrieHashIndexGenerator IndexGen{.NumRootBits: NumRootBits, .NumSubtrieBits: NumSubtrieBits, .Bytes: Hash}; |
240 | size_t Index = IndexGen.next(); |
241 | while (Index != IndexGen.end()) { |
242 | // Try to set the content. |
243 | TrieNode *Existing = S->get(I: Index); |
244 | if (!Existing) |
245 | return PointerBase(S, Index, *IndexGen.StartBit); |
246 | |
247 | // Check for an exact match. |
248 | if (auto *ExistingContent = dyn_cast<TrieContent>(Val: Existing)) |
249 | return ExistingContent->getHash() == Hash |
250 | ? PointerBase(ExistingContent->getValuePointer()) |
251 | : PointerBase(S, Index, *IndexGen.StartBit); |
252 | |
253 | Index = IndexGen.next(); |
254 | S = cast<TrieSubtrie>(Val: Existing); |
255 | } |
256 | llvm_unreachable("failed to locate the node after consuming all hash bytes" ); |
257 | } |
258 | |
259 | ThreadSafeTrieRawHashMapBase::PointerBase ThreadSafeTrieRawHashMapBase::insert( |
260 | PointerBase Hint, ArrayRef<uint8_t> Hash, |
261 | function_ref<const uint8_t *(void *Mem, ArrayRef<uint8_t> Hash)> |
262 | Constructor) { |
263 | assert(!Hash.empty() && "Uninitialized hash" ); |
264 | |
265 | ImplType &Impl = getOrCreateImpl(); |
266 | TrieSubtrie *S = Impl.getRoot(); |
267 | TrieHashIndexGenerator IndexGen{.NumRootBits: NumRootBits, .NumSubtrieBits: NumSubtrieBits, .Bytes: Hash}; |
268 | size_t Index; |
269 | if (Hint.isHint()) { |
270 | S = static_cast<TrieSubtrie *>(Hint.P); |
271 | Index = IndexGen.hint(Index: Hint.I, Bit: Hint.B); |
272 | } else { |
273 | Index = IndexGen.next(); |
274 | } |
275 | |
276 | while (Index != IndexGen.end()) { |
277 | // Load the node from the slot, allocating and calling the constructor if |
278 | // the slot is empty. |
279 | bool Generated = false; |
280 | TrieNode &Existing = S->get(I: Index).loadOrGenerate(Generator: [&]() { |
281 | Generated = true; |
282 | |
283 | // Construct the value itself at the tail. |
284 | uint8_t *Memory = reinterpret_cast<uint8_t *>( |
285 | Impl.ContentAlloc.Allocate(Size: ContentAllocSize, Align: ContentAllocAlign)); |
286 | const uint8_t *HashStorage = Constructor(Memory + ContentOffset, Hash); |
287 | |
288 | // Construct the TrieContent header, passing in the offset to the hash. |
289 | TrieContent *Content = ::new (Memory) |
290 | TrieContent(ContentOffset, Hash.size(), HashStorage - Memory); |
291 | assert(Hash == Content->getHash() && "Hash not properly initialized" ); |
292 | return Content; |
293 | }); |
294 | // If we just generated it, return it! |
295 | if (Generated) |
296 | return PointerBase(cast<TrieContent>(Val&: Existing).getValuePointer()); |
297 | |
298 | if (auto *ST = dyn_cast<TrieSubtrie>(Val: &Existing)) { |
299 | S = ST; |
300 | Index = IndexGen.next(); |
301 | continue; |
302 | } |
303 | |
304 | // Return the existing content if it's an exact match! |
305 | auto &ExistingContent = cast<TrieContent>(Val&: Existing); |
306 | if (ExistingContent.getHash() == Hash) |
307 | return PointerBase(ExistingContent.getValuePointer()); |
308 | |
309 | // Sink the existing content as long as the indexes match. |
310 | size_t NextIndex = IndexGen.next(); |
311 | while (NextIndex != IndexGen.end()) { |
312 | size_t NewIndexForExistingContent = |
313 | IndexGen.getCollidingBits(CollidingBits: ExistingContent.getHash()); |
314 | S = S->sink(I: Index, Content&: ExistingContent, NumSubtrieBits: IndexGen.getNumBits(), |
315 | NewI: NewIndexForExistingContent, |
316 | Saver: [&Impl](std::unique_ptr<TrieSubtrie> S) { |
317 | return Impl.save(S: std::move(S)); |
318 | }); |
319 | Index = NextIndex; |
320 | |
321 | // Found the difference. |
322 | if (NextIndex != NewIndexForExistingContent) |
323 | break; |
324 | |
325 | NextIndex = IndexGen.next(); |
326 | } |
327 | } |
328 | llvm_unreachable("failed to insert the node after consuming all hash bytes" ); |
329 | } |
330 | |
331 | ThreadSafeTrieRawHashMapBase::ThreadSafeTrieRawHashMapBase( |
332 | size_t ContentAllocSize, size_t ContentAllocAlign, size_t ContentOffset, |
333 | std::optional<size_t> NumRootBits, std::optional<size_t> NumSubtrieBits) |
334 | : ContentAllocSize(ContentAllocSize), ContentAllocAlign(ContentAllocAlign), |
335 | ContentOffset(ContentOffset), |
336 | NumRootBits(NumRootBits.value_or(u: DefaultNumRootBits)), |
337 | NumSubtrieBits(NumSubtrieBits.value_or(u: DefaultNumSubtrieBits)), |
338 | ImplPtr(nullptr) { |
339 | // Assertion checks for reasonable configuration. The settings below are not |
340 | // hard limits on most platforms, but a reasonable configuration should fall |
341 | // within those limits. |
342 | assert((!NumRootBits || *NumRootBits < 20) && |
343 | "Root should have fewer than ~1M slots" ); |
344 | assert((!NumSubtrieBits || *NumSubtrieBits < 10) && |
345 | "Subtries should have fewer than ~1K slots" ); |
346 | } |
347 | |
348 | ThreadSafeTrieRawHashMapBase::ThreadSafeTrieRawHashMapBase( |
349 | ThreadSafeTrieRawHashMapBase &&RHS) |
350 | : ContentAllocSize(RHS.ContentAllocSize), |
351 | ContentAllocAlign(RHS.ContentAllocAlign), |
352 | ContentOffset(RHS.ContentOffset), NumRootBits(RHS.NumRootBits), |
353 | NumSubtrieBits(RHS.NumSubtrieBits) { |
354 | // Steal the root from RHS. |
355 | ImplPtr = RHS.ImplPtr.exchange(p: nullptr); |
356 | } |
357 | |
358 | ThreadSafeTrieRawHashMapBase::~ThreadSafeTrieRawHashMapBase() { |
359 | assert(!ImplPtr.load() && "Expected subclass to call destroyImpl()" ); |
360 | } |
361 | |
362 | void ThreadSafeTrieRawHashMapBase::destroyImpl( |
363 | function_ref<void(void *)> Destructor) { |
364 | std::unique_ptr<ImplType> Impl(ImplPtr.exchange(p: nullptr)); |
365 | if (!Impl) |
366 | return; |
367 | |
368 | // Destroy content nodes throughout trie. Avoid destroying any subtries since |
369 | // we need TrieNode::classof() to find the content nodes. |
370 | // |
371 | // FIXME: Once we have bitsets (see FIXME in TrieSubtrie class), use them |
372 | // facilitate sparse iteration here. |
373 | if (Destructor) |
374 | for (TrieSubtrie *Trie = Impl->getRoot(); Trie; Trie = Trie->Next.load()) |
375 | for (unsigned I = 0; I < Trie->size(); ++I) |
376 | if (auto *Content = dyn_cast_or_null<TrieContent>(Val: Trie->load(I))) |
377 | Destructor(Content->getValuePointer()); |
378 | |
379 | // Destroy the subtries. Incidentally, this destroys them in the reverse order |
380 | // of saving. |
381 | TrieSubtrie *Trie = Impl->getRoot()->Next; |
382 | while (Trie) { |
383 | TrieSubtrie *Next = Trie->Next.exchange(p: nullptr); |
384 | delete Trie; |
385 | Trie = Next; |
386 | } |
387 | } |
388 | |
389 | ThreadSafeTrieRawHashMapBase::PointerBase |
390 | ThreadSafeTrieRawHashMapBase::getRoot() const { |
391 | ImplType *Impl = ImplPtr.load(); |
392 | if (!Impl) |
393 | return PointerBase(); |
394 | return PointerBase(Impl->getRoot()); |
395 | } |
396 | |
397 | unsigned ThreadSafeTrieRawHashMapBase::getStartBit( |
398 | ThreadSafeTrieRawHashMapBase::PointerBase P) const { |
399 | assert(!P.isHint() && "Not a valid trie" ); |
400 | if (!P.P) |
401 | return 0; |
402 | if (auto *S = dyn_cast<TrieSubtrie>(Val: (TrieNode *)P.P)) |
403 | return S->StartBit; |
404 | return 0; |
405 | } |
406 | |
407 | unsigned ThreadSafeTrieRawHashMapBase::getNumBits( |
408 | ThreadSafeTrieRawHashMapBase::PointerBase P) const { |
409 | assert(!P.isHint() && "Not a valid trie" ); |
410 | if (!P.P) |
411 | return 0; |
412 | if (auto *S = dyn_cast<TrieSubtrie>(Val: (TrieNode *)P.P)) |
413 | return S->NumBits; |
414 | return 0; |
415 | } |
416 | |
417 | unsigned ThreadSafeTrieRawHashMapBase::getNumSlotUsed( |
418 | ThreadSafeTrieRawHashMapBase::PointerBase P) const { |
419 | assert(!P.isHint() && "Not a valid trie" ); |
420 | if (!P.P) |
421 | return 0; |
422 | auto *S = dyn_cast<TrieSubtrie>(Val: (TrieNode *)P.P); |
423 | if (!S) |
424 | return 0; |
425 | unsigned Num = 0; |
426 | for (unsigned I = 0, E = S->size(); I < E; ++I) |
427 | if (S->load(I)) |
428 | ++Num; |
429 | return Num; |
430 | } |
431 | |
432 | std::string ThreadSafeTrieRawHashMapBase::getTriePrefixAsString( |
433 | ThreadSafeTrieRawHashMapBase::PointerBase P) const { |
434 | assert(!P.isHint() && "Not a valid trie" ); |
435 | if (!P.P) |
436 | return "" ; |
437 | |
438 | auto *S = dyn_cast<TrieSubtrie>(Val: (TrieNode *)P.P); |
439 | if (!S || !S->IsSubtrie) |
440 | return "" ; |
441 | |
442 | // Find a TrieContent node which has hash stored. Depth search following the |
443 | // first used slot until a TrieContent node is found. |
444 | TrieSubtrie *Current = S; |
445 | TrieContent *Node = nullptr; |
446 | while (Current) { |
447 | TrieSubtrie *Next = nullptr; |
448 | // Find first used slot in the trie. |
449 | for (unsigned I = 0, E = Current->size(); I < E; ++I) { |
450 | auto *S = Current->load(I); |
451 | if (!S) |
452 | continue; |
453 | |
454 | if (auto *Content = dyn_cast<TrieContent>(Val: S)) |
455 | Node = Content; |
456 | else if (auto *Sub = dyn_cast<TrieSubtrie>(Val: S)) |
457 | Next = Sub; |
458 | break; |
459 | } |
460 | |
461 | // Found the node. |
462 | if (Node) |
463 | break; |
464 | |
465 | // Continue to the next level if the node is not found. |
466 | Current = Next; |
467 | } |
468 | |
469 | assert(Node && "malformed trie, cannot find TrieContent on leaf node" ); |
470 | // The prefix for the current trie is the first `StartBit` of the content |
471 | // stored underneath this subtrie. |
472 | std::string Str; |
473 | raw_string_ostream SS(Str); |
474 | |
475 | unsigned StartFullBytes = (S->StartBit + 1) / 8 - 1; |
476 | SS << toHex(Input: toStringRef(Input: Node->getHash()).take_front(N: StartFullBytes), |
477 | /*LowerCase=*/true); |
478 | |
479 | // For the part of the prefix that doesn't fill a byte, print raw bit values. |
480 | std::string Bits; |
481 | for (unsigned I = StartFullBytes * 8, E = S->StartBit; I < E; ++I) { |
482 | unsigned Index = I / 8; |
483 | unsigned Offset = 7 - I % 8; |
484 | Bits.push_back(c: '0' + ((Node->getHash()[Index] >> Offset) & 1)); |
485 | } |
486 | |
487 | if (!Bits.empty()) |
488 | SS << "[" << Bits << "]" ; |
489 | |
490 | return SS.str(); |
491 | } |
492 | |
493 | unsigned ThreadSafeTrieRawHashMapBase::getNumTries() const { |
494 | ImplType *Impl = ImplPtr.load(); |
495 | if (!Impl) |
496 | return 0; |
497 | unsigned Num = 0; |
498 | for (TrieSubtrie *Trie = Impl->getRoot(); Trie; Trie = Trie->Next.load()) |
499 | ++Num; |
500 | return Num; |
501 | } |
502 | |
503 | ThreadSafeTrieRawHashMapBase::PointerBase |
504 | ThreadSafeTrieRawHashMapBase::getNextTrie( |
505 | ThreadSafeTrieRawHashMapBase::PointerBase P) const { |
506 | assert(!P.isHint() && "Not a valid trie" ); |
507 | if (!P.P) |
508 | return PointerBase(); |
509 | auto *S = dyn_cast<TrieSubtrie>(Val: (TrieNode *)P.P); |
510 | if (!S) |
511 | return PointerBase(); |
512 | if (auto *E = S->Next.load()) |
513 | return PointerBase(E); |
514 | return PointerBase(); |
515 | } |
516 | |