1 | //===- llvm/Support/Unix/Program.inc ----------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Unix specific portion of the Program class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | //===----------------------------------------------------------------------===// |
14 | //=== WARNING: Implementation here must contain only generic UNIX |
15 | //=== code that is guaranteed to work on *all* UNIX variants. |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "llvm/Support/Program.h" |
19 | |
20 | #include "Unix.h" |
21 | #include "llvm/ADT/StringExtras.h" |
22 | #include "llvm/Config/config.h" |
23 | #include "llvm/Support/AutoConvert.h" |
24 | #include "llvm/Support/Compiler.h" |
25 | #include "llvm/Support/Errc.h" |
26 | #include "llvm/Support/FileSystem.h" |
27 | #include "llvm/Support/Path.h" |
28 | #include "llvm/Support/StringSaver.h" |
29 | #include "llvm/Support/SystemZ/zOSSupport.h" |
30 | #include "llvm/Support/raw_ostream.h" |
31 | #include <sys/stat.h> |
32 | #include <sys/resource.h> |
33 | #include <signal.h> |
34 | #include <fcntl.h> |
35 | #if HAVE_UNISTD_H |
36 | #include <unistd.h> |
37 | #endif |
38 | #ifdef HAVE_POSIX_SPAWN |
39 | #include <spawn.h> |
40 | |
41 | #if defined(__APPLE__) |
42 | #include <TargetConditionals.h> |
43 | #endif |
44 | |
45 | #if defined(__APPLE__) && !(defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE) |
46 | #define USE_NSGETENVIRON 1 |
47 | #else |
48 | #define USE_NSGETENVIRON 0 |
49 | #endif |
50 | |
51 | #if !USE_NSGETENVIRON |
52 | extern char **environ; |
53 | #else |
54 | #include <crt_externs.h> // _NSGetEnviron |
55 | #endif |
56 | #endif |
57 | |
58 | using namespace llvm; |
59 | using namespace sys; |
60 | |
61 | ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {} |
62 | |
63 | ErrorOr<std::string> sys::findProgramByName(StringRef Name, |
64 | ArrayRef<StringRef> Paths) { |
65 | assert(!Name.empty() && "Must have a name!" ); |
66 | // Use the given path verbatim if it contains any slashes; this matches |
67 | // the behavior of sh(1) and friends. |
68 | if (Name.contains(C: '/')) |
69 | return std::string(Name); |
70 | |
71 | SmallVector<StringRef, 16> EnvironmentPaths; |
72 | if (Paths.empty()) |
73 | if (const char *PathEnv = std::getenv(name: "PATH" )) { |
74 | SplitString(Source: PathEnv, OutFragments&: EnvironmentPaths, Delimiters: ":" ); |
75 | Paths = EnvironmentPaths; |
76 | } |
77 | |
78 | for (auto Path : Paths) { |
79 | if (Path.empty()) |
80 | continue; |
81 | |
82 | // Check to see if this first directory contains the executable... |
83 | SmallString<128> FilePath(Path); |
84 | sys::path::append(path&: FilePath, a: Name); |
85 | if (sys::fs::can_execute(Path: FilePath.c_str())) |
86 | return std::string(FilePath); // Found the executable! |
87 | } |
88 | return errc::no_such_file_or_directory; |
89 | } |
90 | |
91 | static bool RedirectIO(std::optional<StringRef> Path, int FD, std::string *ErrMsg) { |
92 | if (!Path) // Noop |
93 | return false; |
94 | std::string File; |
95 | if (Path->empty()) |
96 | // Redirect empty paths to /dev/null |
97 | File = "/dev/null" ; |
98 | else |
99 | File = std::string(*Path); |
100 | |
101 | // Open the file |
102 | int InFD = open(file: File.c_str(), oflag: FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666); |
103 | if (InFD == -1) { |
104 | MakeErrMsg(ErrMsg, prefix: "Cannot open file '" + File + "' for " + |
105 | (FD == 0 ? "input" : "output" )); |
106 | return true; |
107 | } |
108 | |
109 | // Install it as the requested FD |
110 | if (dup2(fd: InFD, fd2: FD) == -1) { |
111 | MakeErrMsg(ErrMsg, prefix: "Cannot dup2" ); |
112 | close(fd: InFD); |
113 | return true; |
114 | } |
115 | close(fd: InFD); // Close the original FD |
116 | return false; |
117 | } |
118 | |
119 | #ifdef HAVE_POSIX_SPAWN |
120 | static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg, |
121 | posix_spawn_file_actions_t *FileActions) { |
122 | if (!Path) // Noop |
123 | return false; |
124 | const char *File; |
125 | if (Path->empty()) |
126 | // Redirect empty paths to /dev/null |
127 | File = "/dev/null" ; |
128 | else |
129 | File = Path->c_str(); |
130 | |
131 | if (int Err = posix_spawn_file_actions_addopen( |
132 | file_actions: FileActions, fd: FD, path: File, oflag: FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, mode: 0666)) |
133 | return MakeErrMsg(ErrMsg, prefix: "Cannot posix_spawn_file_actions_addopen" , errnum: Err); |
134 | return false; |
135 | } |
136 | #endif |
137 | |
138 | static void TimeOutHandler(int Sig) {} |
139 | |
140 | static void SetMemoryLimits(unsigned size) { |
141 | struct rlimit r; |
142 | __typeof__(r.rlim_cur) limit = (__typeof__(r.rlim_cur))(size)*1048576; |
143 | |
144 | // Heap size |
145 | getrlimit(RLIMIT_DATA, rlimits: &r); |
146 | r.rlim_cur = limit; |
147 | setrlimit(RLIMIT_DATA, rlimits: &r); |
148 | #ifdef RLIMIT_RSS |
149 | // Resident set size. |
150 | getrlimit(RLIMIT_RSS, rlimits: &r); |
151 | r.rlim_cur = limit; |
152 | setrlimit(RLIMIT_RSS, rlimits: &r); |
153 | #endif |
154 | } |
155 | |
156 | static std::vector<const char *> |
157 | toNullTerminatedCStringArray(ArrayRef<StringRef> Strings, StringSaver &Saver) { |
158 | std::vector<const char *> Result; |
159 | for (StringRef S : Strings) |
160 | Result.push_back(x: Saver.save(S).data()); |
161 | Result.push_back(x: nullptr); |
162 | return Result; |
163 | } |
164 | |
165 | static bool Execute(ProcessInfo &PI, StringRef Program, |
166 | ArrayRef<StringRef> Args, |
167 | std::optional<ArrayRef<StringRef>> Env, |
168 | ArrayRef<std::optional<StringRef>> Redirects, |
169 | unsigned MemoryLimit, std::string *ErrMsg, |
170 | BitVector *AffinityMask, bool DetachProcess) { |
171 | assert(!AffinityMask && "Starting a process with an affinity mask is " |
172 | "currently not supported on Unix!" ); |
173 | |
174 | BumpPtrAllocator Allocator; |
175 | StringSaver Saver(Allocator); |
176 | std::vector<const char *> ArgVector, EnvVector; |
177 | const char **Argv = nullptr; |
178 | const char **Envp = nullptr; |
179 | ArgVector = toNullTerminatedCStringArray(Strings: Args, Saver); |
180 | Argv = ArgVector.data(); |
181 | if (Env) { |
182 | EnvVector = toNullTerminatedCStringArray(Strings: *Env, Saver); |
183 | Envp = EnvVector.data(); |
184 | } |
185 | |
186 | // If this OS has posix_spawn and there is no memory limit being implied, use |
187 | // posix_spawn. It is more efficient than fork/exec. |
188 | #ifdef HAVE_POSIX_SPAWN |
189 | // Cannot use posix_spawn if you would like to detach the process |
190 | if (MemoryLimit == 0 && !DetachProcess) { |
191 | posix_spawn_file_actions_t FileActionsStore; |
192 | posix_spawn_file_actions_t *FileActions = nullptr; |
193 | |
194 | // If we call posix_spawn_file_actions_addopen we have to make sure the |
195 | // c strings we pass to it stay alive until the call to posix_spawn, |
196 | // so we copy any StringRefs into this variable. |
197 | std::string RedirectsStorage[3]; |
198 | |
199 | if (!Redirects.empty()) { |
200 | assert(Redirects.size() == 3); |
201 | std::string *RedirectsStr[3] = {nullptr, nullptr, nullptr}; |
202 | for (int I = 0; I < 3; ++I) { |
203 | if (Redirects[I]) { |
204 | RedirectsStorage[I] = std::string(*Redirects[I]); |
205 | RedirectsStr[I] = &RedirectsStorage[I]; |
206 | } |
207 | } |
208 | |
209 | FileActions = &FileActionsStore; |
210 | posix_spawn_file_actions_init(file_actions: FileActions); |
211 | |
212 | // Redirect stdin/stdout. |
213 | if (RedirectIO_PS(Path: RedirectsStr[0], FD: 0, ErrMsg, FileActions) || |
214 | RedirectIO_PS(Path: RedirectsStr[1], FD: 1, ErrMsg, FileActions)) |
215 | return false; |
216 | if (!Redirects[1] || !Redirects[2] || *Redirects[1] != *Redirects[2]) { |
217 | // Just redirect stderr |
218 | if (RedirectIO_PS(Path: RedirectsStr[2], FD: 2, ErrMsg, FileActions)) |
219 | return false; |
220 | } else { |
221 | // If stdout and stderr should go to the same place, redirect stderr |
222 | // to the FD already open for stdout. |
223 | if (int Err = posix_spawn_file_actions_adddup2(file_actions: FileActions, fd: 1, newfd: 2)) |
224 | return !MakeErrMsg(ErrMsg, prefix: "Can't redirect stderr to stdout" , errnum: Err); |
225 | } |
226 | } |
227 | |
228 | if (!Envp) |
229 | #if !USE_NSGETENVIRON |
230 | Envp = const_cast<const char **>(environ); |
231 | #else |
232 | // environ is missing in dylibs. |
233 | Envp = const_cast<const char **>(*_NSGetEnviron()); |
234 | #endif |
235 | |
236 | constexpr int maxRetries = 8; |
237 | int retries = 0; |
238 | pid_t PID; |
239 | int Err; |
240 | do { |
241 | PID = 0; // Make Valgrind happy. |
242 | Err = posix_spawn(pid: &PID, path: Program.str().c_str(), file_actions: FileActions, |
243 | /*attrp*/ attrp: nullptr, argv: const_cast<char **>(Argv), |
244 | envp: const_cast<char **>(Envp)); |
245 | } while (Err == EINTR && ++retries < maxRetries); |
246 | |
247 | if (FileActions) |
248 | posix_spawn_file_actions_destroy(file_actions: FileActions); |
249 | |
250 | if (Err) |
251 | return !MakeErrMsg(ErrMsg, prefix: "posix_spawn failed" , errnum: Err); |
252 | |
253 | PI.Pid = PID; |
254 | PI.Process = PID; |
255 | |
256 | return true; |
257 | } |
258 | #endif // HAVE_POSIX_SPAWN |
259 | |
260 | // Create a child process. |
261 | int child = fork(); |
262 | switch (child) { |
263 | // An error occurred: Return to the caller. |
264 | case -1: |
265 | MakeErrMsg(ErrMsg, prefix: "Couldn't fork" ); |
266 | return false; |
267 | |
268 | // Child process: Execute the program. |
269 | case 0: { |
270 | // Redirect file descriptors... |
271 | if (!Redirects.empty()) { |
272 | // Redirect stdin |
273 | if (RedirectIO(Path: Redirects[0], FD: 0, ErrMsg)) { |
274 | return false; |
275 | } |
276 | // Redirect stdout |
277 | if (RedirectIO(Path: Redirects[1], FD: 1, ErrMsg)) { |
278 | return false; |
279 | } |
280 | if (Redirects[1] && Redirects[2] && *Redirects[1] == *Redirects[2]) { |
281 | // If stdout and stderr should go to the same place, redirect stderr |
282 | // to the FD already open for stdout. |
283 | if (-1 == dup2(fd: 1, fd2: 2)) { |
284 | MakeErrMsg(ErrMsg, prefix: "Can't redirect stderr to stdout" ); |
285 | return false; |
286 | } |
287 | } else { |
288 | // Just redirect stderr |
289 | if (RedirectIO(Path: Redirects[2], FD: 2, ErrMsg)) { |
290 | return false; |
291 | } |
292 | } |
293 | } |
294 | |
295 | if (DetachProcess) { |
296 | // Detach from controlling terminal |
297 | if (::setsid() == -1) { |
298 | MakeErrMsg(ErrMsg, prefix: "Could not detach process, ::setsid failed" ); |
299 | return false; |
300 | } |
301 | } |
302 | |
303 | // Set memory limits |
304 | if (MemoryLimit != 0) { |
305 | SetMemoryLimits(MemoryLimit); |
306 | } |
307 | |
308 | // Execute! |
309 | std::string PathStr = std::string(Program); |
310 | if (Envp != nullptr) |
311 | execve(path: PathStr.c_str(), argv: const_cast<char **>(Argv), |
312 | envp: const_cast<char **>(Envp)); |
313 | else |
314 | execv(path: PathStr.c_str(), argv: const_cast<char **>(Argv)); |
315 | // If the execve() failed, we should exit. Follow Unix protocol and |
316 | // return 127 if the executable was not found, and 126 otherwise. |
317 | // Use _exit rather than exit so that atexit functions and static |
318 | // object destructors cloned from the parent process aren't |
319 | // redundantly run, and so that any data buffered in stdio buffers |
320 | // cloned from the parent aren't redundantly written out. |
321 | _exit(errno == ENOENT ? 127 : 126); |
322 | } |
323 | |
324 | // Parent process: Break out of the switch to do our processing. |
325 | default: |
326 | break; |
327 | } |
328 | |
329 | PI.Pid = child; |
330 | PI.Process = child; |
331 | |
332 | return true; |
333 | } |
334 | |
335 | namespace llvm { |
336 | namespace sys { |
337 | |
338 | #if defined(_AIX) |
339 | static pid_t(wait4)(pid_t pid, int *status, int options, struct rusage *usage); |
340 | #elif !defined(__Fuchsia__) |
341 | using ::wait4; |
342 | #endif |
343 | |
344 | } // namespace sys |
345 | } // namespace llvm |
346 | |
347 | #ifdef _AIX |
348 | #ifndef _ALL_SOURCE |
349 | extern "C" pid_t(wait4)(pid_t pid, int *status, int options, |
350 | struct rusage *usage); |
351 | #endif |
352 | pid_t(llvm::sys::wait4)(pid_t pid, int *status, int options, |
353 | struct rusage *usage) { |
354 | assert(pid > 0 && "Only expecting to handle actual PID values!" ); |
355 | assert((options & ~WNOHANG) == 0 && "Expecting WNOHANG at most!" ); |
356 | assert(usage && "Expecting usage collection!" ); |
357 | |
358 | // AIX wait4 does not work well with WNOHANG. |
359 | if (!(options & WNOHANG)) |
360 | return ::wait4(pid, status, options, usage); |
361 | |
362 | // For WNOHANG, we use waitid (which supports WNOWAIT) until the child process |
363 | // has terminated. |
364 | siginfo_t WaitIdInfo; |
365 | WaitIdInfo.si_pid = 0; |
366 | int WaitIdRetVal = |
367 | waitid(P_PID, pid, &WaitIdInfo, WNOWAIT | WEXITED | options); |
368 | |
369 | if (WaitIdRetVal == -1 || WaitIdInfo.si_pid == 0) |
370 | return WaitIdRetVal; |
371 | |
372 | assert(WaitIdInfo.si_pid == pid); |
373 | |
374 | // The child has already terminated, so a blocking wait on it is okay in the |
375 | // absence of indiscriminate `wait` calls from the current process (which |
376 | // would cause the call here to fail with ECHILD). |
377 | return ::wait4(pid, status, options & ~WNOHANG, usage); |
378 | } |
379 | #endif |
380 | |
381 | ProcessInfo llvm::sys::Wait(const ProcessInfo &PI, |
382 | std::optional<unsigned> SecondsToWait, |
383 | std::string *ErrMsg, |
384 | std::optional<ProcessStatistics> *ProcStat, |
385 | bool Polling) { |
386 | struct sigaction Act, Old; |
387 | assert(PI.Pid && "invalid pid to wait on, process not started?" ); |
388 | |
389 | int WaitPidOptions = 0; |
390 | pid_t ChildPid = PI.Pid; |
391 | bool WaitUntilTerminates = false; |
392 | if (!SecondsToWait) { |
393 | WaitUntilTerminates = true; |
394 | } else { |
395 | if (*SecondsToWait == 0) |
396 | WaitPidOptions = WNOHANG; |
397 | |
398 | // Install a timeout handler. The handler itself does nothing, but the |
399 | // simple fact of having a handler at all causes the wait below to return |
400 | // with EINTR, unlike if we used SIG_IGN. |
401 | memset(s: &Act, c: 0, n: sizeof(Act)); |
402 | Act.sa_handler = TimeOutHandler; |
403 | sigemptyset(set: &Act.sa_mask); |
404 | sigaction(SIGALRM, act: &Act, oact: &Old); |
405 | // FIXME The alarm signal may be delivered to another thread. |
406 | alarm(seconds: *SecondsToWait); |
407 | } |
408 | |
409 | // Parent process: Wait for the child process to terminate. |
410 | int status = 0; |
411 | ProcessInfo WaitResult; |
412 | #ifndef __Fuchsia__ |
413 | rusage Info; |
414 | if (ProcStat) |
415 | ProcStat->reset(); |
416 | |
417 | do { |
418 | WaitResult.Pid = sys::wait4(pid: ChildPid, stat_loc: &status, options: WaitPidOptions, usage: &Info); |
419 | } while (WaitUntilTerminates && WaitResult.Pid == -1 && errno == EINTR); |
420 | #endif |
421 | |
422 | if (WaitResult.Pid != PI.Pid) { |
423 | if (WaitResult.Pid == 0) { |
424 | // Non-blocking wait. |
425 | return WaitResult; |
426 | } else { |
427 | if (SecondsToWait && errno == EINTR && !Polling) { |
428 | // Kill the child. |
429 | kill(pid: PI.Pid, SIGKILL); |
430 | |
431 | // Turn off the alarm and restore the signal handler |
432 | alarm(seconds: 0); |
433 | sigaction(SIGALRM, act: &Old, oact: nullptr); |
434 | |
435 | // Wait for child to die |
436 | // FIXME This could grab some other child process out from another |
437 | // waiting thread and then leave a zombie anyway. |
438 | if (wait(stat_loc: &status) != ChildPid) |
439 | MakeErrMsg(ErrMsg, prefix: "Child timed out but wouldn't die" ); |
440 | else |
441 | MakeErrMsg(ErrMsg, prefix: "Child timed out" , errnum: 0); |
442 | |
443 | WaitResult.ReturnCode = -2; // Timeout detected |
444 | return WaitResult; |
445 | } else if (errno != EINTR) { |
446 | MakeErrMsg(ErrMsg, prefix: "Error waiting for child process" ); |
447 | WaitResult.ReturnCode = -1; |
448 | return WaitResult; |
449 | } |
450 | } |
451 | } |
452 | |
453 | // We exited normally without timeout, so turn off the timer. |
454 | if (SecondsToWait && !WaitUntilTerminates) { |
455 | alarm(seconds: 0); |
456 | sigaction(SIGALRM, act: &Old, oact: nullptr); |
457 | } |
458 | |
459 | #ifndef __Fuchsia__ |
460 | if (ProcStat) { |
461 | std::chrono::microseconds UserT = toDuration(TV: Info.ru_utime); |
462 | std::chrono::microseconds KernelT = toDuration(TV: Info.ru_stime); |
463 | uint64_t PeakMemory = 0; |
464 | #if !defined(__HAIKU__) && !defined(__MVS__) |
465 | PeakMemory = static_cast<uint64_t>(Info.ru_maxrss); |
466 | #endif |
467 | *ProcStat = ProcessStatistics{.TotalTime: UserT + KernelT, .UserTime: UserT, .PeakMemory: PeakMemory}; |
468 | } |
469 | #endif |
470 | |
471 | // Return the proper exit status. Detect error conditions |
472 | // so we can return -1 for them and set ErrMsg informatively. |
473 | int result = 0; |
474 | if (WIFEXITED(status)) { |
475 | result = WEXITSTATUS(status); |
476 | WaitResult.ReturnCode = result; |
477 | |
478 | if (result == 127) { |
479 | if (ErrMsg) |
480 | *ErrMsg = llvm::sys::StrError(ENOENT); |
481 | WaitResult.ReturnCode = -1; |
482 | return WaitResult; |
483 | } |
484 | if (result == 126) { |
485 | if (ErrMsg) |
486 | *ErrMsg = "Program could not be executed" ; |
487 | WaitResult.ReturnCode = -1; |
488 | return WaitResult; |
489 | } |
490 | } else if (WIFSIGNALED(status)) { |
491 | if (ErrMsg) { |
492 | *ErrMsg = strsignal(WTERMSIG(status)); |
493 | #ifdef WCOREDUMP |
494 | if (WCOREDUMP(status)) |
495 | *ErrMsg += " (core dumped)" ; |
496 | #endif |
497 | } |
498 | // Return a special value to indicate that the process received an unhandled |
499 | // signal during execution as opposed to failing to execute. |
500 | WaitResult.ReturnCode = -2; |
501 | } |
502 | return WaitResult; |
503 | } |
504 | |
505 | std::error_code llvm::sys::ChangeStdinMode(fs::OpenFlags Flags) { |
506 | if (!(Flags & fs::OF_Text)) |
507 | return ChangeStdinToBinary(); |
508 | return std::error_code(); |
509 | } |
510 | |
511 | std::error_code llvm::sys::ChangeStdoutMode(fs::OpenFlags Flags) { |
512 | if (!(Flags & fs::OF_Text)) |
513 | return ChangeStdoutToBinary(); |
514 | return std::error_code(); |
515 | } |
516 | |
517 | std::error_code llvm::sys::ChangeStdinToBinary() { |
518 | #ifdef __MVS__ |
519 | return disableAutoConversion(STDIN_FILENO); |
520 | #else |
521 | // Do nothing, as Unix doesn't differentiate between text and binary. |
522 | return std::error_code(); |
523 | #endif |
524 | } |
525 | |
526 | std::error_code llvm::sys::ChangeStdoutToBinary() { |
527 | // Do nothing, as Unix doesn't differentiate between text and binary. |
528 | return std::error_code(); |
529 | } |
530 | |
531 | std::error_code |
532 | llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents, |
533 | WindowsEncodingMethod Encoding /*unused*/) { |
534 | std::error_code EC; |
535 | llvm::raw_fd_ostream OS(FileName, EC, |
536 | llvm::sys::fs::OpenFlags::OF_TextWithCRLF); |
537 | |
538 | if (EC) |
539 | return EC; |
540 | |
541 | OS << Contents; |
542 | |
543 | if (OS.has_error()) |
544 | return make_error_code(E: errc::io_error); |
545 | |
546 | return EC; |
547 | } |
548 | |
549 | bool llvm::sys::commandLineFitsWithinSystemLimits(StringRef Program, |
550 | ArrayRef<StringRef> Args) { |
551 | static long ArgMax = sysconf(_SC_ARG_MAX); |
552 | // POSIX requires that _POSIX_ARG_MAX is 4096, which is the lowest possible |
553 | // value for ARG_MAX on a POSIX compliant system. |
554 | static long ArgMin = _POSIX_ARG_MAX; |
555 | |
556 | // This the same baseline used by xargs. |
557 | long EffectiveArgMax = 128 * 1024; |
558 | |
559 | if (EffectiveArgMax > ArgMax) |
560 | EffectiveArgMax = ArgMax; |
561 | else if (EffectiveArgMax < ArgMin) |
562 | EffectiveArgMax = ArgMin; |
563 | |
564 | // System says no practical limit. |
565 | if (ArgMax == -1) |
566 | return true; |
567 | |
568 | // Conservatively account for space required by environment variables. |
569 | long HalfArgMax = EffectiveArgMax / 2; |
570 | |
571 | size_t ArgLength = Program.size() + 1; |
572 | for (StringRef Arg : Args) { |
573 | // Ensure that we do not exceed the MAX_ARG_STRLEN constant on Linux, which |
574 | // does not have a constant unlike what the man pages would have you |
575 | // believe. Since this limit is pretty high, perform the check |
576 | // unconditionally rather than trying to be aggressive and limiting it to |
577 | // Linux only. |
578 | if (Arg.size() >= (32 * 4096)) |
579 | return false; |
580 | |
581 | ArgLength += Arg.size() + 1; |
582 | if (ArgLength > size_t(HalfArgMax)) { |
583 | return false; |
584 | } |
585 | } |
586 | |
587 | return true; |
588 | } |
589 | |