1 | //===- lib/Support/YAMLTraits.cpp -----------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/Support/YAMLTraits.h" |
10 | #include "llvm/ADT/STLExtras.h" |
11 | #include "llvm/ADT/SmallString.h" |
12 | #include "llvm/ADT/StringExtras.h" |
13 | #include "llvm/ADT/StringRef.h" |
14 | #include "llvm/ADT/Twine.h" |
15 | #include "llvm/Support/Casting.h" |
16 | #include "llvm/Support/Errc.h" |
17 | #include "llvm/Support/ErrorHandling.h" |
18 | #include "llvm/Support/Format.h" |
19 | #include "llvm/Support/LineIterator.h" |
20 | #include "llvm/Support/MemoryBuffer.h" |
21 | #include "llvm/Support/VersionTuple.h" |
22 | #include "llvm/Support/YAMLParser.h" |
23 | #include "llvm/Support/raw_ostream.h" |
24 | #include <cassert> |
25 | #include <cstdint> |
26 | #include <cstring> |
27 | #include <string> |
28 | #include <vector> |
29 | |
30 | using namespace llvm; |
31 | using namespace yaml; |
32 | |
33 | //===----------------------------------------------------------------------===// |
34 | // IO |
35 | //===----------------------------------------------------------------------===// |
36 | |
37 | IO::IO(void *Context) : Ctxt(Context) {} |
38 | |
39 | IO::~IO() = default; |
40 | |
41 | void *IO::getContext() const { |
42 | return Ctxt; |
43 | } |
44 | |
45 | void IO::setContext(void *Context) { |
46 | Ctxt = Context; |
47 | } |
48 | |
49 | void IO::setAllowUnknownKeys(bool Allow) { |
50 | llvm_unreachable("Only supported for Input" ); |
51 | } |
52 | |
53 | //===----------------------------------------------------------------------===// |
54 | // Input |
55 | //===----------------------------------------------------------------------===// |
56 | |
57 | Input::Input(StringRef InputContent, void *Ctxt, |
58 | SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) |
59 | : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { |
60 | if (DiagHandler) |
61 | SrcMgr.setDiagHandler(DH: DiagHandler, Ctx: DiagHandlerCtxt); |
62 | DocIterator = Strm->begin(); |
63 | } |
64 | |
65 | Input::Input(MemoryBufferRef Input, void *Ctxt, |
66 | SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) |
67 | : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { |
68 | if (DiagHandler) |
69 | SrcMgr.setDiagHandler(DH: DiagHandler, Ctx: DiagHandlerCtxt); |
70 | DocIterator = Strm->begin(); |
71 | } |
72 | |
73 | Input::~Input() = default; |
74 | |
75 | std::error_code Input::error() { return EC; } |
76 | |
77 | bool Input::outputting() const { |
78 | return false; |
79 | } |
80 | |
81 | bool Input::setCurrentDocument() { |
82 | if (DocIterator != Strm->end()) { |
83 | Node *N = DocIterator->getRoot(); |
84 | if (!N) { |
85 | EC = make_error_code(E: errc::invalid_argument); |
86 | return false; |
87 | } |
88 | |
89 | if (isa<NullNode>(Val: N)) { |
90 | // Empty files are allowed and ignored |
91 | ++DocIterator; |
92 | return setCurrentDocument(); |
93 | } |
94 | releaseHNodeBuffers(); |
95 | TopNode = createHNodes(node: N); |
96 | CurrentNode = TopNode; |
97 | return true; |
98 | } |
99 | return false; |
100 | } |
101 | |
102 | bool Input::nextDocument() { |
103 | return ++DocIterator != Strm->end(); |
104 | } |
105 | |
106 | const Node *Input::getCurrentNode() const { |
107 | return CurrentNode ? CurrentNode->_node : nullptr; |
108 | } |
109 | |
110 | bool Input::mapTag(StringRef Tag, bool Default) { |
111 | // CurrentNode can be null if setCurrentDocument() was unable to |
112 | // parse the document because it was invalid or empty. |
113 | if (!CurrentNode) |
114 | return false; |
115 | |
116 | std::string foundTag = CurrentNode->_node->getVerbatimTag(); |
117 | if (foundTag.empty()) { |
118 | // If no tag found and 'Tag' is the default, say it was found. |
119 | return Default; |
120 | } |
121 | // Return true iff found tag matches supplied tag. |
122 | return Tag == foundTag; |
123 | } |
124 | |
125 | void Input::beginMapping() { |
126 | if (EC) |
127 | return; |
128 | // CurrentNode can be null if the document is empty. |
129 | MapHNode *MN = dyn_cast_or_null<MapHNode>(Val: CurrentNode); |
130 | if (MN) { |
131 | MN->ValidKeys.clear(); |
132 | } |
133 | } |
134 | |
135 | std::vector<StringRef> Input::keys() { |
136 | MapHNode *MN = dyn_cast<MapHNode>(Val: CurrentNode); |
137 | std::vector<StringRef> Ret; |
138 | if (!MN) { |
139 | setError(hnode: CurrentNode, message: "not a mapping" ); |
140 | return Ret; |
141 | } |
142 | for (auto &P : MN->Mapping) |
143 | Ret.push_back(x: P.first()); |
144 | return Ret; |
145 | } |
146 | |
147 | bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, |
148 | void *&SaveInfo) { |
149 | UseDefault = false; |
150 | if (EC) |
151 | return false; |
152 | |
153 | // CurrentNode is null for empty documents, which is an error in case required |
154 | // nodes are present. |
155 | if (!CurrentNode) { |
156 | if (Required) |
157 | EC = make_error_code(E: errc::invalid_argument); |
158 | else |
159 | UseDefault = true; |
160 | return false; |
161 | } |
162 | |
163 | MapHNode *MN = dyn_cast<MapHNode>(Val: CurrentNode); |
164 | if (!MN) { |
165 | if (Required || !isa<EmptyHNode>(Val: CurrentNode)) |
166 | setError(hnode: CurrentNode, message: "not a mapping" ); |
167 | else |
168 | UseDefault = true; |
169 | return false; |
170 | } |
171 | MN->ValidKeys.push_back(Elt: Key); |
172 | HNode *Value = MN->Mapping[Key].first; |
173 | if (!Value) { |
174 | if (Required) |
175 | setError(hnode: CurrentNode, message: Twine("missing required key '" ) + Key + "'" ); |
176 | else |
177 | UseDefault = true; |
178 | return false; |
179 | } |
180 | SaveInfo = CurrentNode; |
181 | CurrentNode = Value; |
182 | return true; |
183 | } |
184 | |
185 | void Input::postflightKey(void *saveInfo) { |
186 | CurrentNode = reinterpret_cast<HNode *>(saveInfo); |
187 | } |
188 | |
189 | void Input::endMapping() { |
190 | if (EC) |
191 | return; |
192 | // CurrentNode can be null if the document is empty. |
193 | MapHNode *MN = dyn_cast_or_null<MapHNode>(Val: CurrentNode); |
194 | if (!MN) |
195 | return; |
196 | for (const auto &NN : MN->Mapping) { |
197 | if (!is_contained(Range&: MN->ValidKeys, Element: NN.first())) { |
198 | const SMRange &ReportLoc = NN.second.second; |
199 | if (!AllowUnknownKeys) { |
200 | setError(Range: ReportLoc, message: Twine("unknown key '" ) + NN.first() + "'" ); |
201 | break; |
202 | } else |
203 | reportWarning(Range: ReportLoc, message: Twine("unknown key '" ) + NN.first() + "'" ); |
204 | } |
205 | } |
206 | } |
207 | |
208 | void Input::beginFlowMapping() { beginMapping(); } |
209 | |
210 | void Input::endFlowMapping() { endMapping(); } |
211 | |
212 | unsigned Input::beginSequence() { |
213 | if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(Val: CurrentNode)) |
214 | return SQ->Entries.size(); |
215 | if (isa<EmptyHNode>(Val: CurrentNode)) |
216 | return 0; |
217 | // Treat case where there's a scalar "null" value as an empty sequence. |
218 | if (ScalarHNode *SN = dyn_cast<ScalarHNode>(Val: CurrentNode)) { |
219 | if (isNull(S: SN->value())) |
220 | return 0; |
221 | } |
222 | // Any other type of HNode is an error. |
223 | setError(hnode: CurrentNode, message: "not a sequence" ); |
224 | return 0; |
225 | } |
226 | |
227 | void Input::endSequence() { |
228 | } |
229 | |
230 | bool Input::preflightElement(unsigned Index, void *&SaveInfo) { |
231 | if (EC) |
232 | return false; |
233 | if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(Val: CurrentNode)) { |
234 | SaveInfo = CurrentNode; |
235 | CurrentNode = SQ->Entries[Index]; |
236 | return true; |
237 | } |
238 | return false; |
239 | } |
240 | |
241 | void Input::postflightElement(void *SaveInfo) { |
242 | CurrentNode = reinterpret_cast<HNode *>(SaveInfo); |
243 | } |
244 | |
245 | unsigned Input::beginFlowSequence() { return beginSequence(); } |
246 | |
247 | bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { |
248 | if (EC) |
249 | return false; |
250 | if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(Val: CurrentNode)) { |
251 | SaveInfo = CurrentNode; |
252 | CurrentNode = SQ->Entries[index]; |
253 | return true; |
254 | } |
255 | return false; |
256 | } |
257 | |
258 | void Input::postflightFlowElement(void *SaveInfo) { |
259 | CurrentNode = reinterpret_cast<HNode *>(SaveInfo); |
260 | } |
261 | |
262 | void Input::endFlowSequence() { |
263 | } |
264 | |
265 | void Input::beginEnumScalar() { |
266 | ScalarMatchFound = false; |
267 | } |
268 | |
269 | bool Input::matchEnumScalar(const char *Str, bool) { |
270 | if (ScalarMatchFound) |
271 | return false; |
272 | if (ScalarHNode *SN = dyn_cast<ScalarHNode>(Val: CurrentNode)) { |
273 | if (SN->value() == Str) { |
274 | ScalarMatchFound = true; |
275 | return true; |
276 | } |
277 | } |
278 | return false; |
279 | } |
280 | |
281 | bool Input::matchEnumFallback() { |
282 | if (ScalarMatchFound) |
283 | return false; |
284 | ScalarMatchFound = true; |
285 | return true; |
286 | } |
287 | |
288 | void Input::endEnumScalar() { |
289 | if (!ScalarMatchFound) { |
290 | setError(hnode: CurrentNode, message: "unknown enumerated scalar" ); |
291 | } |
292 | } |
293 | |
294 | bool Input::beginBitSetScalar(bool &DoClear) { |
295 | BitValuesUsed.clear(); |
296 | if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(Val: CurrentNode)) { |
297 | BitValuesUsed.resize(N: SQ->Entries.size()); |
298 | } else { |
299 | setError(hnode: CurrentNode, message: "expected sequence of bit values" ); |
300 | } |
301 | DoClear = true; |
302 | return true; |
303 | } |
304 | |
305 | bool Input::bitSetMatch(const char *Str, bool) { |
306 | if (EC) |
307 | return false; |
308 | if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(Val: CurrentNode)) { |
309 | unsigned Index = 0; |
310 | for (auto &N : SQ->Entries) { |
311 | if (ScalarHNode *SN = dyn_cast<ScalarHNode>(Val: N)) { |
312 | if (SN->value() == Str) { |
313 | BitValuesUsed[Index] = true; |
314 | return true; |
315 | } |
316 | } else { |
317 | setError(hnode: CurrentNode, message: "unexpected scalar in sequence of bit values" ); |
318 | } |
319 | ++Index; |
320 | } |
321 | } else { |
322 | setError(hnode: CurrentNode, message: "expected sequence of bit values" ); |
323 | } |
324 | return false; |
325 | } |
326 | |
327 | void Input::endBitSetScalar() { |
328 | if (EC) |
329 | return; |
330 | if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(Val: CurrentNode)) { |
331 | assert(BitValuesUsed.size() == SQ->Entries.size()); |
332 | for (unsigned i = 0; i < SQ->Entries.size(); ++i) { |
333 | if (!BitValuesUsed[i]) { |
334 | setError(hnode: SQ->Entries[i], message: "unknown bit value" ); |
335 | return; |
336 | } |
337 | } |
338 | } |
339 | } |
340 | |
341 | void Input::scalarString(StringRef &S, QuotingType) { |
342 | if (ScalarHNode *SN = dyn_cast<ScalarHNode>(Val: CurrentNode)) { |
343 | S = SN->value(); |
344 | } else { |
345 | setError(hnode: CurrentNode, message: "unexpected scalar" ); |
346 | } |
347 | } |
348 | |
349 | void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } |
350 | |
351 | void Input::scalarTag(std::string &Tag) { |
352 | Tag = CurrentNode->_node->getVerbatimTag(); |
353 | } |
354 | |
355 | void Input::setError(HNode *hnode, const Twine &message) { |
356 | assert(hnode && "HNode must not be NULL" ); |
357 | setError(node: hnode->_node, message); |
358 | } |
359 | |
360 | NodeKind Input::getNodeKind() { |
361 | if (isa<ScalarHNode>(Val: CurrentNode)) |
362 | return NodeKind::Scalar; |
363 | else if (isa<MapHNode>(Val: CurrentNode)) |
364 | return NodeKind::Map; |
365 | else if (isa<SequenceHNode>(Val: CurrentNode)) |
366 | return NodeKind::Sequence; |
367 | llvm_unreachable("Unsupported node kind" ); |
368 | } |
369 | |
370 | void Input::setError(Node *node, const Twine &message) { |
371 | Strm->printError(N: node, Msg: message); |
372 | EC = make_error_code(E: errc::invalid_argument); |
373 | } |
374 | |
375 | void Input::setError(const SMRange &range, const Twine &message) { |
376 | Strm->printError(Range: range, Msg: message); |
377 | EC = make_error_code(E: errc::invalid_argument); |
378 | } |
379 | |
380 | void Input::reportWarning(HNode *hnode, const Twine &message) { |
381 | assert(hnode && "HNode must not be NULL" ); |
382 | Strm->printError(N: hnode->_node, Msg: message, Kind: SourceMgr::DK_Warning); |
383 | } |
384 | |
385 | void Input::reportWarning(Node *node, const Twine &message) { |
386 | Strm->printError(N: node, Msg: message, Kind: SourceMgr::DK_Warning); |
387 | } |
388 | |
389 | void Input::reportWarning(const SMRange &range, const Twine &message) { |
390 | Strm->printError(Range: range, Msg: message, Kind: SourceMgr::DK_Warning); |
391 | } |
392 | |
393 | void Input::releaseHNodeBuffers() { |
394 | EmptyHNodeAllocator.DestroyAll(); |
395 | ScalarHNodeAllocator.DestroyAll(); |
396 | SequenceHNodeAllocator.DestroyAll(); |
397 | MapHNodeAllocator.DestroyAll(); |
398 | } |
399 | |
400 | Input::HNode *Input::createHNodes(Node *N) { |
401 | SmallString<128> StringStorage; |
402 | switch (N->getType()) { |
403 | case Node::NK_Scalar: { |
404 | ScalarNode *SN = dyn_cast<ScalarNode>(Val: N); |
405 | StringRef KeyStr = SN->getValue(Storage&: StringStorage); |
406 | if (!StringStorage.empty()) { |
407 | // Copy string to permanent storage |
408 | KeyStr = StringStorage.str().copy(A&: StringAllocator); |
409 | } |
410 | return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, KeyStr); |
411 | } |
412 | case Node::NK_BlockScalar: { |
413 | BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(Val: N); |
414 | StringRef ValueCopy = BSN->getValue().copy(A&: StringAllocator); |
415 | return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, ValueCopy); |
416 | } |
417 | case Node::NK_Sequence: { |
418 | SequenceNode *SQ = dyn_cast<SequenceNode>(Val: N); |
419 | auto SQHNode = new (SequenceHNodeAllocator.Allocate()) SequenceHNode(N); |
420 | for (Node &SN : *SQ) { |
421 | auto Entry = createHNodes(N: &SN); |
422 | if (EC) |
423 | break; |
424 | SQHNode->Entries.push_back(x: Entry); |
425 | } |
426 | return SQHNode; |
427 | } |
428 | case Node::NK_Mapping: { |
429 | MappingNode *Map = dyn_cast<MappingNode>(Val: N); |
430 | auto mapHNode = new (MapHNodeAllocator.Allocate()) MapHNode(N); |
431 | for (KeyValueNode &KVN : *Map) { |
432 | Node *KeyNode = KVN.getKey(); |
433 | ScalarNode *Key = dyn_cast_or_null<ScalarNode>(Val: KeyNode); |
434 | Node *Value = KVN.getValue(); |
435 | if (!Key || !Value) { |
436 | if (!Key) |
437 | setError(node: KeyNode, message: "Map key must be a scalar" ); |
438 | if (!Value) |
439 | setError(node: KeyNode, message: "Map value must not be empty" ); |
440 | break; |
441 | } |
442 | StringStorage.clear(); |
443 | StringRef KeyStr = Key->getValue(Storage&: StringStorage); |
444 | if (!StringStorage.empty()) { |
445 | // Copy string to permanent storage |
446 | KeyStr = StringStorage.str().copy(A&: StringAllocator); |
447 | } |
448 | if (mapHNode->Mapping.count(Key: KeyStr)) |
449 | // From YAML spec: "The content of a mapping node is an unordered set of |
450 | // key/value node pairs, with the restriction that each of the keys is |
451 | // unique." |
452 | setError(node: KeyNode, message: Twine("duplicated mapping key '" ) + KeyStr + "'" ); |
453 | auto ValueHNode = createHNodes(N: Value); |
454 | if (EC) |
455 | break; |
456 | mapHNode->Mapping[KeyStr] = |
457 | std::make_pair(x: std::move(ValueHNode), y: KeyNode->getSourceRange()); |
458 | } |
459 | return std::move(mapHNode); |
460 | } |
461 | case Node::NK_Null: |
462 | return new (EmptyHNodeAllocator.Allocate()) EmptyHNode(N); |
463 | default: |
464 | setError(node: N, message: "unknown node kind" ); |
465 | return nullptr; |
466 | } |
467 | } |
468 | |
469 | void Input::setError(const Twine &Message) { |
470 | setError(hnode: CurrentNode, message: Message); |
471 | } |
472 | |
473 | void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; } |
474 | |
475 | bool Input::canElideEmptySequence() { |
476 | return false; |
477 | } |
478 | |
479 | //===----------------------------------------------------------------------===// |
480 | // Output |
481 | //===----------------------------------------------------------------------===// |
482 | |
483 | Output::Output(raw_ostream &yout, void *context, int WrapColumn) |
484 | : IO(context), Out(yout), WrapColumn(WrapColumn) {} |
485 | |
486 | Output::~Output() = default; |
487 | |
488 | bool Output::outputting() const { |
489 | return true; |
490 | } |
491 | |
492 | void Output::beginMapping() { |
493 | StateStack.push_back(Elt: inMapFirstKey); |
494 | PaddingBeforeContainer = Padding; |
495 | Padding = "\n" ; |
496 | } |
497 | |
498 | bool Output::mapTag(StringRef Tag, bool Use) { |
499 | if (Use) { |
500 | // If this tag is being written inside a sequence we should write the start |
501 | // of the sequence before writing the tag, otherwise the tag won't be |
502 | // attached to the element in the sequence, but rather the sequence itself. |
503 | bool SequenceElement = false; |
504 | if (StateStack.size() > 1) { |
505 | auto &E = StateStack[StateStack.size() - 2]; |
506 | SequenceElement = inSeqAnyElement(State: E) || inFlowSeqAnyElement(State: E); |
507 | } |
508 | if (SequenceElement && StateStack.back() == inMapFirstKey) { |
509 | newLineCheck(); |
510 | } else { |
511 | output(s: " " ); |
512 | } |
513 | output(s: Tag); |
514 | if (SequenceElement) { |
515 | // If we're writing the tag during the first element of a map, the tag |
516 | // takes the place of the first element in the sequence. |
517 | if (StateStack.back() == inMapFirstKey) { |
518 | StateStack.pop_back(); |
519 | StateStack.push_back(Elt: inMapOtherKey); |
520 | } |
521 | // Tags inside maps in sequences should act as keys in the map from a |
522 | // formatting perspective, so we always want a newline in a sequence. |
523 | Padding = "\n" ; |
524 | } |
525 | } |
526 | return Use; |
527 | } |
528 | |
529 | void Output::endMapping() { |
530 | // If we did not map anything, we should explicitly emit an empty map |
531 | if (StateStack.back() == inMapFirstKey) { |
532 | Padding = PaddingBeforeContainer; |
533 | newLineCheck(); |
534 | output(s: "{}" ); |
535 | Padding = "\n" ; |
536 | } |
537 | StateStack.pop_back(); |
538 | } |
539 | |
540 | std::vector<StringRef> Output::keys() { |
541 | report_fatal_error(reason: "invalid call" ); |
542 | } |
543 | |
544 | bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, |
545 | bool &UseDefault, void *&SaveInfo) { |
546 | UseDefault = false; |
547 | SaveInfo = nullptr; |
548 | if (Required || !SameAsDefault || WriteDefaultValues) { |
549 | auto State = StateStack.back(); |
550 | if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { |
551 | flowKey(Key); |
552 | } else { |
553 | newLineCheck(); |
554 | paddedKey(key: Key); |
555 | } |
556 | return true; |
557 | } |
558 | return false; |
559 | } |
560 | |
561 | void Output::postflightKey(void *) { |
562 | if (StateStack.back() == inMapFirstKey) { |
563 | StateStack.pop_back(); |
564 | StateStack.push_back(Elt: inMapOtherKey); |
565 | } else if (StateStack.back() == inFlowMapFirstKey) { |
566 | StateStack.pop_back(); |
567 | StateStack.push_back(Elt: inFlowMapOtherKey); |
568 | } |
569 | } |
570 | |
571 | void Output::beginFlowMapping() { |
572 | StateStack.push_back(Elt: inFlowMapFirstKey); |
573 | newLineCheck(); |
574 | ColumnAtMapFlowStart = Column; |
575 | output(s: "{ " ); |
576 | } |
577 | |
578 | void Output::endFlowMapping() { |
579 | StateStack.pop_back(); |
580 | outputUpToEndOfLine(s: " }" ); |
581 | } |
582 | |
583 | void Output::beginDocuments() { |
584 | outputUpToEndOfLine(s: "---" ); |
585 | } |
586 | |
587 | bool Output::preflightDocument(unsigned index) { |
588 | if (index > 0) |
589 | outputUpToEndOfLine(s: "\n---" ); |
590 | return true; |
591 | } |
592 | |
593 | void Output::postflightDocument() { |
594 | } |
595 | |
596 | void Output::endDocuments() { |
597 | output(s: "\n...\n" ); |
598 | } |
599 | |
600 | unsigned Output::beginSequence() { |
601 | StateStack.push_back(Elt: inSeqFirstElement); |
602 | PaddingBeforeContainer = Padding; |
603 | Padding = "\n" ; |
604 | return 0; |
605 | } |
606 | |
607 | void Output::endSequence() { |
608 | // If we did not emit anything, we should explicitly emit an empty sequence |
609 | if (StateStack.back() == inSeqFirstElement) { |
610 | Padding = PaddingBeforeContainer; |
611 | newLineCheck(/*EmptySequence=*/true); |
612 | output(s: "[]" ); |
613 | Padding = "\n" ; |
614 | } |
615 | StateStack.pop_back(); |
616 | } |
617 | |
618 | bool Output::preflightElement(unsigned, void *&SaveInfo) { |
619 | SaveInfo = nullptr; |
620 | return true; |
621 | } |
622 | |
623 | void Output::postflightElement(void *) { |
624 | if (StateStack.back() == inSeqFirstElement) { |
625 | StateStack.pop_back(); |
626 | StateStack.push_back(Elt: inSeqOtherElement); |
627 | } else if (StateStack.back() == inFlowSeqFirstElement) { |
628 | StateStack.pop_back(); |
629 | StateStack.push_back(Elt: inFlowSeqOtherElement); |
630 | } |
631 | } |
632 | |
633 | unsigned Output::beginFlowSequence() { |
634 | StateStack.push_back(Elt: inFlowSeqFirstElement); |
635 | newLineCheck(); |
636 | ColumnAtFlowStart = Column; |
637 | output(s: "[ " ); |
638 | NeedFlowSequenceComma = false; |
639 | return 0; |
640 | } |
641 | |
642 | void Output::endFlowSequence() { |
643 | StateStack.pop_back(); |
644 | outputUpToEndOfLine(s: " ]" ); |
645 | } |
646 | |
647 | bool Output::preflightFlowElement(unsigned, void *&SaveInfo) { |
648 | if (NeedFlowSequenceComma) |
649 | output(s: ", " ); |
650 | if (WrapColumn && Column > WrapColumn) { |
651 | output(s: "\n" ); |
652 | for (int i = 0; i < ColumnAtFlowStart; ++i) |
653 | output(s: " " ); |
654 | Column = ColumnAtFlowStart; |
655 | output(s: " " ); |
656 | } |
657 | SaveInfo = nullptr; |
658 | return true; |
659 | } |
660 | |
661 | void Output::postflightFlowElement(void *) { |
662 | NeedFlowSequenceComma = true; |
663 | } |
664 | |
665 | void Output::beginEnumScalar() { |
666 | EnumerationMatchFound = false; |
667 | } |
668 | |
669 | bool Output::matchEnumScalar(const char *Str, bool Match) { |
670 | if (Match && !EnumerationMatchFound) { |
671 | newLineCheck(); |
672 | outputUpToEndOfLine(s: Str); |
673 | EnumerationMatchFound = true; |
674 | } |
675 | return false; |
676 | } |
677 | |
678 | bool Output::matchEnumFallback() { |
679 | if (EnumerationMatchFound) |
680 | return false; |
681 | EnumerationMatchFound = true; |
682 | return true; |
683 | } |
684 | |
685 | void Output::endEnumScalar() { |
686 | if (!EnumerationMatchFound) |
687 | llvm_unreachable("bad runtime enum value" ); |
688 | } |
689 | |
690 | bool Output::beginBitSetScalar(bool &DoClear) { |
691 | newLineCheck(); |
692 | output(s: "[ " ); |
693 | NeedBitValueComma = false; |
694 | DoClear = false; |
695 | return true; |
696 | } |
697 | |
698 | bool Output::bitSetMatch(const char *Str, bool Matches) { |
699 | if (Matches) { |
700 | if (NeedBitValueComma) |
701 | output(s: ", " ); |
702 | output(s: Str); |
703 | NeedBitValueComma = true; |
704 | } |
705 | return false; |
706 | } |
707 | |
708 | void Output::endBitSetScalar() { |
709 | outputUpToEndOfLine(s: " ]" ); |
710 | } |
711 | |
712 | void Output::scalarString(StringRef &S, QuotingType MustQuote) { |
713 | newLineCheck(); |
714 | if (S.empty()) { |
715 | // Print '' for the empty string because leaving the field empty is not |
716 | // allowed. |
717 | outputUpToEndOfLine(s: "''" ); |
718 | return; |
719 | } |
720 | output(S, MustQuote); |
721 | outputUpToEndOfLine(s: "" ); |
722 | } |
723 | |
724 | void Output::blockScalarString(StringRef &S) { |
725 | if (!StateStack.empty()) |
726 | newLineCheck(); |
727 | output(s: " |" ); |
728 | |
729 | unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); |
730 | |
731 | auto Buffer = MemoryBuffer::getMemBuffer(InputData: S, BufferName: "" , RequiresNullTerminator: false); |
732 | for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { |
733 | outputNewLine(); |
734 | for (unsigned I = 0; I < Indent; ++I) { |
735 | output(s: " " ); |
736 | } |
737 | output(s: *Lines); |
738 | } |
739 | outputUpToEndOfLine(s: "" ); |
740 | } |
741 | |
742 | void Output::scalarTag(std::string &Tag) { |
743 | if (Tag.empty()) |
744 | return; |
745 | newLineCheck(); |
746 | output(s: Tag); |
747 | output(s: " " ); |
748 | } |
749 | |
750 | void Output::setError(const Twine &message) { |
751 | } |
752 | |
753 | std::error_code Output::error() { return {}; } |
754 | |
755 | bool Output::canElideEmptySequence() { |
756 | // Normally, with an optional key/value where the value is an empty sequence, |
757 | // the whole key/value can be not written. But, that produces wrong yaml |
758 | // if the key/value is the only thing in the map and the map is used in |
759 | // a sequence. This detects if the this sequence is the first key/value |
760 | // in map that itself is embedded in a sequence. |
761 | if (StateStack.size() < 2) |
762 | return true; |
763 | if (StateStack.back() != inMapFirstKey) |
764 | return true; |
765 | return !inSeqAnyElement(State: StateStack[StateStack.size() - 2]); |
766 | } |
767 | |
768 | void Output::output(StringRef s) { |
769 | Column += s.size(); |
770 | Out << s; |
771 | } |
772 | |
773 | void Output::output(StringRef S, QuotingType MustQuote) { |
774 | if (MustQuote == QuotingType::None) { |
775 | // Only quote if we must. |
776 | output(s: S); |
777 | return; |
778 | } |
779 | |
780 | StringLiteral Quote = MustQuote == QuotingType::Single ? StringLiteral("'" ) |
781 | : StringLiteral("\"" ); |
782 | output(s: Quote); // Starting quote. |
783 | |
784 | // When using double-quoted strings (and only in that case), non-printable |
785 | // characters may be present, and will be escaped using a variety of |
786 | // unicode-scalar and special short-form escapes. This is handled in |
787 | // yaml::escape. |
788 | if (MustQuote == QuotingType::Double) { |
789 | output(s: yaml::escape(Input: S, /* EscapePrintable= */ false)); |
790 | output(s: Quote); |
791 | return; |
792 | } |
793 | |
794 | unsigned i = 0; |
795 | unsigned j = 0; |
796 | unsigned End = S.size(); |
797 | const char *Base = S.data(); |
798 | |
799 | // When using single-quoted strings, any single quote ' must be doubled to be |
800 | // escaped. |
801 | while (j < End) { |
802 | if (S[j] == '\'') { // Escape quotes. |
803 | output(s: StringRef(&Base[i], j - i)); // "flush". |
804 | output(s: StringLiteral("''" )); // Print it as '' |
805 | i = j + 1; |
806 | } |
807 | ++j; |
808 | } |
809 | output(s: StringRef(&Base[i], j - i)); |
810 | output(s: Quote); // Ending quote. |
811 | } |
812 | |
813 | void Output::outputUpToEndOfLine(StringRef s) { |
814 | output(s); |
815 | if (StateStack.empty() || (!inFlowSeqAnyElement(State: StateStack.back()) && |
816 | !inFlowMapAnyKey(State: StateStack.back()))) |
817 | Padding = "\n" ; |
818 | } |
819 | |
820 | void Output::outputNewLine() { |
821 | Out << "\n" ; |
822 | Column = 0; |
823 | } |
824 | |
825 | // if seq at top, indent as if map, then add "- " |
826 | // if seq in middle, use "- " if firstKey, else use " " |
827 | // |
828 | |
829 | void Output::newLineCheck(bool EmptySequence) { |
830 | if (Padding != "\n" ) { |
831 | output(s: Padding); |
832 | Padding = {}; |
833 | return; |
834 | } |
835 | outputNewLine(); |
836 | Padding = {}; |
837 | |
838 | if (StateStack.size() == 0 || EmptySequence) |
839 | return; |
840 | |
841 | unsigned Indent = StateStack.size() - 1; |
842 | bool PossiblyNestedSeq = false; |
843 | auto I = StateStack.rbegin(), E = StateStack.rend(); |
844 | |
845 | if (inSeqAnyElement(State: *I)) { |
846 | PossiblyNestedSeq = true; // Not possibly but always. |
847 | ++Indent; |
848 | } else if (*I == inMapFirstKey || *I == inFlowMapFirstKey || |
849 | inFlowSeqAnyElement(State: *I)) { |
850 | PossiblyNestedSeq = true; |
851 | ++I; // Skip back(). |
852 | } |
853 | |
854 | unsigned OutputDashCount = 0; |
855 | if (PossiblyNestedSeq) { |
856 | // Count up consecutive inSeqFirstElement from the end, unless |
857 | // inSeqFirstElement is the top of nested sequence. |
858 | while (I != E) { |
859 | // Don't count the top of nested sequence. |
860 | if (!inSeqAnyElement(State: *I)) |
861 | break; |
862 | |
863 | ++OutputDashCount; |
864 | |
865 | // Stop counting if consecutive inSeqFirstElement ends. |
866 | if (*I++ != inSeqFirstElement) |
867 | break; |
868 | } |
869 | } |
870 | |
871 | for (unsigned I = OutputDashCount; I < Indent; ++I) |
872 | output(s: " " ); |
873 | |
874 | for (unsigned I = 0; I < OutputDashCount; ++I) |
875 | output(s: "- " ); |
876 | } |
877 | |
878 | void Output::paddedKey(StringRef key) { |
879 | output(S: key, MustQuote: needsQuotes(S: key, ForcePreserveAsString: false)); |
880 | output(s: ":" ); |
881 | const char *spaces = " " ; |
882 | if (key.size() < strlen(s: spaces)) |
883 | Padding = &spaces[key.size()]; |
884 | else |
885 | Padding = " " ; |
886 | } |
887 | |
888 | void Output::flowKey(StringRef Key) { |
889 | if (StateStack.back() == inFlowMapOtherKey) |
890 | output(s: ", " ); |
891 | if (WrapColumn && Column > WrapColumn) { |
892 | output(s: "\n" ); |
893 | for (int I = 0; I < ColumnAtMapFlowStart; ++I) |
894 | output(s: " " ); |
895 | Column = ColumnAtMapFlowStart; |
896 | output(s: " " ); |
897 | } |
898 | output(S: Key, MustQuote: needsQuotes(S: Key, ForcePreserveAsString: false)); |
899 | output(s: ": " ); |
900 | } |
901 | |
902 | NodeKind Output::getNodeKind() { report_fatal_error(reason: "invalid call" ); } |
903 | |
904 | bool Output::inSeqAnyElement(InState State) { |
905 | return State == inSeqFirstElement || State == inSeqOtherElement; |
906 | } |
907 | |
908 | bool Output::inFlowSeqAnyElement(InState State) { |
909 | return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; |
910 | } |
911 | |
912 | bool Output::inMapAnyKey(InState State) { |
913 | return State == inMapFirstKey || State == inMapOtherKey; |
914 | } |
915 | |
916 | bool Output::inFlowMapAnyKey(InState State) { |
917 | return State == inFlowMapFirstKey || State == inFlowMapOtherKey; |
918 | } |
919 | |
920 | //===----------------------------------------------------------------------===// |
921 | // traits for built-in types |
922 | //===----------------------------------------------------------------------===// |
923 | |
924 | void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { |
925 | Out << (Val ? "true" : "false" ); |
926 | } |
927 | |
928 | StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { |
929 | if (std::optional<bool> Parsed = parseBool(S: Scalar)) { |
930 | Val = *Parsed; |
931 | return StringRef(); |
932 | } |
933 | return "invalid boolean" ; |
934 | } |
935 | |
936 | void ScalarTraits<StringRef>::output(const StringRef &Val, void *, |
937 | raw_ostream &Out) { |
938 | Out << Val; |
939 | } |
940 | |
941 | StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, |
942 | StringRef &Val) { |
943 | Val = Scalar; |
944 | return StringRef(); |
945 | } |
946 | |
947 | void ScalarTraits<std::string>::output(const std::string &Val, void *, |
948 | raw_ostream &Out) { |
949 | Out << Val; |
950 | } |
951 | |
952 | StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, |
953 | std::string &Val) { |
954 | Val = Scalar.str(); |
955 | return StringRef(); |
956 | } |
957 | |
958 | void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, |
959 | raw_ostream &Out) { |
960 | // use temp uin32_t because ostream thinks uint8_t is a character |
961 | uint32_t Num = Val; |
962 | Out << Num; |
963 | } |
964 | |
965 | StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { |
966 | unsigned long long n; |
967 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: n)) |
968 | return "invalid number" ; |
969 | if (n > 0xFF) |
970 | return "out of range number" ; |
971 | Val = n; |
972 | return StringRef(); |
973 | } |
974 | |
975 | void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, |
976 | raw_ostream &Out) { |
977 | Out << Val; |
978 | } |
979 | |
980 | StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, |
981 | uint16_t &Val) { |
982 | unsigned long long n; |
983 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: n)) |
984 | return "invalid number" ; |
985 | if (n > 0xFFFF) |
986 | return "out of range number" ; |
987 | Val = n; |
988 | return StringRef(); |
989 | } |
990 | |
991 | void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, |
992 | raw_ostream &Out) { |
993 | Out << Val; |
994 | } |
995 | |
996 | StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, |
997 | uint32_t &Val) { |
998 | unsigned long long n; |
999 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: n)) |
1000 | return "invalid number" ; |
1001 | if (n > 0xFFFFFFFFUL) |
1002 | return "out of range number" ; |
1003 | Val = n; |
1004 | return StringRef(); |
1005 | } |
1006 | |
1007 | void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, |
1008 | raw_ostream &Out) { |
1009 | Out << Val; |
1010 | } |
1011 | |
1012 | StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, |
1013 | uint64_t &Val) { |
1014 | unsigned long long N; |
1015 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: N)) |
1016 | return "invalid number" ; |
1017 | Val = N; |
1018 | return StringRef(); |
1019 | } |
1020 | |
1021 | void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { |
1022 | // use temp in32_t because ostream thinks int8_t is a character |
1023 | int32_t Num = Val; |
1024 | Out << Num; |
1025 | } |
1026 | |
1027 | StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { |
1028 | long long N; |
1029 | if (getAsSignedInteger(Str: Scalar, Radix: 0, Result&: N)) |
1030 | return "invalid number" ; |
1031 | if ((N > 127) || (N < -128)) |
1032 | return "out of range number" ; |
1033 | Val = N; |
1034 | return StringRef(); |
1035 | } |
1036 | |
1037 | void ScalarTraits<int16_t>::output(const int16_t &Val, void *, |
1038 | raw_ostream &Out) { |
1039 | Out << Val; |
1040 | } |
1041 | |
1042 | StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { |
1043 | long long N; |
1044 | if (getAsSignedInteger(Str: Scalar, Radix: 0, Result&: N)) |
1045 | return "invalid number" ; |
1046 | if ((N > INT16_MAX) || (N < INT16_MIN)) |
1047 | return "out of range number" ; |
1048 | Val = N; |
1049 | return StringRef(); |
1050 | } |
1051 | |
1052 | void ScalarTraits<int32_t>::output(const int32_t &Val, void *, |
1053 | raw_ostream &Out) { |
1054 | Out << Val; |
1055 | } |
1056 | |
1057 | StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { |
1058 | long long N; |
1059 | if (getAsSignedInteger(Str: Scalar, Radix: 0, Result&: N)) |
1060 | return "invalid number" ; |
1061 | if ((N > INT32_MAX) || (N < INT32_MIN)) |
1062 | return "out of range number" ; |
1063 | Val = N; |
1064 | return StringRef(); |
1065 | } |
1066 | |
1067 | void ScalarTraits<int64_t>::output(const int64_t &Val, void *, |
1068 | raw_ostream &Out) { |
1069 | Out << Val; |
1070 | } |
1071 | |
1072 | StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { |
1073 | long long N; |
1074 | if (getAsSignedInteger(Str: Scalar, Radix: 0, Result&: N)) |
1075 | return "invalid number" ; |
1076 | Val = N; |
1077 | return StringRef(); |
1078 | } |
1079 | |
1080 | void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { |
1081 | Out << format(Fmt: "%g" , Vals: Val); |
1082 | } |
1083 | |
1084 | StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { |
1085 | if (to_float(T: Scalar, Num&: Val)) |
1086 | return StringRef(); |
1087 | return "invalid floating point number" ; |
1088 | } |
1089 | |
1090 | void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { |
1091 | Out << format(Fmt: "%g" , Vals: Val); |
1092 | } |
1093 | |
1094 | StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { |
1095 | if (to_float(T: Scalar, Num&: Val)) |
1096 | return StringRef(); |
1097 | return "invalid floating point number" ; |
1098 | } |
1099 | |
1100 | void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { |
1101 | Out << format(Fmt: "0x%" PRIX8, Vals: (uint8_t)Val); |
1102 | } |
1103 | |
1104 | StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { |
1105 | unsigned long long n; |
1106 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: n)) |
1107 | return "invalid hex8 number" ; |
1108 | if (n > 0xFF) |
1109 | return "out of range hex8 number" ; |
1110 | Val = n; |
1111 | return StringRef(); |
1112 | } |
1113 | |
1114 | void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { |
1115 | Out << format(Fmt: "0x%" PRIX16, Vals: (uint16_t)Val); |
1116 | } |
1117 | |
1118 | StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { |
1119 | unsigned long long n; |
1120 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: n)) |
1121 | return "invalid hex16 number" ; |
1122 | if (n > 0xFFFF) |
1123 | return "out of range hex16 number" ; |
1124 | Val = n; |
1125 | return StringRef(); |
1126 | } |
1127 | |
1128 | void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { |
1129 | Out << format(Fmt: "0x%" PRIX32, Vals: (uint32_t)Val); |
1130 | } |
1131 | |
1132 | StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { |
1133 | unsigned long long n; |
1134 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: n)) |
1135 | return "invalid hex32 number" ; |
1136 | if (n > 0xFFFFFFFFUL) |
1137 | return "out of range hex32 number" ; |
1138 | Val = n; |
1139 | return StringRef(); |
1140 | } |
1141 | |
1142 | void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { |
1143 | Out << format(Fmt: "0x%" PRIX64, Vals: (uint64_t)Val); |
1144 | } |
1145 | |
1146 | StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { |
1147 | unsigned long long Num; |
1148 | if (getAsUnsignedInteger(Str: Scalar, Radix: 0, Result&: Num)) |
1149 | return "invalid hex64 number" ; |
1150 | Val = Num; |
1151 | return StringRef(); |
1152 | } |
1153 | |
1154 | void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *, |
1155 | llvm::raw_ostream &Out) { |
1156 | Out << Val.getAsString(); |
1157 | } |
1158 | |
1159 | StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *, |
1160 | VersionTuple &Val) { |
1161 | if (Val.tryParse(string: Scalar)) |
1162 | return "invalid version format" ; |
1163 | return StringRef(); |
1164 | } |
1165 | |