| 1 | /* |
| 2 | * xxHash - Extremely Fast Hash algorithm |
| 3 | * Copyright (C) 2012-2023, Yann Collet |
| 4 | * |
| 5 | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions are |
| 9 | * met: |
| 10 | * |
| 11 | * * Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * * Redistributions in binary form must reproduce the above |
| 14 | * copyright notice, this list of conditions and the following disclaimer |
| 15 | * in the documentation and/or other materials provided with the |
| 16 | * distribution. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | * |
| 30 | * You can contact the author at : |
| 31 | * - xxHash homepage: http://www.xxhash.com |
| 32 | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
| 33 | */ |
| 34 | |
| 35 | // xxhash64 is based on commit d2df04efcbef7d7f6886d345861e5dfda4edacc1. Removed |
| 36 | // everything but a simple interface for computing xxh64. |
| 37 | |
| 38 | // xxh3_64bits is based on commit d5891596637d21366b9b1dcf2c0007a3edb26a9e (July |
| 39 | // 2023). |
| 40 | |
| 41 | // xxh3_128bits is based on commit b0adcc54188c3130b1793e7b19c62eb1e669f7df |
| 42 | // (June 2024). |
| 43 | |
| 44 | #include "llvm/Support/xxhash.h" |
| 45 | #include "llvm/Support/Compiler.h" |
| 46 | #include "llvm/Support/Endian.h" |
| 47 | |
| 48 | #include <stdlib.h> |
| 49 | |
| 50 | #if !defined(LLVM_XXH_USE_NEON) |
| 51 | #if (defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) && \ |
| 52 | !defined(__ARM_BIG_ENDIAN) |
| 53 | #define LLVM_XXH_USE_NEON 1 |
| 54 | #else |
| 55 | #define LLVM_XXH_USE_NEON 0 |
| 56 | #endif |
| 57 | #endif |
| 58 | |
| 59 | #if LLVM_XXH_USE_NEON |
| 60 | #include <arm_neon.h> |
| 61 | #endif |
| 62 | |
| 63 | using namespace llvm; |
| 64 | using namespace support; |
| 65 | |
| 66 | static uint64_t rotl64(uint64_t X, size_t R) { |
| 67 | return (X << R) | (X >> (64 - R)); |
| 68 | } |
| 69 | |
| 70 | constexpr uint32_t PRIME32_1 = 0x9E3779B1; |
| 71 | constexpr uint32_t PRIME32_2 = 0x85EBCA77; |
| 72 | constexpr uint32_t PRIME32_3 = 0xC2B2AE3D; |
| 73 | |
| 74 | static const uint64_t PRIME64_1 = 11400714785074694791ULL; |
| 75 | static const uint64_t PRIME64_2 = 14029467366897019727ULL; |
| 76 | static const uint64_t PRIME64_3 = 1609587929392839161ULL; |
| 77 | static const uint64_t PRIME64_4 = 9650029242287828579ULL; |
| 78 | static const uint64_t PRIME64_5 = 2870177450012600261ULL; |
| 79 | |
| 80 | static uint64_t round(uint64_t Acc, uint64_t Input) { |
| 81 | Acc += Input * PRIME64_2; |
| 82 | Acc = rotl64(X: Acc, R: 31); |
| 83 | Acc *= PRIME64_1; |
| 84 | return Acc; |
| 85 | } |
| 86 | |
| 87 | static uint64_t mergeRound(uint64_t Acc, uint64_t Val) { |
| 88 | Val = round(Acc: 0, Input: Val); |
| 89 | Acc ^= Val; |
| 90 | Acc = Acc * PRIME64_1 + PRIME64_4; |
| 91 | return Acc; |
| 92 | } |
| 93 | |
| 94 | static uint64_t XXH64_avalanche(uint64_t hash) { |
| 95 | hash ^= hash >> 33; |
| 96 | hash *= PRIME64_2; |
| 97 | hash ^= hash >> 29; |
| 98 | hash *= PRIME64_3; |
| 99 | hash ^= hash >> 32; |
| 100 | return hash; |
| 101 | } |
| 102 | |
| 103 | uint64_t llvm::xxHash64(StringRef Data) { |
| 104 | size_t Len = Data.size(); |
| 105 | uint64_t Seed = 0; |
| 106 | const unsigned char *P = Data.bytes_begin(); |
| 107 | const unsigned char *const BEnd = Data.bytes_end(); |
| 108 | uint64_t H64; |
| 109 | |
| 110 | if (Len >= 32) { |
| 111 | const unsigned char *const Limit = BEnd - 32; |
| 112 | uint64_t V1 = Seed + PRIME64_1 + PRIME64_2; |
| 113 | uint64_t V2 = Seed + PRIME64_2; |
| 114 | uint64_t V3 = Seed + 0; |
| 115 | uint64_t V4 = Seed - PRIME64_1; |
| 116 | |
| 117 | do { |
| 118 | V1 = round(Acc: V1, Input: endian::read64le(P)); |
| 119 | P += 8; |
| 120 | V2 = round(Acc: V2, Input: endian::read64le(P)); |
| 121 | P += 8; |
| 122 | V3 = round(Acc: V3, Input: endian::read64le(P)); |
| 123 | P += 8; |
| 124 | V4 = round(Acc: V4, Input: endian::read64le(P)); |
| 125 | P += 8; |
| 126 | } while (P <= Limit); |
| 127 | |
| 128 | H64 = rotl64(X: V1, R: 1) + rotl64(X: V2, R: 7) + rotl64(X: V3, R: 12) + rotl64(X: V4, R: 18); |
| 129 | H64 = mergeRound(Acc: H64, Val: V1); |
| 130 | H64 = mergeRound(Acc: H64, Val: V2); |
| 131 | H64 = mergeRound(Acc: H64, Val: V3); |
| 132 | H64 = mergeRound(Acc: H64, Val: V4); |
| 133 | |
| 134 | } else { |
| 135 | H64 = Seed + PRIME64_5; |
| 136 | } |
| 137 | |
| 138 | H64 += (uint64_t)Len; |
| 139 | |
| 140 | while (reinterpret_cast<uintptr_t>(P) + 8 <= |
| 141 | reinterpret_cast<uintptr_t>(BEnd)) { |
| 142 | uint64_t const K1 = round(Acc: 0, Input: endian::read64le(P)); |
| 143 | H64 ^= K1; |
| 144 | H64 = rotl64(X: H64, R: 27) * PRIME64_1 + PRIME64_4; |
| 145 | P += 8; |
| 146 | } |
| 147 | |
| 148 | if (reinterpret_cast<uintptr_t>(P) + 4 <= reinterpret_cast<uintptr_t>(BEnd)) { |
| 149 | H64 ^= (uint64_t)(endian::read32le(P)) * PRIME64_1; |
| 150 | H64 = rotl64(X: H64, R: 23) * PRIME64_2 + PRIME64_3; |
| 151 | P += 4; |
| 152 | } |
| 153 | |
| 154 | while (P < BEnd) { |
| 155 | H64 ^= (*P) * PRIME64_5; |
| 156 | H64 = rotl64(X: H64, R: 11) * PRIME64_1; |
| 157 | P++; |
| 158 | } |
| 159 | |
| 160 | return XXH64_avalanche(hash: H64); |
| 161 | } |
| 162 | |
| 163 | uint64_t llvm::xxHash64(ArrayRef<uint8_t> Data) { |
| 164 | return xxHash64(Data: {(const char *)Data.data(), Data.size()}); |
| 165 | } |
| 166 | |
| 167 | constexpr size_t XXH3_SECRETSIZE_MIN = 136; |
| 168 | constexpr size_t XXH_SECRET_DEFAULT_SIZE = 192; |
| 169 | |
| 170 | /* Pseudorandom data taken directly from FARSH */ |
| 171 | // clang-format off |
| 172 | constexpr uint8_t kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
| 173 | 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
| 174 | 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
| 175 | 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
| 176 | 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
| 177 | 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
| 178 | 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
| 179 | 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
| 180 | 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
| 181 | 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
| 182 | 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
| 183 | 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
| 184 | 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
| 185 | }; |
| 186 | // clang-format on |
| 187 | |
| 188 | constexpr uint64_t PRIME_MX1 = 0x165667919E3779F9; |
| 189 | constexpr uint64_t PRIME_MX2 = 0x9FB21C651E98DF25; |
| 190 | |
| 191 | // Calculates a 64-bit to 128-bit multiply, then XOR folds it. |
| 192 | static uint64_t XXH3_mul128_fold64(uint64_t lhs, uint64_t rhs) { |
| 193 | #if defined(__SIZEOF_INT128__) || \ |
| 194 | (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
| 195 | __uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs; |
| 196 | return uint64_t(product) ^ uint64_t(product >> 64); |
| 197 | |
| 198 | #else |
| 199 | /* First calculate all of the cross products. */ |
| 200 | const uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF); |
| 201 | const uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF); |
| 202 | const uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32); |
| 203 | const uint64_t hi_hi = (lhs >> 32) * (rhs >> 32); |
| 204 | |
| 205 | /* Now add the products together. These will never overflow. */ |
| 206 | const uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
| 207 | const uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
| 208 | const uint64_t lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
| 209 | |
| 210 | return upper ^ lower; |
| 211 | #endif |
| 212 | } |
| 213 | |
| 214 | constexpr size_t XXH_STRIPE_LEN = 64; |
| 215 | constexpr size_t XXH_SECRET_CONSUME_RATE = 8; |
| 216 | constexpr size_t XXH_ACC_NB = XXH_STRIPE_LEN / sizeof(uint64_t); |
| 217 | |
| 218 | static uint64_t XXH3_avalanche(uint64_t hash) { |
| 219 | hash ^= hash >> 37; |
| 220 | hash *= PRIME_MX1; |
| 221 | hash ^= hash >> 32; |
| 222 | return hash; |
| 223 | } |
| 224 | |
| 225 | static uint64_t XXH3_len_1to3_64b(const uint8_t *input, size_t len, |
| 226 | const uint8_t *secret, uint64_t seed) { |
| 227 | const uint8_t c1 = input[0]; |
| 228 | const uint8_t c2 = input[len >> 1]; |
| 229 | const uint8_t c3 = input[len - 1]; |
| 230 | uint32_t combined = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) | |
| 231 | ((uint32_t)c3 << 0) | ((uint32_t)len << 8); |
| 232 | uint64_t bitflip = |
| 233 | (uint64_t)(endian::read32le(P: secret) ^ endian::read32le(P: secret + 4)) + |
| 234 | seed; |
| 235 | return XXH64_avalanche(hash: uint64_t(combined) ^ bitflip); |
| 236 | } |
| 237 | |
| 238 | static uint64_t XXH3_len_4to8_64b(const uint8_t *input, size_t len, |
| 239 | const uint8_t *secret, uint64_t seed) { |
| 240 | seed ^= (uint64_t)byteswap(V: uint32_t(seed)) << 32; |
| 241 | const uint32_t input1 = endian::read32le(P: input); |
| 242 | const uint32_t input2 = endian::read32le(P: input + len - 4); |
| 243 | uint64_t acc = |
| 244 | (endian::read64le(P: secret + 8) ^ endian::read64le(P: secret + 16)) - seed; |
| 245 | const uint64_t input64 = (uint64_t)input2 | ((uint64_t)input1 << 32); |
| 246 | acc ^= input64; |
| 247 | // XXH3_rrmxmx(acc, len) |
| 248 | acc ^= rotl64(X: acc, R: 49) ^ rotl64(X: acc, R: 24); |
| 249 | acc *= PRIME_MX2; |
| 250 | acc ^= (acc >> 35) + (uint64_t)len; |
| 251 | acc *= PRIME_MX2; |
| 252 | return acc ^ (acc >> 28); |
| 253 | } |
| 254 | |
| 255 | static uint64_t XXH3_len_9to16_64b(const uint8_t *input, size_t len, |
| 256 | const uint8_t *secret, uint64_t const seed) { |
| 257 | uint64_t input_lo = |
| 258 | (endian::read64le(P: secret + 24) ^ endian::read64le(P: secret + 32)) + seed; |
| 259 | uint64_t input_hi = |
| 260 | (endian::read64le(P: secret + 40) ^ endian::read64le(P: secret + 48)) - seed; |
| 261 | input_lo ^= endian::read64le(P: input); |
| 262 | input_hi ^= endian::read64le(P: input + len - 8); |
| 263 | uint64_t acc = uint64_t(len) + byteswap(V: input_lo) + input_hi + |
| 264 | XXH3_mul128_fold64(lhs: input_lo, rhs: input_hi); |
| 265 | return XXH3_avalanche(hash: acc); |
| 266 | } |
| 267 | |
| 268 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 269 | static uint64_t XXH3_len_0to16_64b(const uint8_t *input, size_t len, |
| 270 | const uint8_t *secret, uint64_t const seed) { |
| 271 | if (LLVM_LIKELY(len > 8)) |
| 272 | return XXH3_len_9to16_64b(input, len, secret, seed); |
| 273 | if (LLVM_LIKELY(len >= 4)) |
| 274 | return XXH3_len_4to8_64b(input, len, secret, seed); |
| 275 | if (len != 0) |
| 276 | return XXH3_len_1to3_64b(input, len, secret, seed); |
| 277 | return XXH64_avalanche(hash: seed ^ endian::read64le(P: secret + 56) ^ |
| 278 | endian::read64le(P: secret + 64)); |
| 279 | } |
| 280 | |
| 281 | static uint64_t XXH3_mix16B(const uint8_t *input, uint8_t const *secret, |
| 282 | uint64_t seed) { |
| 283 | uint64_t lhs = seed; |
| 284 | uint64_t rhs = 0U - seed; |
| 285 | lhs += endian::read64le(P: secret); |
| 286 | rhs += endian::read64le(P: secret + 8); |
| 287 | lhs ^= endian::read64le(P: input); |
| 288 | rhs ^= endian::read64le(P: input + 8); |
| 289 | return XXH3_mul128_fold64(lhs, rhs); |
| 290 | } |
| 291 | |
| 292 | /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
| 293 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 294 | static uint64_t XXH3_len_17to128_64b(const uint8_t *input, size_t len, |
| 295 | const uint8_t *secret, |
| 296 | uint64_t const seed) { |
| 297 | uint64_t acc = len * PRIME64_1, acc_end; |
| 298 | acc += XXH3_mix16B(input: input + 0, secret: secret + 0, seed); |
| 299 | acc_end = XXH3_mix16B(input: input + len - 16, secret: secret + 16, seed); |
| 300 | if (len > 32) { |
| 301 | acc += XXH3_mix16B(input: input + 16, secret: secret + 32, seed); |
| 302 | acc_end += XXH3_mix16B(input: input + len - 32, secret: secret + 48, seed); |
| 303 | if (len > 64) { |
| 304 | acc += XXH3_mix16B(input: input + 32, secret: secret + 64, seed); |
| 305 | acc_end += XXH3_mix16B(input: input + len - 48, secret: secret + 80, seed); |
| 306 | if (len > 96) { |
| 307 | acc += XXH3_mix16B(input: input + 48, secret: secret + 96, seed); |
| 308 | acc_end += XXH3_mix16B(input: input + len - 64, secret: secret + 112, seed); |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | return XXH3_avalanche(hash: acc + acc_end); |
| 313 | } |
| 314 | |
| 315 | constexpr size_t XXH3_MIDSIZE_MAX = 240; |
| 316 | constexpr size_t XXH3_MIDSIZE_STARTOFFSET = 3; |
| 317 | constexpr size_t XXH3_MIDSIZE_LASTOFFSET = 17; |
| 318 | |
| 319 | LLVM_ATTRIBUTE_NOINLINE |
| 320 | static uint64_t XXH3_len_129to240_64b(const uint8_t *input, size_t len, |
| 321 | const uint8_t *secret, uint64_t seed) { |
| 322 | uint64_t acc = (uint64_t)len * PRIME64_1; |
| 323 | const unsigned nbRounds = len / 16; |
| 324 | for (unsigned i = 0; i < 8; ++i) |
| 325 | acc += XXH3_mix16B(input: input + 16 * i, secret: secret + 16 * i, seed); |
| 326 | acc = XXH3_avalanche(hash: acc); |
| 327 | |
| 328 | for (unsigned i = 8; i < nbRounds; ++i) { |
| 329 | acc += XXH3_mix16B(input: input + 16 * i, |
| 330 | secret: secret + 16 * (i - 8) + XXH3_MIDSIZE_STARTOFFSET, seed); |
| 331 | } |
| 332 | /* last bytes */ |
| 333 | acc += |
| 334 | XXH3_mix16B(input: input + len - 16, |
| 335 | secret: secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
| 336 | return XXH3_avalanche(hash: acc); |
| 337 | } |
| 338 | |
| 339 | #if LLVM_XXH_USE_NEON |
| 340 | |
| 341 | #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
| 342 | #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
| 343 | |
| 344 | // NEON implementation based on commit a57f6cce2698049863af8c25787084ae0489d849 |
| 345 | // (July 2024), with the following removed: |
| 346 | // - workaround for suboptimal codegen on older GCC |
| 347 | // - compiler barriers against instruction reordering |
| 348 | // - WebAssembly SIMD support |
| 349 | // - configurable split between NEON and scalar lanes (benchmarking shows no |
| 350 | // penalty when fully doing SIMD on the Apple M1) |
| 351 | |
| 352 | #if defined(__GNUC__) || defined(__clang__) |
| 353 | #define XXH_ALIASING __attribute__((__may_alias__)) |
| 354 | #else |
| 355 | #define XXH_ALIASING /* nothing */ |
| 356 | #endif |
| 357 | |
| 358 | typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING; |
| 359 | |
| 360 | LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64x2_t XXH_vld1q_u64(void const *ptr) { |
| 361 | return vreinterpretq_u64_u8(vld1q_u8((uint8_t const *)ptr)); |
| 362 | } |
| 363 | |
| 364 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 365 | static void XXH3_accumulate_512_neon(uint64_t *acc, const uint8_t *input, |
| 366 | const uint8_t *secret) { |
| 367 | xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc; |
| 368 | |
| 369 | #ifdef __clang__ |
| 370 | #pragma clang loop unroll(full) |
| 371 | #endif |
| 372 | for (size_t i = 0; i < XXH_ACC_NB / 2; i += 2) { |
| 373 | /* data_vec = input[i]; */ |
| 374 | uint64x2_t data_vec_1 = XXH_vld1q_u64(input + (i * 16)); |
| 375 | uint64x2_t data_vec_2 = XXH_vld1q_u64(input + ((i + 1) * 16)); |
| 376 | |
| 377 | /* key_vec = secret[i]; */ |
| 378 | uint64x2_t key_vec_1 = XXH_vld1q_u64(secret + (i * 16)); |
| 379 | uint64x2_t key_vec_2 = XXH_vld1q_u64(secret + ((i + 1) * 16)); |
| 380 | |
| 381 | /* data_swap = swap(data_vec) */ |
| 382 | uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1); |
| 383 | uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1); |
| 384 | |
| 385 | /* data_key = data_vec ^ key_vec; */ |
| 386 | uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1); |
| 387 | uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2); |
| 388 | |
| 389 | /* |
| 390 | * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a |
| 391 | * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to |
| 392 | * get one vector with the low 32 bits of each lane, and one vector |
| 393 | * with the high 32 bits of each lane. |
| 394 | * |
| 395 | * The intrinsic returns a double vector because the original ARMv7-a |
| 396 | * instruction modified both arguments in place. AArch64 and SIMD128 emit |
| 397 | * two instructions from this intrinsic. |
| 398 | * |
| 399 | * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ] |
| 400 | * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ] |
| 401 | */ |
| 402 | uint32x4x2_t unzipped = vuzpq_u32(vreinterpretq_u32_u64(data_key_1), |
| 403 | vreinterpretq_u32_u64(data_key_2)); |
| 404 | |
| 405 | /* data_key_lo = data_key & 0xFFFFFFFF */ |
| 406 | uint32x4_t data_key_lo = unzipped.val[0]; |
| 407 | /* data_key_hi = data_key >> 32 */ |
| 408 | uint32x4_t data_key_hi = unzipped.val[1]; |
| 409 | |
| 410 | /* |
| 411 | * Then, we can split the vectors horizontally and multiply which, as for |
| 412 | * most widening intrinsics, have a variant that works on both high half |
| 413 | * vectors for free on AArch64. A similar instruction is available on |
| 414 | * SIMD128. |
| 415 | * |
| 416 | * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi |
| 417 | */ |
| 418 | uint64x2_t sum_1 = vmlal_u32(data_swap_1, vget_low_u32(data_key_lo), |
| 419 | vget_low_u32(data_key_hi)); |
| 420 | uint64x2_t sum_2 = vmlal_u32(data_swap_2, vget_high_u32(data_key_lo), |
| 421 | vget_high_u32(data_key_hi)); |
| 422 | |
| 423 | /* xacc[i] = acc_vec + sum; */ |
| 424 | xacc[i] = vaddq_u64(xacc[i], sum_1); |
| 425 | xacc[i + 1] = vaddq_u64(xacc[i + 1], sum_2); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 430 | static void XXH3_scrambleAcc_neon(uint64_t *acc, const uint8_t *secret) { |
| 431 | xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc; |
| 432 | |
| 433 | /* { prime32_1, prime32_1 } */ |
| 434 | uint32x2_t const kPrimeLo = vdup_n_u32(PRIME32_1); |
| 435 | /* { 0, prime32_1, 0, prime32_1 } */ |
| 436 | uint32x4_t const kPrimeHi = |
| 437 | vreinterpretq_u32_u64(vdupq_n_u64((uint64_t)PRIME32_1 << 32)); |
| 438 | |
| 439 | for (size_t i = 0; i < XXH_ACC_NB / 2; ++i) { |
| 440 | /* xacc[i] ^= (xacc[i] >> 47); */ |
| 441 | uint64x2_t acc_vec = XXH_vld1q_u64(acc + (2 * i)); |
| 442 | uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); |
| 443 | uint64x2_t data_vec = veorq_u64(acc_vec, shifted); |
| 444 | |
| 445 | /* xacc[i] ^= secret[i]; */ |
| 446 | uint64x2_t key_vec = XXH_vld1q_u64(secret + (i * 16)); |
| 447 | uint64x2_t data_key = veorq_u64(data_vec, key_vec); |
| 448 | |
| 449 | /* |
| 450 | * xacc[i] *= XXH_PRIME32_1 |
| 451 | * |
| 452 | * Expanded version with portable NEON intrinsics |
| 453 | * |
| 454 | * lo(x) * lo(y) + (hi(x) * lo(y) << 32) |
| 455 | * |
| 456 | * prod_hi = hi(data_key) * lo(prime) << 32 |
| 457 | * |
| 458 | * Since we only need 32 bits of this multiply a trick can be used, |
| 459 | * reinterpreting the vector as a uint32x4_t and multiplying by |
| 460 | * { 0, prime, 0, prime } to cancel out the unwanted bits and avoid the |
| 461 | * shift. |
| 462 | */ |
| 463 | uint32x4_t prod_hi = vmulq_u32(vreinterpretq_u32_u64(data_key), kPrimeHi); |
| 464 | |
| 465 | /* Extract low bits for vmlal_u32 */ |
| 466 | uint32x2_t data_key_lo = vmovn_u64(data_key); |
| 467 | |
| 468 | /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */ |
| 469 | xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo); |
| 470 | } |
| 471 | } |
| 472 | #else |
| 473 | |
| 474 | #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
| 475 | #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
| 476 | |
| 477 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 478 | static void XXH3_accumulate_512_scalar(uint64_t *acc, const uint8_t *input, |
| 479 | const uint8_t *secret) { |
| 480 | for (size_t i = 0; i < XXH_ACC_NB; ++i) { |
| 481 | uint64_t data_val = endian::read64le(P: input + 8 * i); |
| 482 | uint64_t data_key = data_val ^ endian::read64le(P: secret + 8 * i); |
| 483 | acc[i ^ 1] += data_val; |
| 484 | acc[i] += uint32_t(data_key) * (data_key >> 32); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 489 | static void XXH3_scrambleAcc_scalar(uint64_t *acc, const uint8_t *secret) { |
| 490 | for (size_t i = 0; i < XXH_ACC_NB; ++i) { |
| 491 | acc[i] ^= acc[i] >> 47; |
| 492 | acc[i] ^= endian::read64le(P: secret + 8 * i); |
| 493 | acc[i] *= PRIME32_1; |
| 494 | } |
| 495 | } |
| 496 | #endif |
| 497 | |
| 498 | LLVM_ATTRIBUTE_ALWAYS_INLINE |
| 499 | static void XXH3_accumulate(uint64_t *acc, const uint8_t *input, |
| 500 | const uint8_t *secret, size_t nbStripes) { |
| 501 | for (size_t n = 0; n < nbStripes; ++n) { |
| 502 | XXH3_accumulate_512(acc, input: input + n * XXH_STRIPE_LEN, |
| 503 | secret: secret + n * XXH_SECRET_CONSUME_RATE); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | static uint64_t XXH3_mix2Accs(const uint64_t *acc, const uint8_t *secret) { |
| 508 | return XXH3_mul128_fold64(lhs: acc[0] ^ endian::read64le(P: secret), |
| 509 | rhs: acc[1] ^ endian::read64le(P: secret + 8)); |
| 510 | } |
| 511 | |
| 512 | static uint64_t XXH3_mergeAccs(const uint64_t *acc, const uint8_t *key, |
| 513 | uint64_t start) { |
| 514 | uint64_t result64 = start; |
| 515 | for (size_t i = 0; i < 4; ++i) |
| 516 | result64 += XXH3_mix2Accs(acc: acc + 2 * i, secret: key + 16 * i); |
| 517 | return XXH3_avalanche(hash: result64); |
| 518 | } |
| 519 | |
| 520 | LLVM_ATTRIBUTE_NOINLINE |
| 521 | static uint64_t XXH3_hashLong_64b(const uint8_t *input, size_t len, |
| 522 | const uint8_t *secret, size_t secretSize) { |
| 523 | const size_t nbStripesPerBlock = |
| 524 | (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
| 525 | const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
| 526 | const size_t nb_blocks = (len - 1) / block_len; |
| 527 | alignas(16) uint64_t acc[XXH_ACC_NB] = { |
| 528 | PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, |
| 529 | PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1, |
| 530 | }; |
| 531 | for (size_t n = 0; n < nb_blocks; ++n) { |
| 532 | XXH3_accumulate(acc, input: input + n * block_len, secret, nbStripes: nbStripesPerBlock); |
| 533 | XXH3_scrambleAcc(acc, secret: secret + secretSize - XXH_STRIPE_LEN); |
| 534 | } |
| 535 | |
| 536 | /* last partial block */ |
| 537 | const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
| 538 | assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE); |
| 539 | XXH3_accumulate(acc, input: input + nb_blocks * block_len, secret, nbStripes); |
| 540 | |
| 541 | /* last stripe */ |
| 542 | constexpr size_t XXH_SECRET_LASTACC_START = 7; |
| 543 | XXH3_accumulate_512(acc, input: input + len - XXH_STRIPE_LEN, |
| 544 | secret: secret + secretSize - XXH_STRIPE_LEN - |
| 545 | XXH_SECRET_LASTACC_START); |
| 546 | |
| 547 | /* converge into final hash */ |
| 548 | constexpr size_t XXH_SECRET_MERGEACCS_START = 11; |
| 549 | return XXH3_mergeAccs(acc, key: secret + XXH_SECRET_MERGEACCS_START, |
| 550 | start: (uint64_t)len * PRIME64_1); |
| 551 | } |
| 552 | |
| 553 | uint64_t llvm::xxh3_64bits(ArrayRef<uint8_t> data) { |
| 554 | auto *in = data.data(); |
| 555 | size_t len = data.size(); |
| 556 | if (len <= 16) |
| 557 | return XXH3_len_0to16_64b(input: in, len, secret: kSecret, seed: 0); |
| 558 | if (len <= 128) |
| 559 | return XXH3_len_17to128_64b(input: in, len, secret: kSecret, seed: 0); |
| 560 | if (len <= XXH3_MIDSIZE_MAX) |
| 561 | return XXH3_len_129to240_64b(input: in, len, secret: kSecret, seed: 0); |
| 562 | return XXH3_hashLong_64b(input: in, len, secret: kSecret, secretSize: sizeof(kSecret)); |
| 563 | } |
| 564 | |
| 565 | /* ========================================== |
| 566 | * XXH3 128 bits (a.k.a XXH128) |
| 567 | * ========================================== |
| 568 | * XXH3's 128-bit variant has better mixing and strength than the 64-bit |
| 569 | * variant, even without counting the significantly larger output size. |
| 570 | * |
| 571 | * For example, extra steps are taken to avoid the seed-dependent collisions |
| 572 | * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
| 573 | * |
| 574 | * This strength naturally comes at the cost of some speed, especially on short |
| 575 | * lengths. Note that longer hashes are about as fast as the 64-bit version |
| 576 | * due to it using only a slight modification of the 64-bit loop. |
| 577 | * |
| 578 | * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
| 579 | * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
| 580 | */ |
| 581 | |
| 582 | /*! |
| 583 | * @internal |
| 584 | * @def XXH_rotl32(x,r) |
| 585 | * @brief 32-bit rotate left. |
| 586 | * |
| 587 | * @param x The 32-bit integer to be rotated. |
| 588 | * @param r The number of bits to rotate. |
| 589 | * @pre |
| 590 | * @p r > 0 && @p r < 32 |
| 591 | * @note |
| 592 | * @p x and @p r may be evaluated multiple times. |
| 593 | * @return The rotated result. |
| 594 | */ |
| 595 | #if __has_builtin(__builtin_rotateleft32) && \ |
| 596 | __has_builtin(__builtin_rotateleft64) |
| 597 | #define XXH_rotl32 __builtin_rotateleft32 |
| 598 | #define XXH_rotl64 __builtin_rotateleft64 |
| 599 | /* Note: although _rotl exists for minGW (GCC under windows), performance seems |
| 600 | * poor */ |
| 601 | #elif defined(_MSC_VER) |
| 602 | #define XXH_rotl32(x, r) _rotl(x, r) |
| 603 | #define XXH_rotl64(x, r) _rotl64(x, r) |
| 604 | #else |
| 605 | #define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r)))) |
| 606 | #define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r)))) |
| 607 | #endif |
| 608 | |
| 609 | #define XXH_mult32to64(x, y) ((uint64_t)(uint32_t)(x) * (uint64_t)(uint32_t)(y)) |
| 610 | |
| 611 | /*! |
| 612 | * @brief Calculates a 64->128-bit long multiply. |
| 613 | * |
| 614 | * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar |
| 615 | * version. |
| 616 | * |
| 617 | * @param lhs , rhs The 64-bit integers to be multiplied |
| 618 | * @return The 128-bit result represented in an @ref XXH128_hash_t. |
| 619 | */ |
| 620 | static XXH128_hash_t XXH_mult64to128(uint64_t lhs, uint64_t rhs) { |
| 621 | /* |
| 622 | * GCC/Clang __uint128_t method. |
| 623 | * |
| 624 | * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
| 625 | * This is usually the best way as it usually uses a native long 64-bit |
| 626 | * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
| 627 | * |
| 628 | * Usually. |
| 629 | * |
| 630 | * Despite being a 32-bit platform, Clang (and emscripten) define this type |
| 631 | * despite not having the arithmetic for it. This results in a laggy |
| 632 | * compiler builtin call which calculates a full 128-bit multiply. |
| 633 | * In that case it is best to use the portable one. |
| 634 | * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
| 635 | */ |
| 636 | #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) && \ |
| 637 | defined(__SIZEOF_INT128__) || \ |
| 638 | (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
| 639 | |
| 640 | __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
| 641 | XXH128_hash_t r128; |
| 642 | r128.low64 = (uint64_t)(product); |
| 643 | r128.high64 = (uint64_t)(product >> 64); |
| 644 | return r128; |
| 645 | |
| 646 | /* |
| 647 | * MSVC for x64's _umul128 method. |
| 648 | * |
| 649 | * uint64_t _umul128(uint64_t Multiplier, uint64_t Multiplicand, uint64_t |
| 650 | * *HighProduct); |
| 651 | * |
| 652 | * This compiles to single operand MUL on x64. |
| 653 | */ |
| 654 | #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) |
| 655 | |
| 656 | #ifndef _MSC_VER |
| 657 | #pragma intrinsic(_umul128) |
| 658 | #endif |
| 659 | uint64_t product_high; |
| 660 | uint64_t const product_low = _umul128(lhs, rhs, &product_high); |
| 661 | XXH128_hash_t r128; |
| 662 | r128.low64 = product_low; |
| 663 | r128.high64 = product_high; |
| 664 | return r128; |
| 665 | |
| 666 | /* |
| 667 | * MSVC for ARM64's __umulh method. |
| 668 | * |
| 669 | * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. |
| 670 | */ |
| 671 | #elif defined(_M_ARM64) || defined(_M_ARM64EC) |
| 672 | |
| 673 | #ifndef _MSC_VER |
| 674 | #pragma intrinsic(__umulh) |
| 675 | #endif |
| 676 | XXH128_hash_t r128; |
| 677 | r128.low64 = lhs * rhs; |
| 678 | r128.high64 = __umulh(lhs, rhs); |
| 679 | return r128; |
| 680 | |
| 681 | #else |
| 682 | /* |
| 683 | * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
| 684 | * |
| 685 | * This is a fast and simple grade school multiply, which is shown below |
| 686 | * with base 10 arithmetic instead of base 0x100000000. |
| 687 | * |
| 688 | * 9 3 // D2 lhs = 93 |
| 689 | * x 7 5 // D2 rhs = 75 |
| 690 | * ---------- |
| 691 | * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
| 692 | * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
| 693 | * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
| 694 | * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
| 695 | * --------- |
| 696 | * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
| 697 | * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
| 698 | * --------- |
| 699 | * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
| 700 | * |
| 701 | * The reasons for adding the products like this are: |
| 702 | * 1. It avoids manual carry tracking. Just like how |
| 703 | * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
| 704 | * This avoids a lot of complexity. |
| 705 | * |
| 706 | * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
| 707 | * instruction available in ARM's Digital Signal Processing extension |
| 708 | * in 32-bit ARMv6 and later, which is shown below: |
| 709 | * |
| 710 | * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
| 711 | * { |
| 712 | * uint64_t product = (uint64_t)*RdLo * (uint64_t)*RdHi + Rn + Rm; |
| 713 | * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
| 714 | * *RdHi = (xxh_u32)(product >> 32); |
| 715 | * } |
| 716 | * |
| 717 | * This instruction was designed for efficient long multiplication, and |
| 718 | * allows this to be calculated in only 4 instructions at speeds |
| 719 | * comparable to some 64-bit ALUs. |
| 720 | * |
| 721 | * 3. It isn't terrible on other platforms. Usually this will be a couple |
| 722 | * of 32-bit ADD/ADCs. |
| 723 | */ |
| 724 | |
| 725 | /* First calculate all of the cross products. */ |
| 726 | uint64_t const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
| 727 | uint64_t const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
| 728 | uint64_t const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
| 729 | uint64_t const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
| 730 | |
| 731 | /* Now add the products together. These will never overflow. */ |
| 732 | uint64_t const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
| 733 | uint64_t const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
| 734 | uint64_t const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
| 735 | |
| 736 | XXH128_hash_t r128; |
| 737 | r128.low64 = lower; |
| 738 | r128.high64 = upper; |
| 739 | return r128; |
| 740 | #endif |
| 741 | } |
| 742 | |
| 743 | /*! Seems to produce slightly better code on GCC for some reason. */ |
| 744 | LLVM_ATTRIBUTE_ALWAYS_INLINE constexpr uint64_t XXH_xorshift64(uint64_t v64, |
| 745 | int shift) { |
| 746 | return v64 ^ (v64 >> shift); |
| 747 | } |
| 748 | |
| 749 | LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t |
| 750 | XXH3_len_1to3_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 751 | uint64_t seed) { |
| 752 | /* A doubled version of 1to3_64b with different constants. */ |
| 753 | /* |
| 754 | * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
| 755 | * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
| 756 | * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
| 757 | */ |
| 758 | uint8_t const c1 = input[0]; |
| 759 | uint8_t const c2 = input[len >> 1]; |
| 760 | uint8_t const c3 = input[len - 1]; |
| 761 | uint32_t const combinedl = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) | |
| 762 | ((uint32_t)c3 << 0) | ((uint32_t)len << 8); |
| 763 | uint32_t const combinedh = XXH_rotl32(byteswap(V: combinedl), 13); |
| 764 | uint64_t const bitflipl = |
| 765 | (endian::read32le(P: secret) ^ endian::read32le(P: secret + 4)) + seed; |
| 766 | uint64_t const bitfliph = |
| 767 | (endian::read32le(P: secret + 8) ^ endian::read32le(P: secret + 12)) - seed; |
| 768 | uint64_t const keyed_lo = (uint64_t)combinedl ^ bitflipl; |
| 769 | uint64_t const keyed_hi = (uint64_t)combinedh ^ bitfliph; |
| 770 | XXH128_hash_t h128; |
| 771 | h128.low64 = XXH64_avalanche(hash: keyed_lo); |
| 772 | h128.high64 = XXH64_avalanche(hash: keyed_hi); |
| 773 | return h128; |
| 774 | } |
| 775 | |
| 776 | LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t |
| 777 | XXH3_len_4to8_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 778 | uint64_t seed) { |
| 779 | seed ^= (uint64_t)byteswap(V: (uint32_t)seed) << 32; |
| 780 | uint32_t const input_lo = endian::read32le(P: input); |
| 781 | uint32_t const input_hi = endian::read32le(P: input + len - 4); |
| 782 | uint64_t const input_64 = input_lo + ((uint64_t)input_hi << 32); |
| 783 | uint64_t const bitflip = |
| 784 | (endian::read64le(P: secret + 16) ^ endian::read64le(P: secret + 24)) + seed; |
| 785 | uint64_t const keyed = input_64 ^ bitflip; |
| 786 | |
| 787 | /* Shift len to the left to ensure it is even, this avoids even multiplies. |
| 788 | */ |
| 789 | XXH128_hash_t m128 = XXH_mult64to128(lhs: keyed, rhs: PRIME64_1 + (len << 2)); |
| 790 | |
| 791 | m128.high64 += (m128.low64 << 1); |
| 792 | m128.low64 ^= (m128.high64 >> 3); |
| 793 | |
| 794 | m128.low64 = XXH_xorshift64(v64: m128.low64, shift: 35); |
| 795 | m128.low64 *= PRIME_MX2; |
| 796 | m128.low64 = XXH_xorshift64(v64: m128.low64, shift: 28); |
| 797 | m128.high64 = XXH3_avalanche(hash: m128.high64); |
| 798 | return m128; |
| 799 | } |
| 800 | |
| 801 | LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t |
| 802 | XXH3_len_9to16_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 803 | uint64_t seed) { |
| 804 | uint64_t const bitflipl = |
| 805 | (endian::read64le(P: secret + 32) ^ endian::read64le(P: secret + 40)) - seed; |
| 806 | uint64_t const bitfliph = |
| 807 | (endian::read64le(P: secret + 48) ^ endian::read64le(P: secret + 56)) + seed; |
| 808 | uint64_t const input_lo = endian::read64le(P: input); |
| 809 | uint64_t input_hi = endian::read64le(P: input + len - 8); |
| 810 | XXH128_hash_t m128 = |
| 811 | XXH_mult64to128(lhs: input_lo ^ input_hi ^ bitflipl, rhs: PRIME64_1); |
| 812 | /* |
| 813 | * Put len in the middle of m128 to ensure that the length gets mixed to |
| 814 | * both the low and high bits in the 128x64 multiply below. |
| 815 | */ |
| 816 | m128.low64 += (uint64_t)(len - 1) << 54; |
| 817 | input_hi ^= bitfliph; |
| 818 | /* |
| 819 | * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
| 820 | * add the long product of the low 32 bits of input_hi and PRIME32_2 to |
| 821 | * the high 64 bits of m128. |
| 822 | * |
| 823 | * The best approach to this operation is different on 32-bit and 64-bit. |
| 824 | */ |
| 825 | if (sizeof(void *) < sizeof(uint64_t)) { /* 32-bit */ |
| 826 | /* |
| 827 | * 32-bit optimized version, which is more readable. |
| 828 | * |
| 829 | * On 32-bit, it removes an ADC and delays a dependency between the two |
| 830 | * halves of m128.high64, but it generates an extra mask on 64-bit. |
| 831 | */ |
| 832 | m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + |
| 833 | XXH_mult32to64((uint32_t)input_hi, PRIME32_2); |
| 834 | } else { |
| 835 | /* |
| 836 | * 64-bit optimized (albeit more confusing) version. |
| 837 | * |
| 838 | * Uses some properties of addition and multiplication to remove the mask: |
| 839 | * |
| 840 | * Let: |
| 841 | * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
| 842 | * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
| 843 | * c = PRIME32_2 |
| 844 | * |
| 845 | * a + (b * c) |
| 846 | * Inverse Property: x + y - x == y |
| 847 | * a + (b * (1 + c - 1)) |
| 848 | * Distributive Property: x * (y + z) == (x * y) + (x * z) |
| 849 | * a + (b * 1) + (b * (c - 1)) |
| 850 | * Identity Property: x * 1 == x |
| 851 | * a + b + (b * (c - 1)) |
| 852 | * |
| 853 | * Substitute a, b, and c: |
| 854 | * input_hi.hi + input_hi.lo + ((uint64_t)input_hi.lo * (PRIME32_2 |
| 855 | * - 1)) |
| 856 | * |
| 857 | * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
| 858 | * input_hi + ((uint64_t)input_hi.lo * (PRIME32_2 - 1)) |
| 859 | */ |
| 860 | m128.high64 += input_hi + XXH_mult32to64((uint32_t)input_hi, PRIME32_2 - 1); |
| 861 | } |
| 862 | /* m128 ^= XXH_swap64(m128 >> 64); */ |
| 863 | m128.low64 ^= byteswap(V: m128.high64); |
| 864 | |
| 865 | /* 128x64 multiply: h128 = m128 * PRIME64_2; */ |
| 866 | XXH128_hash_t h128 = XXH_mult64to128(lhs: m128.low64, rhs: PRIME64_2); |
| 867 | h128.high64 += m128.high64 * PRIME64_2; |
| 868 | |
| 869 | h128.low64 = XXH3_avalanche(hash: h128.low64); |
| 870 | h128.high64 = XXH3_avalanche(hash: h128.high64); |
| 871 | return h128; |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
| 876 | */ |
| 877 | LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t |
| 878 | XXH3_len_0to16_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 879 | uint64_t seed) { |
| 880 | if (len > 8) |
| 881 | return XXH3_len_9to16_128b(input, len, secret, seed); |
| 882 | if (len >= 4) |
| 883 | return XXH3_len_4to8_128b(input, len, secret, seed); |
| 884 | if (len) |
| 885 | return XXH3_len_1to3_128b(input, len, secret, seed); |
| 886 | XXH128_hash_t h128; |
| 887 | uint64_t const bitflipl = |
| 888 | endian::read64le(P: secret + 64) ^ endian::read64le(P: secret + 72); |
| 889 | uint64_t const bitfliph = |
| 890 | endian::read64le(P: secret + 80) ^ endian::read64le(P: secret + 88); |
| 891 | h128.low64 = XXH64_avalanche(hash: seed ^ bitflipl); |
| 892 | h128.high64 = XXH64_avalanche(hash: seed ^ bitfliph); |
| 893 | return h128; |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
| 898 | */ |
| 899 | LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t |
| 900 | XXH128_mix32B(XXH128_hash_t acc, const uint8_t *input_1, const uint8_t *input_2, |
| 901 | const uint8_t *secret, uint64_t seed) { |
| 902 | acc.low64 += XXH3_mix16B(input: input_1, secret: secret + 0, seed); |
| 903 | acc.low64 ^= endian::read64le(P: input_2) + endian::read64le(P: input_2 + 8); |
| 904 | acc.high64 += XXH3_mix16B(input: input_2, secret: secret + 16, seed); |
| 905 | acc.high64 ^= endian::read64le(P: input_1) + endian::read64le(P: input_1 + 8); |
| 906 | return acc; |
| 907 | } |
| 908 | |
| 909 | LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t |
| 910 | XXH3_len_17to128_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 911 | size_t secretSize, uint64_t seed) { |
| 912 | (void)secretSize; |
| 913 | |
| 914 | XXH128_hash_t acc; |
| 915 | acc.low64 = len * PRIME64_1; |
| 916 | acc.high64 = 0; |
| 917 | |
| 918 | if (len > 32) { |
| 919 | if (len > 64) { |
| 920 | if (len > 96) { |
| 921 | acc = |
| 922 | XXH128_mix32B(acc, input_1: input + 48, input_2: input + len - 64, secret: secret + 96, seed); |
| 923 | } |
| 924 | acc = XXH128_mix32B(acc, input_1: input + 32, input_2: input + len - 48, secret: secret + 64, seed); |
| 925 | } |
| 926 | acc = XXH128_mix32B(acc, input_1: input + 16, input_2: input + len - 32, secret: secret + 32, seed); |
| 927 | } |
| 928 | acc = XXH128_mix32B(acc, input_1: input, input_2: input + len - 16, secret, seed); |
| 929 | XXH128_hash_t h128; |
| 930 | h128.low64 = acc.low64 + acc.high64; |
| 931 | h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + |
| 932 | ((len - seed) * PRIME64_2); |
| 933 | h128.low64 = XXH3_avalanche(hash: h128.low64); |
| 934 | h128.high64 = (uint64_t)0 - XXH3_avalanche(hash: h128.high64); |
| 935 | return h128; |
| 936 | } |
| 937 | |
| 938 | LLVM_ATTRIBUTE_NOINLINE static XXH128_hash_t |
| 939 | XXH3_len_129to240_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 940 | size_t secretSize, uint64_t seed) { |
| 941 | (void)secretSize; |
| 942 | |
| 943 | XXH128_hash_t acc; |
| 944 | unsigned i; |
| 945 | acc.low64 = len * PRIME64_1; |
| 946 | acc.high64 = 0; |
| 947 | /* |
| 948 | * We set as `i` as offset + 32. We do this so that unchanged |
| 949 | * `len` can be used as upper bound. This reaches a sweet spot |
| 950 | * where both x86 and aarch64 get simple agen and good codegen |
| 951 | * for the loop. |
| 952 | */ |
| 953 | for (i = 32; i < 160; i += 32) { |
| 954 | acc = XXH128_mix32B(acc, input_1: input + i - 32, input_2: input + i - 16, secret: secret + i - 32, |
| 955 | seed); |
| 956 | } |
| 957 | acc.low64 = XXH3_avalanche(hash: acc.low64); |
| 958 | acc.high64 = XXH3_avalanche(hash: acc.high64); |
| 959 | /* |
| 960 | * NB: `i <= len` will duplicate the last 32-bytes if |
| 961 | * len % 32 was zero. This is an unfortunate necessity to keep |
| 962 | * the hash result stable. |
| 963 | */ |
| 964 | for (i = 160; i <= len; i += 32) { |
| 965 | acc = XXH128_mix32B(acc, input_1: input + i - 32, input_2: input + i - 16, |
| 966 | secret: secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, seed); |
| 967 | } |
| 968 | /* last bytes */ |
| 969 | acc = |
| 970 | XXH128_mix32B(acc, input_1: input + len - 16, input_2: input + len - 32, |
| 971 | secret: secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
| 972 | seed: (uint64_t)0 - seed); |
| 973 | |
| 974 | XXH128_hash_t h128; |
| 975 | h128.low64 = acc.low64 + acc.high64; |
| 976 | h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + |
| 977 | ((len - seed) * PRIME64_2); |
| 978 | h128.low64 = XXH3_avalanche(hash: h128.low64); |
| 979 | h128.high64 = (uint64_t)0 - XXH3_avalanche(hash: h128.high64); |
| 980 | return h128; |
| 981 | } |
| 982 | |
| 983 | LLVM_ATTRIBUTE_ALWAYS_INLINE XXH128_hash_t |
| 984 | XXH3_hashLong_128b(const uint8_t *input, size_t len, const uint8_t *secret, |
| 985 | size_t secretSize) { |
| 986 | const size_t nbStripesPerBlock = |
| 987 | (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
| 988 | const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
| 989 | const size_t nb_blocks = (len - 1) / block_len; |
| 990 | alignas(16) uint64_t acc[XXH_ACC_NB] = { |
| 991 | PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, |
| 992 | PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1, |
| 993 | }; |
| 994 | |
| 995 | for (size_t n = 0; n < nb_blocks; ++n) { |
| 996 | XXH3_accumulate(acc, input: input + n * block_len, secret, nbStripes: nbStripesPerBlock); |
| 997 | XXH3_scrambleAcc(acc, secret: secret + secretSize - XXH_STRIPE_LEN); |
| 998 | } |
| 999 | |
| 1000 | /* last partial block */ |
| 1001 | const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
| 1002 | assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE); |
| 1003 | XXH3_accumulate(acc, input: input + nb_blocks * block_len, secret, nbStripes); |
| 1004 | |
| 1005 | /* last stripe */ |
| 1006 | constexpr size_t XXH_SECRET_LASTACC_START = 7; |
| 1007 | XXH3_accumulate_512(acc, input: input + len - XXH_STRIPE_LEN, |
| 1008 | secret: secret + secretSize - XXH_STRIPE_LEN - |
| 1009 | XXH_SECRET_LASTACC_START); |
| 1010 | |
| 1011 | /* converge into final hash */ |
| 1012 | static_assert(sizeof(acc) == 64); |
| 1013 | XXH128_hash_t h128; |
| 1014 | constexpr size_t XXH_SECRET_MERGEACCS_START = 11; |
| 1015 | h128.low64 = XXH3_mergeAccs(acc, key: secret + XXH_SECRET_MERGEACCS_START, |
| 1016 | start: (uint64_t)len * PRIME64_1); |
| 1017 | h128.high64 = XXH3_mergeAccs( |
| 1018 | acc, key: secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| 1019 | start: ~((uint64_t)len * PRIME64_2)); |
| 1020 | return h128; |
| 1021 | } |
| 1022 | |
| 1023 | llvm::XXH128_hash_t llvm::xxh3_128bits(ArrayRef<uint8_t> data) { |
| 1024 | size_t len = data.size(); |
| 1025 | const uint8_t *input = data.data(); |
| 1026 | |
| 1027 | /* |
| 1028 | * If an action is to be taken if `secret` conditions are not respected, |
| 1029 | * it should be done here. |
| 1030 | * For now, it's a contract pre-condition. |
| 1031 | * Adding a check and a branch here would cost performance at every hash. |
| 1032 | */ |
| 1033 | if (len <= 16) |
| 1034 | return XXH3_len_0to16_128b(input, len, secret: kSecret, /*seed64=*/seed: 0); |
| 1035 | if (len <= 128) |
| 1036 | return XXH3_len_17to128_128b(input, len, secret: kSecret, secretSize: sizeof(kSecret), |
| 1037 | /*seed64=*/seed: 0); |
| 1038 | if (len <= XXH3_MIDSIZE_MAX) |
| 1039 | return XXH3_len_129to240_128b(input, len, secret: kSecret, secretSize: sizeof(kSecret), |
| 1040 | /*seed64=*/seed: 0); |
| 1041 | return XXH3_hashLong_128b(input, len, secret: kSecret, secretSize: sizeof(kSecret)); |
| 1042 | } |
| 1043 | |