| 1 | //===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the SetTheory class that computes ordered sets of |
| 10 | // Records from DAG expressions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/TableGen/SetTheory.h" |
| 15 | #include "llvm/ADT/ArrayRef.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/SmallVector.h" |
| 18 | #include "llvm/ADT/StringRef.h" |
| 19 | #include "llvm/Support/Casting.h" |
| 20 | #include "llvm/Support/Format.h" |
| 21 | #include "llvm/Support/SMLoc.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | #include "llvm/TableGen/Error.h" |
| 24 | #include "llvm/TableGen/Record.h" |
| 25 | #include <algorithm> |
| 26 | #include <cstdint> |
| 27 | #include <string> |
| 28 | #include <utility> |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | // Define the standard operators. |
| 33 | namespace { |
| 34 | |
| 35 | using RecSet = SetTheory::RecSet; |
| 36 | using RecVec = SetTheory::RecVec; |
| 37 | |
| 38 | // (add a, b, ...) Evaluate and union all arguments. |
| 39 | struct AddOp : public SetTheory::Operator { |
| 40 | void apply(SetTheory &ST, const DagInit *Expr, RecSet &Elts, |
| 41 | ArrayRef<SMLoc> Loc) override { |
| 42 | ST.evaluate(begin: Expr->arg_begin(), end: Expr->arg_end(), Elts, Loc); |
| 43 | } |
| 44 | }; |
| 45 | |
| 46 | // (sub Add, Sub, ...) Set difference. |
| 47 | struct SubOp : public SetTheory::Operator { |
| 48 | void apply(SetTheory &ST, const DagInit *Expr, RecSet &Elts, |
| 49 | ArrayRef<SMLoc> Loc) override { |
| 50 | if (Expr->arg_size() < 2) |
| 51 | PrintFatalError(ErrorLoc: Loc, Msg: "Set difference needs at least two arguments: " + |
| 52 | Expr->getAsString()); |
| 53 | RecSet Add, Sub; |
| 54 | ST.evaluate(Expr: *Expr->arg_begin(), Elts&: Add, Loc); |
| 55 | ST.evaluate(begin: Expr->arg_begin() + 1, end: Expr->arg_end(), Elts&: Sub, Loc); |
| 56 | for (const auto &I : Add) |
| 57 | if (!Sub.count(key: I)) |
| 58 | Elts.insert(X: I); |
| 59 | } |
| 60 | }; |
| 61 | |
| 62 | // (and S1, S2) Set intersection. |
| 63 | struct AndOp : public SetTheory::Operator { |
| 64 | void apply(SetTheory &ST, const DagInit *Expr, RecSet &Elts, |
| 65 | ArrayRef<SMLoc> Loc) override { |
| 66 | if (Expr->arg_size() != 2) |
| 67 | PrintFatalError(ErrorLoc: Loc, Msg: "Set intersection requires two arguments: " + |
| 68 | Expr->getAsString()); |
| 69 | RecSet S1, S2; |
| 70 | ST.evaluate(Expr: Expr->arg_begin()[0], Elts&: S1, Loc); |
| 71 | ST.evaluate(Expr: Expr->arg_begin()[1], Elts&: S2, Loc); |
| 72 | for (const auto &I : S1) |
| 73 | if (S2.count(key: I)) |
| 74 | Elts.insert(X: I); |
| 75 | } |
| 76 | }; |
| 77 | |
| 78 | // SetIntBinOp - Abstract base class for (Op S, N) operators. |
| 79 | struct SetIntBinOp : public SetTheory::Operator { |
| 80 | virtual void apply2(SetTheory &ST, const DagInit *Expr, RecSet &Set, |
| 81 | int64_t N, RecSet &Elts, ArrayRef<SMLoc> Loc) = 0; |
| 82 | |
| 83 | void apply(SetTheory &ST, const DagInit *Expr, RecSet &Elts, |
| 84 | ArrayRef<SMLoc> Loc) override { |
| 85 | if (Expr->arg_size() != 2) |
| 86 | PrintFatalError(ErrorLoc: Loc, Msg: "Operator requires (Op Set, Int) arguments: " + |
| 87 | Expr->getAsString()); |
| 88 | RecSet Set; |
| 89 | ST.evaluate(Expr: Expr->arg_begin()[0], Elts&: Set, Loc); |
| 90 | const auto *II = dyn_cast<IntInit>(Val: Expr->arg_begin()[1]); |
| 91 | if (!II) |
| 92 | PrintFatalError(ErrorLoc: Loc, Msg: "Second argument must be an integer: " + |
| 93 | Expr->getAsString()); |
| 94 | apply2(ST, Expr, Set, N: II->getValue(), Elts, Loc); |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | // (shl S, N) Shift left, remove the first N elements. |
| 99 | struct ShlOp : public SetIntBinOp { |
| 100 | void apply2(SetTheory &ST, const DagInit *Expr, RecSet &Set, int64_t N, |
| 101 | RecSet &Elts, ArrayRef<SMLoc> Loc) override { |
| 102 | if (N < 0) |
| 103 | PrintFatalError(ErrorLoc: Loc, Msg: "Positive shift required: " + |
| 104 | Expr->getAsString()); |
| 105 | if (unsigned(N) < Set.size()) |
| 106 | Elts.insert(Start: Set.begin() + N, End: Set.end()); |
| 107 | } |
| 108 | }; |
| 109 | |
| 110 | // (trunc S, N) Truncate after the first N elements. |
| 111 | struct TruncOp : public SetIntBinOp { |
| 112 | void apply2(SetTheory &ST, const DagInit *Expr, RecSet &Set, int64_t N, |
| 113 | RecSet &Elts, ArrayRef<SMLoc> Loc) override { |
| 114 | if (N < 0) |
| 115 | PrintFatalError(ErrorLoc: Loc, Msg: "Positive length required: " + |
| 116 | Expr->getAsString()); |
| 117 | if (unsigned(N) > Set.size()) |
| 118 | N = Set.size(); |
| 119 | Elts.insert(Start: Set.begin(), End: Set.begin() + N); |
| 120 | } |
| 121 | }; |
| 122 | |
| 123 | // Left/right rotation. |
| 124 | struct RotOp : public SetIntBinOp { |
| 125 | const bool Reverse; |
| 126 | |
| 127 | RotOp(bool Rev) : Reverse(Rev) {} |
| 128 | |
| 129 | void apply2(SetTheory &ST, const DagInit *Expr, RecSet &Set, int64_t N, |
| 130 | RecSet &Elts, ArrayRef<SMLoc> Loc) override { |
| 131 | if (Reverse) |
| 132 | N = -N; |
| 133 | // N > 0 -> rotate left, N < 0 -> rotate right. |
| 134 | if (Set.empty()) |
| 135 | return; |
| 136 | if (N < 0) |
| 137 | N = Set.size() - (-N % Set.size()); |
| 138 | else |
| 139 | N %= Set.size(); |
| 140 | Elts.insert(Start: Set.begin() + N, End: Set.end()); |
| 141 | Elts.insert(Start: Set.begin(), End: Set.begin() + N); |
| 142 | } |
| 143 | }; |
| 144 | |
| 145 | // (decimate S, N) Pick every N'th element of S. |
| 146 | struct DecimateOp : public SetIntBinOp { |
| 147 | void apply2(SetTheory &ST, const DagInit *Expr, RecSet &Set, int64_t N, |
| 148 | RecSet &Elts, ArrayRef<SMLoc> Loc) override { |
| 149 | if (N <= 0) |
| 150 | PrintFatalError(ErrorLoc: Loc, Msg: "Positive stride required: " + |
| 151 | Expr->getAsString()); |
| 152 | for (unsigned I = 0; I < Set.size(); I += N) |
| 153 | Elts.insert(X: Set[I]); |
| 154 | } |
| 155 | }; |
| 156 | |
| 157 | // (interleave S1, S2, ...) Interleave elements of the arguments. |
| 158 | struct InterleaveOp : public SetTheory::Operator { |
| 159 | void apply(SetTheory &ST, const DagInit *Expr, RecSet &Elts, |
| 160 | ArrayRef<SMLoc> Loc) override { |
| 161 | // Evaluate the arguments individually. |
| 162 | SmallVector<RecSet, 4> Values(Expr->getNumArgs()); |
| 163 | unsigned MaxSize = 0; |
| 164 | for (auto [Arg, Value] : zip(t: Expr->getArgs(), u&: Values)) { |
| 165 | ST.evaluate(Expr: Arg, Elts&: Value, Loc); |
| 166 | MaxSize = std::max(a: MaxSize, b: unsigned(Value.size())); |
| 167 | } |
| 168 | // Interleave arguments into Elts. |
| 169 | for (unsigned n = 0; n != MaxSize; ++n) |
| 170 | for (const RecSet &Value : Values) |
| 171 | if (n < Value.size()) |
| 172 | Elts.insert(X: Value[n]); |
| 173 | } |
| 174 | }; |
| 175 | |
| 176 | // (sequence "Format", From, To) Generate a sequence of records by name. |
| 177 | struct SequenceOp : public SetTheory::Operator { |
| 178 | void apply(SetTheory &ST, const DagInit *Expr, RecSet &Elts, |
| 179 | ArrayRef<SMLoc> Loc) override { |
| 180 | int Step = 1; |
| 181 | if (Expr->arg_size() > 4) |
| 182 | PrintFatalError(ErrorLoc: Loc, Msg: "Bad args to (sequence \"Format\", From, To): " + |
| 183 | Expr->getAsString()); |
| 184 | if (Expr->arg_size() == 4) { |
| 185 | if (const auto *II = dyn_cast<IntInit>(Val: Expr->arg_begin()[3])) |
| 186 | Step = II->getValue(); |
| 187 | else |
| 188 | PrintFatalError(ErrorLoc: Loc, Msg: "Stride must be an integer: " + |
| 189 | Expr->getAsString()); |
| 190 | } |
| 191 | |
| 192 | std::string Format; |
| 193 | if (const auto *SI = dyn_cast<StringInit>(Val: Expr->arg_begin()[0])) |
| 194 | Format = SI->getValue().str(); |
| 195 | else |
| 196 | PrintFatalError(ErrorLoc: Loc, Msg: "Format must be a string: " + Expr->getAsString()); |
| 197 | |
| 198 | int64_t From, To; |
| 199 | if (const auto *II = dyn_cast<IntInit>(Val: Expr->arg_begin()[1])) |
| 200 | From = II->getValue(); |
| 201 | else |
| 202 | PrintFatalError(ErrorLoc: Loc, Msg: "From must be an integer: " + Expr->getAsString()); |
| 203 | if (From < 0 || From >= (1 << 30)) |
| 204 | PrintFatalError(ErrorLoc: Loc, Msg: "From out of range" ); |
| 205 | |
| 206 | if (const auto *II = dyn_cast<IntInit>(Val: Expr->arg_begin()[2])) |
| 207 | To = II->getValue(); |
| 208 | else |
| 209 | PrintFatalError(ErrorLoc: Loc, Msg: "To must be an integer: " + Expr->getAsString()); |
| 210 | if (To < 0 || To >= (1 << 30)) |
| 211 | PrintFatalError(ErrorLoc: Loc, Msg: "To out of range" ); |
| 212 | |
| 213 | const RecordKeeper &Records = |
| 214 | cast<DefInit>(Val: Expr->getOperator())->getDef()->getRecords(); |
| 215 | |
| 216 | Step *= From <= To ? 1 : -1; |
| 217 | while (true) { |
| 218 | if (Step > 0 && From > To) |
| 219 | break; |
| 220 | else if (Step < 0 && From < To) |
| 221 | break; |
| 222 | std::string Name; |
| 223 | raw_string_ostream OS(Name); |
| 224 | OS << format(Fmt: Format.c_str(), Vals: unsigned(From)); |
| 225 | const Record *Rec = Records.getDef(Name); |
| 226 | if (!Rec) |
| 227 | PrintFatalError(ErrorLoc: Loc, Msg: "No def named '" + Name + "': " + |
| 228 | Expr->getAsString()); |
| 229 | // Try to reevaluate Rec in case it is a set. |
| 230 | if (const RecVec *Result = ST.expand(Set: Rec)) |
| 231 | Elts.insert_range(R: *Result); |
| 232 | else |
| 233 | Elts.insert(X: Rec); |
| 234 | |
| 235 | From += Step; |
| 236 | } |
| 237 | } |
| 238 | }; |
| 239 | |
| 240 | // Expand a Def into a set by evaluating one of its fields. |
| 241 | struct FieldExpander : public SetTheory::Expander { |
| 242 | StringRef FieldName; |
| 243 | |
| 244 | FieldExpander(StringRef fn) : FieldName(fn) {} |
| 245 | |
| 246 | void expand(SetTheory &ST, const Record *Def, RecSet &Elts) override { |
| 247 | ST.evaluate(Expr: Def->getValueInit(FieldName), Elts, Loc: Def->getLoc()); |
| 248 | } |
| 249 | }; |
| 250 | |
| 251 | } // end anonymous namespace |
| 252 | |
| 253 | // Pin the vtables to this file. |
| 254 | void SetTheory::Operator::anchor() {} |
| 255 | void SetTheory::Expander::anchor() {} |
| 256 | |
| 257 | SetTheory::SetTheory() { |
| 258 | addOperator(Name: "add" , std::make_unique<AddOp>()); |
| 259 | addOperator(Name: "sub" , std::make_unique<SubOp>()); |
| 260 | addOperator(Name: "and" , std::make_unique<AndOp>()); |
| 261 | addOperator(Name: "shl" , std::make_unique<ShlOp>()); |
| 262 | addOperator(Name: "trunc" , std::make_unique<TruncOp>()); |
| 263 | addOperator(Name: "rotl" , std::make_unique<RotOp>(args: false)); |
| 264 | addOperator(Name: "rotr" , std::make_unique<RotOp>(args: true)); |
| 265 | addOperator(Name: "decimate" , std::make_unique<DecimateOp>()); |
| 266 | addOperator(Name: "interleave" , std::make_unique<InterleaveOp>()); |
| 267 | addOperator(Name: "sequence" , std::make_unique<SequenceOp>()); |
| 268 | } |
| 269 | |
| 270 | void SetTheory::addOperator(StringRef Name, std::unique_ptr<Operator> Op) { |
| 271 | Operators[Name] = std::move(Op); |
| 272 | } |
| 273 | |
| 274 | void SetTheory::addExpander(StringRef ClassName, std::unique_ptr<Expander> E) { |
| 275 | Expanders[ClassName] = std::move(E); |
| 276 | } |
| 277 | |
| 278 | void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) { |
| 279 | addExpander(ClassName, E: std::make_unique<FieldExpander>(args&: FieldName)); |
| 280 | } |
| 281 | |
| 282 | void SetTheory::evaluate(const Init *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) { |
| 283 | // A def in a list can be a just an element, or it may expand. |
| 284 | if (const auto *Def = dyn_cast<DefInit>(Val: Expr)) { |
| 285 | if (const RecVec *Result = expand(Set: Def->getDef())) |
| 286 | return Elts.insert_range(R: *Result); |
| 287 | Elts.insert(X: Def->getDef()); |
| 288 | return; |
| 289 | } |
| 290 | |
| 291 | // Lists simply expand. |
| 292 | if (const auto *LI = dyn_cast<ListInit>(Val: Expr)) |
| 293 | return evaluate(begin: LI->begin(), end: LI->end(), Elts, Loc); |
| 294 | |
| 295 | // Anything else must be a DAG. |
| 296 | const auto *DagExpr = dyn_cast<DagInit>(Val: Expr); |
| 297 | if (!DagExpr) |
| 298 | PrintFatalError(ErrorLoc: Loc, Msg: "Invalid set element: " + Expr->getAsString()); |
| 299 | const auto *OpInit = dyn_cast<DefInit>(Val: DagExpr->getOperator()); |
| 300 | if (!OpInit) |
| 301 | PrintFatalError(ErrorLoc: Loc, Msg: "Bad set expression: " + Expr->getAsString()); |
| 302 | auto I = Operators.find(Key: OpInit->getDef()->getName()); |
| 303 | if (I == Operators.end()) |
| 304 | PrintFatalError(ErrorLoc: Loc, Msg: "Unknown set operator: " + Expr->getAsString()); |
| 305 | I->second->apply(*this, Expr: DagExpr, Elts, Loc); |
| 306 | } |
| 307 | |
| 308 | const RecVec *SetTheory::expand(const Record *Set) { |
| 309 | // Check existing entries for Set and return early. |
| 310 | ExpandMap::iterator I = Expansions.find(x: Set); |
| 311 | if (I != Expansions.end()) |
| 312 | return &I->second; |
| 313 | |
| 314 | // This is the first time we see Set. Find a suitable expander. |
| 315 | for (const Record *SuperClass : Set->getSuperClasses()) { |
| 316 | // Skip unnamed superclasses. |
| 317 | if (!isa<StringInit>(Val: SuperClass->getNameInit())) |
| 318 | continue; |
| 319 | auto I = Expanders.find(Key: SuperClass->getName()); |
| 320 | if (I == Expanders.end()) |
| 321 | continue; |
| 322 | // This breaks recursive definitions. |
| 323 | RecVec &EltVec = Expansions[Set]; |
| 324 | RecSet Elts; |
| 325 | I->second->expand(*this, Set, Elts); |
| 326 | EltVec.assign(first: Elts.begin(), last: Elts.end()); |
| 327 | return &EltVec; |
| 328 | } |
| 329 | |
| 330 | // Set is not expandable. |
| 331 | return nullptr; |
| 332 | } |
| 333 | |