| 1 | //===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H |
| 10 | #define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H |
| 11 | |
| 12 | #include "AMDGPUSubtarget.h" |
| 13 | #include "SIDefines.h" |
| 14 | #include "llvm/IR/CallingConv.h" |
| 15 | #include "llvm/IR/InstrTypes.h" |
| 16 | #include "llvm/IR/Module.h" |
| 17 | #include "llvm/Support/Alignment.h" |
| 18 | #include <array> |
| 19 | #include <functional> |
| 20 | #include <utility> |
| 21 | |
| 22 | // Pull in OpName enum definition and getNamedOperandIdx() declaration. |
| 23 | #define GET_INSTRINFO_OPERAND_ENUM |
| 24 | #include "AMDGPUGenInstrInfo.inc" |
| 25 | |
| 26 | struct amd_kernel_code_t; |
| 27 | |
| 28 | namespace llvm { |
| 29 | |
| 30 | struct Align; |
| 31 | class Argument; |
| 32 | class Function; |
| 33 | class GlobalValue; |
| 34 | class MCInstrInfo; |
| 35 | class MCRegisterClass; |
| 36 | class MCRegisterInfo; |
| 37 | class MCSubtargetInfo; |
| 38 | class StringRef; |
| 39 | class Triple; |
| 40 | class raw_ostream; |
| 41 | |
| 42 | namespace AMDGPU { |
| 43 | |
| 44 | struct AMDGPUMCKernelCodeT; |
| 45 | struct IsaVersion; |
| 46 | |
| 47 | /// Generic target versions emitted by this version of LLVM. |
| 48 | /// |
| 49 | /// These numbers are incremented every time a codegen breaking change occurs |
| 50 | /// within a generic family. |
| 51 | namespace GenericVersion { |
| 52 | static constexpr unsigned GFX9 = 1; |
| 53 | static constexpr unsigned GFX9_4 = 1; |
| 54 | static constexpr unsigned GFX10_1 = 1; |
| 55 | static constexpr unsigned GFX10_3 = 1; |
| 56 | static constexpr unsigned GFX11 = 1; |
| 57 | static constexpr unsigned GFX12 = 1; |
| 58 | } // namespace GenericVersion |
| 59 | |
| 60 | enum { AMDHSA_COV4 = 4, AMDHSA_COV5 = 5, AMDHSA_COV6 = 6 }; |
| 61 | |
| 62 | enum class FPType { None, FP4, FP8 }; |
| 63 | |
| 64 | /// \returns True if \p STI is AMDHSA. |
| 65 | bool isHsaAbi(const MCSubtargetInfo &STI); |
| 66 | |
| 67 | /// \returns Code object version from the IR module flag. |
| 68 | unsigned getAMDHSACodeObjectVersion(const Module &M); |
| 69 | |
| 70 | /// \returns Code object version from ELF's e_ident[EI_ABIVERSION]. |
| 71 | unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion); |
| 72 | |
| 73 | /// \returns The default HSA code object version. This should only be used when |
| 74 | /// we lack a more accurate CodeObjectVersion value (e.g. from the IR module |
| 75 | /// flag or a .amdhsa_code_object_version directive) |
| 76 | unsigned getDefaultAMDHSACodeObjectVersion(); |
| 77 | |
| 78 | /// \returns ABIVersion suitable for use in ELF's e_ident[EI_ABIVERSION]. \param |
| 79 | /// CodeObjectVersion is a value returned by getAMDHSACodeObjectVersion(). |
| 80 | uint8_t getELFABIVersion(const Triple &OS, unsigned CodeObjectVersion); |
| 81 | |
| 82 | /// \returns The offset of the multigrid_sync_arg argument from implicitarg_ptr |
| 83 | unsigned getMultigridSyncArgImplicitArgPosition(unsigned COV); |
| 84 | |
| 85 | /// \returns The offset of the hostcall pointer argument from implicitarg_ptr |
| 86 | unsigned getHostcallImplicitArgPosition(unsigned COV); |
| 87 | |
| 88 | unsigned getDefaultQueueImplicitArgPosition(unsigned COV); |
| 89 | unsigned getCompletionActionImplicitArgPosition(unsigned COV); |
| 90 | |
| 91 | struct GcnBufferFormatInfo { |
| 92 | unsigned Format; |
| 93 | unsigned BitsPerComp; |
| 94 | unsigned NumComponents; |
| 95 | unsigned NumFormat; |
| 96 | unsigned DataFormat; |
| 97 | }; |
| 98 | |
| 99 | struct MAIInstInfo { |
| 100 | uint16_t Opcode; |
| 101 | bool is_dgemm; |
| 102 | bool is_gfx940_xdl; |
| 103 | }; |
| 104 | |
| 105 | struct MFMA_F8F6F4_Info { |
| 106 | unsigned Opcode; |
| 107 | unsigned F8F8Opcode; |
| 108 | uint8_t NumRegsSrcA; |
| 109 | uint8_t NumRegsSrcB; |
| 110 | }; |
| 111 | |
| 112 | struct CvtScaleF32_F32F16ToF8F4_Info { |
| 113 | unsigned Opcode; |
| 114 | }; |
| 115 | |
| 116 | struct True16D16Info { |
| 117 | unsigned T16Op; |
| 118 | unsigned HiOp; |
| 119 | unsigned LoOp; |
| 120 | }; |
| 121 | |
| 122 | #define GET_MIMGBaseOpcode_DECL |
| 123 | #define GET_MIMGDim_DECL |
| 124 | #define GET_MIMGEncoding_DECL |
| 125 | #define GET_MIMGLZMapping_DECL |
| 126 | #define GET_MIMGMIPMapping_DECL |
| 127 | #define GET_MIMGBiASMapping_DECL |
| 128 | #define GET_MAIInstInfoTable_DECL |
| 129 | #define GET_isMFMA_F8F6F4Table_DECL |
| 130 | #define GET_isCvtScaleF32_F32F16ToF8F4Table_DECL |
| 131 | #define GET_True16D16Table_DECL |
| 132 | #include "AMDGPUGenSearchableTables.inc" |
| 133 | |
| 134 | namespace IsaInfo { |
| 135 | |
| 136 | enum { |
| 137 | // The closed Vulkan driver sets 96, which limits the wave count to 8 but |
| 138 | // doesn't spill SGPRs as much as when 80 is set. |
| 139 | FIXED_NUM_SGPRS_FOR_INIT_BUG = 96, |
| 140 | TRAP_NUM_SGPRS = 16 |
| 141 | }; |
| 142 | |
| 143 | enum class TargetIDSetting { Unsupported, Any, Off, On }; |
| 144 | |
| 145 | class AMDGPUTargetID { |
| 146 | private: |
| 147 | const MCSubtargetInfo &STI; |
| 148 | TargetIDSetting XnackSetting; |
| 149 | TargetIDSetting SramEccSetting; |
| 150 | |
| 151 | public: |
| 152 | explicit AMDGPUTargetID(const MCSubtargetInfo &STI); |
| 153 | ~AMDGPUTargetID() = default; |
| 154 | |
| 155 | /// \return True if the current xnack setting is not "Unsupported". |
| 156 | bool isXnackSupported() const { |
| 157 | return XnackSetting != TargetIDSetting::Unsupported; |
| 158 | } |
| 159 | |
| 160 | /// \returns True if the current xnack setting is "On" or "Any". |
| 161 | bool isXnackOnOrAny() const { |
| 162 | return XnackSetting == TargetIDSetting::On || |
| 163 | XnackSetting == TargetIDSetting::Any; |
| 164 | } |
| 165 | |
| 166 | /// \returns True if current xnack setting is "On" or "Off", |
| 167 | /// false otherwise. |
| 168 | bool isXnackOnOrOff() const { |
| 169 | return getXnackSetting() == TargetIDSetting::On || |
| 170 | getXnackSetting() == TargetIDSetting::Off; |
| 171 | } |
| 172 | |
| 173 | /// \returns The current xnack TargetIDSetting, possible options are |
| 174 | /// "Unsupported", "Any", "Off", and "On". |
| 175 | TargetIDSetting getXnackSetting() const { return XnackSetting; } |
| 176 | |
| 177 | /// Sets xnack setting to \p NewXnackSetting. |
| 178 | void setXnackSetting(TargetIDSetting NewXnackSetting) { |
| 179 | XnackSetting = NewXnackSetting; |
| 180 | } |
| 181 | |
| 182 | /// \return True if the current sramecc setting is not "Unsupported". |
| 183 | bool isSramEccSupported() const { |
| 184 | return SramEccSetting != TargetIDSetting::Unsupported; |
| 185 | } |
| 186 | |
| 187 | /// \returns True if the current sramecc setting is "On" or "Any". |
| 188 | bool isSramEccOnOrAny() const { |
| 189 | return SramEccSetting == TargetIDSetting::On || |
| 190 | SramEccSetting == TargetIDSetting::Any; |
| 191 | } |
| 192 | |
| 193 | /// \returns True if current sramecc setting is "On" or "Off", |
| 194 | /// false otherwise. |
| 195 | bool isSramEccOnOrOff() const { |
| 196 | return getSramEccSetting() == TargetIDSetting::On || |
| 197 | getSramEccSetting() == TargetIDSetting::Off; |
| 198 | } |
| 199 | |
| 200 | /// \returns The current sramecc TargetIDSetting, possible options are |
| 201 | /// "Unsupported", "Any", "Off", and "On". |
| 202 | TargetIDSetting getSramEccSetting() const { return SramEccSetting; } |
| 203 | |
| 204 | /// Sets sramecc setting to \p NewSramEccSetting. |
| 205 | void setSramEccSetting(TargetIDSetting NewSramEccSetting) { |
| 206 | SramEccSetting = NewSramEccSetting; |
| 207 | } |
| 208 | |
| 209 | void setTargetIDFromFeaturesString(StringRef FS); |
| 210 | void setTargetIDFromTargetIDStream(StringRef TargetID); |
| 211 | |
| 212 | /// \returns String representation of an object. |
| 213 | std::string toString() const; |
| 214 | }; |
| 215 | |
| 216 | /// \returns Wavefront size for given subtarget \p STI. |
| 217 | unsigned getWavefrontSize(const MCSubtargetInfo *STI); |
| 218 | |
| 219 | /// \returns Local memory size in bytes for given subtarget \p STI. |
| 220 | unsigned getLocalMemorySize(const MCSubtargetInfo *STI); |
| 221 | |
| 222 | /// \returns Maximum addressable local memory size in bytes for given subtarget |
| 223 | /// \p STI. |
| 224 | unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI); |
| 225 | |
| 226 | /// \returns Number of execution units per compute unit for given subtarget \p |
| 227 | /// STI. |
| 228 | unsigned getEUsPerCU(const MCSubtargetInfo *STI); |
| 229 | |
| 230 | /// \returns Maximum number of work groups per compute unit for given subtarget |
| 231 | /// \p STI and limited by given \p FlatWorkGroupSize. |
| 232 | unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, |
| 233 | unsigned FlatWorkGroupSize); |
| 234 | |
| 235 | /// \returns Minimum number of waves per execution unit for given subtarget \p |
| 236 | /// STI. |
| 237 | unsigned getMinWavesPerEU(const MCSubtargetInfo *STI); |
| 238 | |
| 239 | /// \returns Maximum number of waves per execution unit for given subtarget \p |
| 240 | /// STI without any kind of limitation. |
| 241 | unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI); |
| 242 | |
| 243 | /// \returns Number of waves per execution unit required to support the given \p |
| 244 | /// FlatWorkGroupSize. |
| 245 | unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, |
| 246 | unsigned FlatWorkGroupSize); |
| 247 | |
| 248 | /// \returns Minimum flat work group size for given subtarget \p STI. |
| 249 | unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI); |
| 250 | |
| 251 | /// \returns Maximum flat work group size for given subtarget \p STI. |
| 252 | unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI); |
| 253 | |
| 254 | /// \returns Number of waves per work group for given subtarget \p STI and |
| 255 | /// \p FlatWorkGroupSize. |
| 256 | unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, |
| 257 | unsigned FlatWorkGroupSize); |
| 258 | |
| 259 | /// \returns SGPR allocation granularity for given subtarget \p STI. |
| 260 | unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI); |
| 261 | |
| 262 | /// \returns SGPR encoding granularity for given subtarget \p STI. |
| 263 | unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI); |
| 264 | |
| 265 | /// \returns Total number of SGPRs for given subtarget \p STI. |
| 266 | unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI); |
| 267 | |
| 268 | /// \returns Addressable number of SGPRs for given subtarget \p STI. |
| 269 | unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI); |
| 270 | |
| 271 | /// \returns Minimum number of SGPRs that meets the given number of waves per |
| 272 | /// execution unit requirement for given subtarget \p STI. |
| 273 | unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); |
| 274 | |
| 275 | /// \returns Maximum number of SGPRs that meets the given number of waves per |
| 276 | /// execution unit requirement for given subtarget \p STI. |
| 277 | unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, |
| 278 | bool Addressable); |
| 279 | |
| 280 | /// \returns Number of extra SGPRs implicitly required by given subtarget \p |
| 281 | /// STI when the given special registers are used. |
| 282 | unsigned (const MCSubtargetInfo *STI, bool VCCUsed, |
| 283 | bool FlatScrUsed, bool XNACKUsed); |
| 284 | |
| 285 | /// \returns Number of extra SGPRs implicitly required by given subtarget \p |
| 286 | /// STI when the given special registers are used. XNACK is inferred from |
| 287 | /// \p STI. |
| 288 | unsigned (const MCSubtargetInfo *STI, bool VCCUsed, |
| 289 | bool FlatScrUsed); |
| 290 | |
| 291 | /// \returns Number of SGPR blocks needed for given subtarget \p STI when |
| 292 | /// \p NumSGPRs are used. \p NumSGPRs should already include any special |
| 293 | /// register counts. |
| 294 | unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs); |
| 295 | |
| 296 | /// \returns VGPR allocation granularity for given subtarget \p STI. |
| 297 | /// |
| 298 | /// For subtargets which support it, \p EnableWavefrontSize32 should match |
| 299 | /// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field. |
| 300 | unsigned |
| 301 | getVGPRAllocGranule(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize, |
| 302 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
| 303 | |
| 304 | /// \returns VGPR encoding granularity for given subtarget \p STI. |
| 305 | /// |
| 306 | /// For subtargets which support it, \p EnableWavefrontSize32 should match |
| 307 | /// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field. |
| 308 | unsigned getVGPREncodingGranule( |
| 309 | const MCSubtargetInfo *STI, |
| 310 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
| 311 | |
| 312 | /// For subtargets with a unified VGPR file and mixed ArchVGPR/AGPR usage, |
| 313 | /// returns the allocation granule for ArchVGPRs. |
| 314 | unsigned getArchVGPRAllocGranule(); |
| 315 | |
| 316 | /// \returns Total number of VGPRs for given subtarget \p STI. |
| 317 | unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI); |
| 318 | |
| 319 | /// \returns Addressable number of architectural VGPRs for a given subtarget \p |
| 320 | /// STI. |
| 321 | unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI); |
| 322 | |
| 323 | /// \returns Addressable number of VGPRs for given subtarget \p STI. |
| 324 | unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI, |
| 325 | unsigned DynamicVGPRBlockSize); |
| 326 | |
| 327 | /// \returns Minimum number of VGPRs that meets given number of waves per |
| 328 | /// execution unit requirement for given subtarget \p STI. |
| 329 | unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, |
| 330 | unsigned DynamicVGPRBlockSize); |
| 331 | |
| 332 | /// \returns Maximum number of VGPRs that meets given number of waves per |
| 333 | /// execution unit requirement for given subtarget \p STI. |
| 334 | unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, |
| 335 | unsigned DynamicVGPRBlockSize); |
| 336 | |
| 337 | /// \returns Number of waves reachable for a given \p NumVGPRs usage for given |
| 338 | /// subtarget \p STI. |
| 339 | unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, |
| 340 | unsigned NumVGPRs, |
| 341 | unsigned DynamicVGPRBlockSize); |
| 342 | |
| 343 | /// \returns Number of waves reachable for a given \p NumVGPRs usage, \p Granule |
| 344 | /// size, \p MaxWaves possible, and \p TotalNumVGPRs available. |
| 345 | unsigned getNumWavesPerEUWithNumVGPRs(unsigned NumVGPRs, unsigned Granule, |
| 346 | unsigned MaxWaves, |
| 347 | unsigned TotalNumVGPRs); |
| 348 | |
| 349 | /// \returns Occupancy for a given \p SGPRs usage, \p MaxWaves possible, and \p |
| 350 | /// Gen. |
| 351 | unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, |
| 352 | AMDGPUSubtarget::Generation Gen); |
| 353 | |
| 354 | /// \returns Number of VGPR blocks needed for given subtarget \p STI when |
| 355 | /// \p NumVGPRs are used. We actually return the number of blocks -1, since |
| 356 | /// that's what we encode. |
| 357 | /// |
| 358 | /// For subtargets which support it, \p EnableWavefrontSize32 should match the |
| 359 | /// ENABLE_WAVEFRONT_SIZE32 kernel descriptor field. |
| 360 | unsigned getEncodedNumVGPRBlocks( |
| 361 | const MCSubtargetInfo *STI, unsigned NumVGPRs, |
| 362 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
| 363 | |
| 364 | /// \returns Number of VGPR blocks that need to be allocated for the given |
| 365 | /// subtarget \p STI when \p NumVGPRs are used. |
| 366 | unsigned getAllocatedNumVGPRBlocks( |
| 367 | const MCSubtargetInfo *STI, unsigned NumVGPRs, |
| 368 | unsigned DynamicVGPRBlockSize, |
| 369 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
| 370 | |
| 371 | } // end namespace IsaInfo |
| 372 | |
| 373 | // Represents a field in an encoded value. |
| 374 | template <unsigned HighBit, unsigned LowBit, unsigned D = 0> |
| 375 | struct EncodingField { |
| 376 | static_assert(HighBit >= LowBit, "Invalid bit range!" ); |
| 377 | static constexpr unsigned Offset = LowBit; |
| 378 | static constexpr unsigned Width = HighBit - LowBit + 1; |
| 379 | |
| 380 | using ValueType = unsigned; |
| 381 | static constexpr ValueType Default = D; |
| 382 | |
| 383 | ValueType Value; |
| 384 | constexpr EncodingField(ValueType Value) : Value(Value) {} |
| 385 | |
| 386 | constexpr uint64_t encode() const { return Value; } |
| 387 | static ValueType decode(uint64_t Encoded) { return Encoded; } |
| 388 | }; |
| 389 | |
| 390 | // Represents a single bit in an encoded value. |
| 391 | template <unsigned Bit, unsigned D = 0> |
| 392 | using EncodingBit = EncodingField<Bit, Bit, D>; |
| 393 | |
| 394 | // A helper for encoding and decoding multiple fields. |
| 395 | template <typename... Fields> struct EncodingFields { |
| 396 | static constexpr uint64_t encode(Fields... Values) { |
| 397 | return ((Values.encode() << Values.Offset) | ...); |
| 398 | } |
| 399 | |
| 400 | static std::tuple<typename Fields::ValueType...> decode(uint64_t Encoded) { |
| 401 | return {Fields::decode((Encoded >> Fields::Offset) & |
| 402 | maxUIntN(Fields::Width))...}; |
| 403 | } |
| 404 | }; |
| 405 | |
| 406 | LLVM_READONLY |
| 407 | inline bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx) { |
| 408 | return getNamedOperandIdx(Opcode, Name: NamedIdx) != -1; |
| 409 | } |
| 410 | |
| 411 | LLVM_READONLY |
| 412 | int getSOPPWithRelaxation(uint16_t Opcode); |
| 413 | |
| 414 | struct MIMGBaseOpcodeInfo { |
| 415 | MIMGBaseOpcode BaseOpcode; |
| 416 | bool Store; |
| 417 | bool Atomic; |
| 418 | bool AtomicX2; |
| 419 | bool Sampler; |
| 420 | bool Gather4; |
| 421 | |
| 422 | uint8_t ; |
| 423 | bool Gradients; |
| 424 | bool G16; |
| 425 | bool Coordinates; |
| 426 | bool LodOrClampOrMip; |
| 427 | bool HasD16; |
| 428 | bool MSAA; |
| 429 | bool BVH; |
| 430 | bool A16; |
| 431 | bool NoReturn; |
| 432 | bool PointSampleAccel; |
| 433 | }; |
| 434 | |
| 435 | LLVM_READONLY |
| 436 | const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc); |
| 437 | |
| 438 | LLVM_READONLY |
| 439 | const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode); |
| 440 | |
| 441 | struct MIMGDimInfo { |
| 442 | MIMGDim Dim; |
| 443 | uint8_t NumCoords; |
| 444 | uint8_t NumGradients; |
| 445 | bool MSAA; |
| 446 | bool DA; |
| 447 | uint8_t Encoding; |
| 448 | const char *AsmSuffix; |
| 449 | }; |
| 450 | |
| 451 | LLVM_READONLY |
| 452 | const MIMGDimInfo *getMIMGDimInfo(unsigned ); |
| 453 | |
| 454 | LLVM_READONLY |
| 455 | const MIMGDimInfo *getMIMGDimInfoByEncoding(uint8_t DimEnc); |
| 456 | |
| 457 | LLVM_READONLY |
| 458 | const MIMGDimInfo *getMIMGDimInfoByAsmSuffix(StringRef AsmSuffix); |
| 459 | |
| 460 | struct MIMGLZMappingInfo { |
| 461 | MIMGBaseOpcode L; |
| 462 | MIMGBaseOpcode LZ; |
| 463 | }; |
| 464 | |
| 465 | struct MIMGMIPMappingInfo { |
| 466 | MIMGBaseOpcode MIP; |
| 467 | MIMGBaseOpcode NONMIP; |
| 468 | }; |
| 469 | |
| 470 | struct MIMGBiasMappingInfo { |
| 471 | MIMGBaseOpcode Bias; |
| 472 | MIMGBaseOpcode NoBias; |
| 473 | }; |
| 474 | |
| 475 | struct MIMGOffsetMappingInfo { |
| 476 | MIMGBaseOpcode Offset; |
| 477 | MIMGBaseOpcode NoOffset; |
| 478 | }; |
| 479 | |
| 480 | struct MIMGG16MappingInfo { |
| 481 | MIMGBaseOpcode G; |
| 482 | MIMGBaseOpcode G16; |
| 483 | }; |
| 484 | |
| 485 | LLVM_READONLY |
| 486 | const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L); |
| 487 | |
| 488 | struct WMMAOpcodeMappingInfo { |
| 489 | unsigned Opcode2Addr; |
| 490 | unsigned Opcode3Addr; |
| 491 | }; |
| 492 | |
| 493 | LLVM_READONLY |
| 494 | const MIMGMIPMappingInfo *getMIMGMIPMappingInfo(unsigned MIP); |
| 495 | |
| 496 | LLVM_READONLY |
| 497 | const MIMGBiasMappingInfo *getMIMGBiasMappingInfo(unsigned Bias); |
| 498 | |
| 499 | LLVM_READONLY |
| 500 | const MIMGOffsetMappingInfo *getMIMGOffsetMappingInfo(unsigned Offset); |
| 501 | |
| 502 | LLVM_READONLY |
| 503 | const MIMGG16MappingInfo *getMIMGG16MappingInfo(unsigned G); |
| 504 | |
| 505 | LLVM_READONLY |
| 506 | int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, |
| 507 | unsigned VDataDwords, unsigned VAddrDwords); |
| 508 | |
| 509 | LLVM_READONLY |
| 510 | int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels); |
| 511 | |
| 512 | LLVM_READONLY |
| 513 | unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, |
| 514 | const MIMGDimInfo *Dim, bool IsA16, |
| 515 | bool IsG16Supported); |
| 516 | |
| 517 | struct MIMGInfo { |
| 518 | uint16_t Opcode; |
| 519 | uint16_t BaseOpcode; |
| 520 | uint8_t MIMGEncoding; |
| 521 | uint8_t VDataDwords; |
| 522 | uint8_t VAddrDwords; |
| 523 | uint8_t VAddrOperands; |
| 524 | }; |
| 525 | |
| 526 | LLVM_READONLY |
| 527 | const MIMGInfo *getMIMGInfo(unsigned Opc); |
| 528 | |
| 529 | LLVM_READONLY |
| 530 | int getMTBUFBaseOpcode(unsigned Opc); |
| 531 | |
| 532 | LLVM_READONLY |
| 533 | int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements); |
| 534 | |
| 535 | LLVM_READONLY |
| 536 | int getMTBUFElements(unsigned Opc); |
| 537 | |
| 538 | LLVM_READONLY |
| 539 | bool getMTBUFHasVAddr(unsigned Opc); |
| 540 | |
| 541 | LLVM_READONLY |
| 542 | bool getMTBUFHasSrsrc(unsigned Opc); |
| 543 | |
| 544 | LLVM_READONLY |
| 545 | bool getMTBUFHasSoffset(unsigned Opc); |
| 546 | |
| 547 | LLVM_READONLY |
| 548 | int getMUBUFBaseOpcode(unsigned Opc); |
| 549 | |
| 550 | LLVM_READONLY |
| 551 | int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements); |
| 552 | |
| 553 | LLVM_READONLY |
| 554 | int getMUBUFElements(unsigned Opc); |
| 555 | |
| 556 | LLVM_READONLY |
| 557 | bool getMUBUFHasVAddr(unsigned Opc); |
| 558 | |
| 559 | LLVM_READONLY |
| 560 | bool getMUBUFHasSrsrc(unsigned Opc); |
| 561 | |
| 562 | LLVM_READONLY |
| 563 | bool getMUBUFHasSoffset(unsigned Opc); |
| 564 | |
| 565 | LLVM_READONLY |
| 566 | bool getMUBUFIsBufferInv(unsigned Opc); |
| 567 | |
| 568 | LLVM_READONLY |
| 569 | bool getMUBUFTfe(unsigned Opc); |
| 570 | |
| 571 | LLVM_READONLY |
| 572 | bool getSMEMIsBuffer(unsigned Opc); |
| 573 | |
| 574 | LLVM_READONLY |
| 575 | bool getVOP1IsSingle(unsigned Opc); |
| 576 | |
| 577 | LLVM_READONLY |
| 578 | bool getVOP2IsSingle(unsigned Opc); |
| 579 | |
| 580 | LLVM_READONLY |
| 581 | bool getVOP3IsSingle(unsigned Opc); |
| 582 | |
| 583 | LLVM_READONLY |
| 584 | bool isVOPC64DPP(unsigned Opc); |
| 585 | |
| 586 | LLVM_READONLY |
| 587 | bool isVOPCAsmOnly(unsigned Opc); |
| 588 | |
| 589 | /// Returns true if MAI operation is a double precision GEMM. |
| 590 | LLVM_READONLY |
| 591 | bool getMAIIsDGEMM(unsigned Opc); |
| 592 | |
| 593 | LLVM_READONLY |
| 594 | bool getMAIIsGFX940XDL(unsigned Opc); |
| 595 | |
| 596 | struct CanBeVOPD { |
| 597 | bool X; |
| 598 | bool Y; |
| 599 | }; |
| 600 | |
| 601 | /// \returns SIEncodingFamily used for VOPD encoding on a \p ST. |
| 602 | LLVM_READONLY |
| 603 | unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST); |
| 604 | |
| 605 | LLVM_READONLY |
| 606 | CanBeVOPD getCanBeVOPD(unsigned Opc); |
| 607 | |
| 608 | LLVM_READNONE |
| 609 | uint8_t mfmaScaleF8F6F4FormatToNumRegs(unsigned EncodingVal); |
| 610 | |
| 611 | LLVM_READONLY |
| 612 | const MFMA_F8F6F4_Info *getMFMA_F8F6F4_WithFormatArgs(unsigned CBSZ, |
| 613 | unsigned BLGP, |
| 614 | unsigned F8F8Opcode); |
| 615 | |
| 616 | LLVM_READONLY |
| 617 | const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, |
| 618 | uint8_t NumComponents, |
| 619 | uint8_t NumFormat, |
| 620 | const MCSubtargetInfo &STI); |
| 621 | LLVM_READONLY |
| 622 | const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, |
| 623 | const MCSubtargetInfo &STI); |
| 624 | |
| 625 | LLVM_READONLY |
| 626 | int getMCOpcode(uint16_t Opcode, unsigned Gen); |
| 627 | |
| 628 | LLVM_READONLY |
| 629 | unsigned getVOPDOpcode(unsigned Opc); |
| 630 | |
| 631 | LLVM_READONLY |
| 632 | int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily); |
| 633 | |
| 634 | LLVM_READONLY |
| 635 | bool isVOPD(unsigned Opc); |
| 636 | |
| 637 | LLVM_READNONE |
| 638 | bool isMAC(unsigned Opc); |
| 639 | |
| 640 | LLVM_READNONE |
| 641 | bool isPermlane16(unsigned Opc); |
| 642 | |
| 643 | LLVM_READNONE |
| 644 | bool isGenericAtomic(unsigned Opc); |
| 645 | |
| 646 | LLVM_READNONE |
| 647 | bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc); |
| 648 | |
| 649 | namespace VOPD { |
| 650 | |
| 651 | enum Component : unsigned { |
| 652 | DST = 0, |
| 653 | SRC0, |
| 654 | SRC1, |
| 655 | SRC2, |
| 656 | |
| 657 | DST_NUM = 1, |
| 658 | MAX_SRC_NUM = 3, |
| 659 | MAX_OPR_NUM = DST_NUM + MAX_SRC_NUM |
| 660 | }; |
| 661 | |
| 662 | // LSB mask for VGPR banks per VOPD component operand. |
| 663 | // 4 banks result in a mask 3, setting 2 lower bits. |
| 664 | constexpr unsigned VOPD_VGPR_BANK_MASKS[] = {1, 3, 3, 1}; |
| 665 | |
| 666 | enum ComponentIndex : unsigned { X = 0, Y = 1 }; |
| 667 | constexpr unsigned COMPONENTS[] = {ComponentIndex::X, ComponentIndex::Y}; |
| 668 | constexpr unsigned COMPONENTS_NUM = 2; |
| 669 | |
| 670 | // Properties of VOPD components. |
| 671 | class ComponentProps { |
| 672 | private: |
| 673 | unsigned SrcOperandsNum = 0; |
| 674 | unsigned MandatoryLiteralIdx = ~0u; |
| 675 | bool HasSrc2Acc = false; |
| 676 | |
| 677 | public: |
| 678 | ComponentProps() = default; |
| 679 | ComponentProps(const MCInstrDesc &OpDesc); |
| 680 | |
| 681 | // Return the total number of src operands this component has. |
| 682 | unsigned getCompSrcOperandsNum() const { return SrcOperandsNum; } |
| 683 | |
| 684 | // Return the number of src operands of this component visible to the parser. |
| 685 | unsigned getCompParsedSrcOperandsNum() const { |
| 686 | return SrcOperandsNum - HasSrc2Acc; |
| 687 | } |
| 688 | |
| 689 | // Return true iif this component has a mandatory literal. |
| 690 | bool hasMandatoryLiteral() const { return MandatoryLiteralIdx != ~0u; } |
| 691 | |
| 692 | // If this component has a mandatory literal, return component operand |
| 693 | // index of this literal (i.e. either Component::SRC1 or Component::SRC2). |
| 694 | unsigned getMandatoryLiteralCompOperandIndex() const { |
| 695 | assert(hasMandatoryLiteral()); |
| 696 | return MandatoryLiteralIdx; |
| 697 | } |
| 698 | |
| 699 | // Return true iif this component has operand |
| 700 | // with component index CompSrcIdx and this operand may be a register. |
| 701 | bool hasRegSrcOperand(unsigned CompSrcIdx) const { |
| 702 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
| 703 | return SrcOperandsNum > CompSrcIdx && !hasMandatoryLiteralAt(CompSrcIdx); |
| 704 | } |
| 705 | |
| 706 | // Return true iif this component has tied src2. |
| 707 | bool hasSrc2Acc() const { return HasSrc2Acc; } |
| 708 | |
| 709 | private: |
| 710 | bool hasMandatoryLiteralAt(unsigned CompSrcIdx) const { |
| 711 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
| 712 | return MandatoryLiteralIdx == Component::DST_NUM + CompSrcIdx; |
| 713 | } |
| 714 | }; |
| 715 | |
| 716 | enum ComponentKind : unsigned { |
| 717 | SINGLE = 0, // A single VOP1 or VOP2 instruction which may be used in VOPD. |
| 718 | COMPONENT_X, // A VOPD instruction, X component. |
| 719 | COMPONENT_Y, // A VOPD instruction, Y component. |
| 720 | MAX = COMPONENT_Y |
| 721 | }; |
| 722 | |
| 723 | // Interface functions of this class map VOPD component operand indices |
| 724 | // to indices of operands in MachineInstr/MCInst or parsed operands array. |
| 725 | // |
| 726 | // Note that this class operates with 3 kinds of indices: |
| 727 | // - VOPD component operand indices (Component::DST, Component::SRC0, etc.); |
| 728 | // - MC operand indices (they refer operands in a MachineInstr/MCInst); |
| 729 | // - parsed operand indices (they refer operands in parsed operands array). |
| 730 | // |
| 731 | // For SINGLE components mapping between these indices is trivial. |
| 732 | // But things get more complicated for COMPONENT_X and |
| 733 | // COMPONENT_Y because these components share the same |
| 734 | // MachineInstr/MCInst and the same parsed operands array. |
| 735 | // Below is an example of component operand to parsed operand |
| 736 | // mapping for the following instruction: |
| 737 | // |
| 738 | // v_dual_add_f32 v255, v4, v5 :: v_dual_mov_b32 v6, v1 |
| 739 | // |
| 740 | // PARSED COMPONENT PARSED |
| 741 | // COMPONENT OPERANDS OPERAND INDEX OPERAND INDEX |
| 742 | // ------------------------------------------------------------------- |
| 743 | // "v_dual_add_f32" 0 |
| 744 | // v_dual_add_f32 v255 0 (DST) --> 1 |
| 745 | // v4 1 (SRC0) --> 2 |
| 746 | // v5 2 (SRC1) --> 3 |
| 747 | // "::" 4 |
| 748 | // "v_dual_mov_b32" 5 |
| 749 | // v_dual_mov_b32 v6 0 (DST) --> 6 |
| 750 | // v1 1 (SRC0) --> 7 |
| 751 | // ------------------------------------------------------------------- |
| 752 | // |
| 753 | class ComponentLayout { |
| 754 | private: |
| 755 | // Regular MachineInstr/MCInst operands are ordered as follows: |
| 756 | // dst, src0 [, other src operands] |
| 757 | // VOPD MachineInstr/MCInst operands are ordered as follows: |
| 758 | // dstX, dstY, src0X [, other OpX operands], src0Y [, other OpY operands] |
| 759 | // Each ComponentKind has operand indices defined below. |
| 760 | static constexpr unsigned MC_DST_IDX[] = {0, 0, 1}; |
| 761 | static constexpr unsigned FIRST_MC_SRC_IDX[] = {1, 2, 2 /* + OpX.MCSrcNum */}; |
| 762 | |
| 763 | // Parsed operands of regular instructions are ordered as follows: |
| 764 | // Mnemo dst src0 [vsrc1 ...] |
| 765 | // Parsed VOPD operands are ordered as follows: |
| 766 | // OpXMnemo dstX src0X [vsrc1X|imm vsrc1X|vsrc1X imm] '::' |
| 767 | // OpYMnemo dstY src0Y [vsrc1Y|imm vsrc1Y|vsrc1Y imm] |
| 768 | // Each ComponentKind has operand indices defined below. |
| 769 | static constexpr unsigned PARSED_DST_IDX[] = {1, 1, |
| 770 | 4 /* + OpX.ParsedSrcNum */}; |
| 771 | static constexpr unsigned FIRST_PARSED_SRC_IDX[] = { |
| 772 | 2, 2, 5 /* + OpX.ParsedSrcNum */}; |
| 773 | |
| 774 | private: |
| 775 | const ComponentKind Kind; |
| 776 | const ComponentProps PrevComp; |
| 777 | |
| 778 | public: |
| 779 | // Create layout for COMPONENT_X or SINGLE component. |
| 780 | ComponentLayout(ComponentKind Kind) : Kind(Kind) { |
| 781 | assert(Kind == ComponentKind::SINGLE || Kind == ComponentKind::COMPONENT_X); |
| 782 | } |
| 783 | |
| 784 | // Create layout for COMPONENT_Y which depends on COMPONENT_X layout. |
| 785 | ComponentLayout(const ComponentProps &OpXProps) |
| 786 | : Kind(ComponentKind::COMPONENT_Y), PrevComp(OpXProps) {} |
| 787 | |
| 788 | public: |
| 789 | // Return the index of dst operand in MCInst operands. |
| 790 | unsigned getIndexOfDstInMCOperands() const { return MC_DST_IDX[Kind]; } |
| 791 | |
| 792 | // Return the index of the specified src operand in MCInst operands. |
| 793 | unsigned getIndexOfSrcInMCOperands(unsigned CompSrcIdx) const { |
| 794 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
| 795 | return FIRST_MC_SRC_IDX[Kind] + getPrevCompSrcNum() + CompSrcIdx; |
| 796 | } |
| 797 | |
| 798 | // Return the index of dst operand in the parsed operands array. |
| 799 | unsigned getIndexOfDstInParsedOperands() const { |
| 800 | return PARSED_DST_IDX[Kind] + getPrevCompParsedSrcNum(); |
| 801 | } |
| 802 | |
| 803 | // Return the index of the specified src operand in the parsed operands array. |
| 804 | unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const { |
| 805 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
| 806 | return FIRST_PARSED_SRC_IDX[Kind] + getPrevCompParsedSrcNum() + CompSrcIdx; |
| 807 | } |
| 808 | |
| 809 | private: |
| 810 | unsigned getPrevCompSrcNum() const { |
| 811 | return PrevComp.getCompSrcOperandsNum(); |
| 812 | } |
| 813 | unsigned getPrevCompParsedSrcNum() const { |
| 814 | return PrevComp.getCompParsedSrcOperandsNum(); |
| 815 | } |
| 816 | }; |
| 817 | |
| 818 | // Layout and properties of VOPD components. |
| 819 | class ComponentInfo : public ComponentLayout, public ComponentProps { |
| 820 | public: |
| 821 | // Create ComponentInfo for COMPONENT_X or SINGLE component. |
| 822 | ComponentInfo(const MCInstrDesc &OpDesc, |
| 823 | ComponentKind Kind = ComponentKind::SINGLE) |
| 824 | : ComponentLayout(Kind), ComponentProps(OpDesc) {} |
| 825 | |
| 826 | // Create ComponentInfo for COMPONENT_Y which depends on COMPONENT_X layout. |
| 827 | ComponentInfo(const MCInstrDesc &OpDesc, const ComponentProps &OpXProps) |
| 828 | : ComponentLayout(OpXProps), ComponentProps(OpDesc) {} |
| 829 | |
| 830 | // Map component operand index to parsed operand index. |
| 831 | // Return 0 if the specified operand does not exist. |
| 832 | unsigned getIndexInParsedOperands(unsigned CompOprIdx) const; |
| 833 | }; |
| 834 | |
| 835 | // Properties of VOPD instructions. |
| 836 | class InstInfo { |
| 837 | private: |
| 838 | const ComponentInfo CompInfo[COMPONENTS_NUM]; |
| 839 | |
| 840 | public: |
| 841 | using RegIndices = std::array<unsigned, Component::MAX_OPR_NUM>; |
| 842 | |
| 843 | InstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY) |
| 844 | : CompInfo{OpX, OpY} {} |
| 845 | |
| 846 | InstInfo(const ComponentInfo &OprInfoX, const ComponentInfo &OprInfoY) |
| 847 | : CompInfo{OprInfoX, OprInfoY} {} |
| 848 | |
| 849 | const ComponentInfo &operator[](size_t ComponentIdx) const { |
| 850 | assert(ComponentIdx < COMPONENTS_NUM); |
| 851 | return CompInfo[ComponentIdx]; |
| 852 | } |
| 853 | |
| 854 | // Check VOPD operands constraints. |
| 855 | // GetRegIdx(Component, MCOperandIdx) must return a VGPR register index |
| 856 | // for the specified component and MC operand. The callback must return 0 |
| 857 | // if the operand is not a register or not a VGPR. |
| 858 | // If \p SkipSrc is set to true then constraints for source operands are not |
| 859 | // checked. |
| 860 | bool hasInvalidOperand(std::function<unsigned(unsigned, unsigned)> GetRegIdx, |
| 861 | bool SkipSrc = false) const { |
| 862 | return getInvalidCompOperandIndex(GetRegIdx, SkipSrc).has_value(); |
| 863 | } |
| 864 | |
| 865 | // Check VOPD operands constraints. |
| 866 | // Return the index of an invalid component operand, if any. |
| 867 | // If \p SkipSrc is set to true then constraints for source operands are not |
| 868 | // checked. |
| 869 | std::optional<unsigned> getInvalidCompOperandIndex( |
| 870 | std::function<unsigned(unsigned, unsigned)> GetRegIdx, |
| 871 | bool SkipSrc = false) const; |
| 872 | |
| 873 | private: |
| 874 | RegIndices |
| 875 | getRegIndices(unsigned ComponentIdx, |
| 876 | std::function<unsigned(unsigned, unsigned)> GetRegIdx) const; |
| 877 | }; |
| 878 | |
| 879 | } // namespace VOPD |
| 880 | |
| 881 | LLVM_READONLY |
| 882 | std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode); |
| 883 | |
| 884 | LLVM_READONLY |
| 885 | // Get properties of 2 single VOP1/VOP2 instructions |
| 886 | // used as components to create a VOPD instruction. |
| 887 | VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY); |
| 888 | |
| 889 | LLVM_READONLY |
| 890 | // Get properties of VOPD X and Y components. |
| 891 | VOPD::InstInfo getVOPDInstInfo(unsigned VOPDOpcode, |
| 892 | const MCInstrInfo *InstrInfo); |
| 893 | |
| 894 | LLVM_READONLY |
| 895 | bool isAsyncStore(unsigned Opc); |
| 896 | LLVM_READONLY |
| 897 | bool isTensorStore(unsigned Opc); |
| 898 | LLVM_READONLY |
| 899 | unsigned getTemporalHintType(const MCInstrDesc TID); |
| 900 | |
| 901 | LLVM_READONLY |
| 902 | bool isTrue16Inst(unsigned Opc); |
| 903 | |
| 904 | LLVM_READONLY |
| 905 | FPType getFPDstSelType(unsigned Opc); |
| 906 | |
| 907 | LLVM_READONLY |
| 908 | bool isInvalidSingleUseConsumerInst(unsigned Opc); |
| 909 | |
| 910 | LLVM_READONLY |
| 911 | bool isInvalidSingleUseProducerInst(unsigned Opc); |
| 912 | |
| 913 | bool isDPMACCInstruction(unsigned Opc); |
| 914 | |
| 915 | LLVM_READONLY |
| 916 | unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc); |
| 917 | |
| 918 | LLVM_READONLY |
| 919 | unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc); |
| 920 | |
| 921 | void initDefaultAMDKernelCodeT(AMDGPUMCKernelCodeT &, |
| 922 | const MCSubtargetInfo *STI); |
| 923 | |
| 924 | bool isGroupSegment(const GlobalValue *GV); |
| 925 | bool isGlobalSegment(const GlobalValue *GV); |
| 926 | bool isReadOnlySegment(const GlobalValue *GV); |
| 927 | |
| 928 | /// \returns True if constants should be emitted to .text section for given |
| 929 | /// target triple \p TT, false otherwise. |
| 930 | bool shouldEmitConstantsToTextSection(const Triple &TT); |
| 931 | |
| 932 | /// \returns Integer value requested using \p F's \p Name attribute. |
| 933 | /// |
| 934 | /// \returns \p Default if attribute is not present. |
| 935 | /// |
| 936 | /// \returns \p Default and emits error if requested value cannot be converted |
| 937 | /// to integer. |
| 938 | int getIntegerAttribute(const Function &F, StringRef Name, int Default); |
| 939 | |
| 940 | /// \returns A pair of integer values requested using \p F's \p Name attribute |
| 941 | /// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired |
| 942 | /// is false). |
| 943 | /// |
| 944 | /// \returns \p Default if attribute is not present. |
| 945 | /// |
| 946 | /// \returns \p Default and emits error if one of the requested values cannot be |
| 947 | /// converted to integer, or \p OnlyFirstRequired is false and "second" value is |
| 948 | /// not present. |
| 949 | std::pair<unsigned, unsigned> |
| 950 | getIntegerPairAttribute(const Function &F, StringRef Name, |
| 951 | std::pair<unsigned, unsigned> Default, |
| 952 | bool OnlyFirstRequired = false); |
| 953 | |
| 954 | /// \returns A pair of integer values requested using \p F's \p Name attribute |
| 955 | /// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired |
| 956 | /// is false). |
| 957 | /// |
| 958 | /// \returns \p std::nullopt if attribute is not present. |
| 959 | /// |
| 960 | /// \returns \p std::nullopt and emits error if one of the requested values |
| 961 | /// cannot be converted to integer, or \p OnlyFirstRequired is false and |
| 962 | /// "second" value is not present. |
| 963 | std::optional<std::pair<unsigned, std::optional<unsigned>>> |
| 964 | getIntegerPairAttribute(const Function &F, StringRef Name, |
| 965 | bool OnlyFirstRequired = false); |
| 966 | |
| 967 | /// \returns Generate a vector of integer values requested using \p F's \p Name |
| 968 | /// attribute. |
| 969 | /// \returns A vector of size \p Size, with all elements set to \p DefaultVal, |
| 970 | /// if any error occurs. The corresponding error will also be emitted. |
| 971 | SmallVector<unsigned> getIntegerVecAttribute(const Function &F, StringRef Name, |
| 972 | unsigned Size, |
| 973 | unsigned DefaultVal); |
| 974 | /// Similar to the function above, but returns std::nullopt if any error occurs. |
| 975 | std::optional<SmallVector<unsigned>> |
| 976 | getIntegerVecAttribute(const Function &F, StringRef Name, unsigned Size); |
| 977 | |
| 978 | /// Represents the counter values to wait for in an s_waitcnt instruction. |
| 979 | /// |
| 980 | /// Large values (including the maximum possible integer) can be used to |
| 981 | /// represent "don't care" waits. |
| 982 | struct Waitcnt { |
| 983 | unsigned LoadCnt = ~0u; // Corresponds to Vmcnt prior to gfx12. |
| 984 | unsigned ExpCnt = ~0u; |
| 985 | unsigned DsCnt = ~0u; // Corresponds to LGKMcnt prior to gfx12. |
| 986 | unsigned StoreCnt = ~0u; // Corresponds to VScnt on gfx10/gfx11. |
| 987 | unsigned SampleCnt = ~0u; // gfx12+ only. |
| 988 | unsigned BvhCnt = ~0u; // gfx12+ only. |
| 989 | unsigned KmCnt = ~0u; // gfx12+ only. |
| 990 | unsigned XCnt = ~0u; // gfx1250. |
| 991 | |
| 992 | Waitcnt() = default; |
| 993 | // Pre-gfx12 constructor. |
| 994 | Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt, unsigned VsCnt) |
| 995 | : LoadCnt(VmCnt), ExpCnt(ExpCnt), DsCnt(LgkmCnt), StoreCnt(VsCnt) {} |
| 996 | |
| 997 | // gfx12+ constructor. |
| 998 | Waitcnt(unsigned LoadCnt, unsigned ExpCnt, unsigned DsCnt, unsigned StoreCnt, |
| 999 | unsigned SampleCnt, unsigned BvhCnt, unsigned KmCnt, unsigned XCnt) |
| 1000 | : LoadCnt(LoadCnt), ExpCnt(ExpCnt), DsCnt(DsCnt), StoreCnt(StoreCnt), |
| 1001 | SampleCnt(SampleCnt), BvhCnt(BvhCnt), KmCnt(KmCnt), XCnt(XCnt) {} |
| 1002 | |
| 1003 | bool hasWait() const { return StoreCnt != ~0u || hasWaitExceptStoreCnt(); } |
| 1004 | |
| 1005 | bool hasWaitExceptStoreCnt() const { |
| 1006 | return LoadCnt != ~0u || ExpCnt != ~0u || DsCnt != ~0u || |
| 1007 | SampleCnt != ~0u || BvhCnt != ~0u || KmCnt != ~0u || XCnt != ~0u; |
| 1008 | } |
| 1009 | |
| 1010 | bool hasWaitStoreCnt() const { return StoreCnt != ~0u; } |
| 1011 | |
| 1012 | Waitcnt combined(const Waitcnt &Other) const { |
| 1013 | // Does the right thing provided self and Other are either both pre-gfx12 |
| 1014 | // or both gfx12+. |
| 1015 | return Waitcnt( |
| 1016 | std::min(a: LoadCnt, b: Other.LoadCnt), std::min(a: ExpCnt, b: Other.ExpCnt), |
| 1017 | std::min(a: DsCnt, b: Other.DsCnt), std::min(a: StoreCnt, b: Other.StoreCnt), |
| 1018 | std::min(a: SampleCnt, b: Other.SampleCnt), std::min(a: BvhCnt, b: Other.BvhCnt), |
| 1019 | std::min(a: KmCnt, b: Other.KmCnt), std::min(a: XCnt, b: Other.XCnt)); |
| 1020 | } |
| 1021 | }; |
| 1022 | |
| 1023 | // The following methods are only meaningful on targets that support |
| 1024 | // S_WAITCNT. |
| 1025 | |
| 1026 | /// \returns Vmcnt bit mask for given isa \p Version. |
| 1027 | unsigned getVmcntBitMask(const IsaVersion &Version); |
| 1028 | |
| 1029 | /// \returns Expcnt bit mask for given isa \p Version. |
| 1030 | unsigned getExpcntBitMask(const IsaVersion &Version); |
| 1031 | |
| 1032 | /// \returns Lgkmcnt bit mask for given isa \p Version. |
| 1033 | unsigned getLgkmcntBitMask(const IsaVersion &Version); |
| 1034 | |
| 1035 | /// \returns Waitcnt bit mask for given isa \p Version. |
| 1036 | unsigned getWaitcntBitMask(const IsaVersion &Version); |
| 1037 | |
| 1038 | /// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version. |
| 1039 | unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt); |
| 1040 | |
| 1041 | /// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version. |
| 1042 | unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt); |
| 1043 | |
| 1044 | /// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version. |
| 1045 | unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt); |
| 1046 | |
| 1047 | /// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa |
| 1048 | /// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and |
| 1049 | /// \p Lgkmcnt respectively. Should not be used on gfx12+, the instruction |
| 1050 | /// which needs it is deprecated |
| 1051 | /// |
| 1052 | /// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows: |
| 1053 | /// \p Vmcnt = \p Waitcnt[3:0] (pre-gfx9) |
| 1054 | /// \p Vmcnt = \p Waitcnt[15:14,3:0] (gfx9,10) |
| 1055 | /// \p Vmcnt = \p Waitcnt[15:10] (gfx11) |
| 1056 | /// \p Expcnt = \p Waitcnt[6:4] (pre-gfx11) |
| 1057 | /// \p Expcnt = \p Waitcnt[2:0] (gfx11) |
| 1058 | /// \p Lgkmcnt = \p Waitcnt[11:8] (pre-gfx10) |
| 1059 | /// \p Lgkmcnt = \p Waitcnt[13:8] (gfx10) |
| 1060 | /// \p Lgkmcnt = \p Waitcnt[9:4] (gfx11) |
| 1061 | /// |
| 1062 | void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, |
| 1063 | unsigned &Expcnt, unsigned &Lgkmcnt); |
| 1064 | |
| 1065 | Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded); |
| 1066 | |
| 1067 | /// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version. |
| 1068 | unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, |
| 1069 | unsigned Vmcnt); |
| 1070 | |
| 1071 | /// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version. |
| 1072 | unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, |
| 1073 | unsigned Expcnt); |
| 1074 | |
| 1075 | /// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version. |
| 1076 | unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, |
| 1077 | unsigned Lgkmcnt); |
| 1078 | |
| 1079 | /// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa |
| 1080 | /// \p Version. Should not be used on gfx12+, the instruction which needs |
| 1081 | /// it is deprecated |
| 1082 | /// |
| 1083 | /// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows: |
| 1084 | /// Waitcnt[2:0] = \p Expcnt (gfx11+) |
| 1085 | /// Waitcnt[3:0] = \p Vmcnt (pre-gfx9) |
| 1086 | /// Waitcnt[3:0] = \p Vmcnt[3:0] (gfx9,10) |
| 1087 | /// Waitcnt[6:4] = \p Expcnt (pre-gfx11) |
| 1088 | /// Waitcnt[9:4] = \p Lgkmcnt (gfx11) |
| 1089 | /// Waitcnt[11:8] = \p Lgkmcnt (pre-gfx10) |
| 1090 | /// Waitcnt[13:8] = \p Lgkmcnt (gfx10) |
| 1091 | /// Waitcnt[15:10] = \p Vmcnt (gfx11) |
| 1092 | /// Waitcnt[15:14] = \p Vmcnt[5:4] (gfx9,10) |
| 1093 | /// |
| 1094 | /// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given |
| 1095 | /// isa \p Version. |
| 1096 | /// |
| 1097 | unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, |
| 1098 | unsigned Expcnt, unsigned Lgkmcnt); |
| 1099 | |
| 1100 | unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded); |
| 1101 | |
| 1102 | // The following methods are only meaningful on targets that support |
| 1103 | // S_WAIT_*CNT, introduced with gfx12. |
| 1104 | |
| 1105 | /// \returns Loadcnt bit mask for given isa \p Version. |
| 1106 | /// Returns 0 for versions that do not support LOADcnt |
| 1107 | unsigned getLoadcntBitMask(const IsaVersion &Version); |
| 1108 | |
| 1109 | /// \returns Samplecnt bit mask for given isa \p Version. |
| 1110 | /// Returns 0 for versions that do not support SAMPLEcnt |
| 1111 | unsigned getSamplecntBitMask(const IsaVersion &Version); |
| 1112 | |
| 1113 | /// \returns Bvhcnt bit mask for given isa \p Version. |
| 1114 | /// Returns 0 for versions that do not support BVHcnt |
| 1115 | unsigned getBvhcntBitMask(const IsaVersion &Version); |
| 1116 | |
| 1117 | /// \returns Dscnt bit mask for given isa \p Version. |
| 1118 | /// Returns 0 for versions that do not support DScnt |
| 1119 | unsigned getDscntBitMask(const IsaVersion &Version); |
| 1120 | |
| 1121 | /// \returns Dscnt bit mask for given isa \p Version. |
| 1122 | /// Returns 0 for versions that do not support KMcnt |
| 1123 | unsigned getKmcntBitMask(const IsaVersion &Version); |
| 1124 | |
| 1125 | /// \returns Xcnt bit mask for given isa \p Version. |
| 1126 | /// Returns 0 for versions that do not support Xcnt. |
| 1127 | unsigned getXcntBitMask(const IsaVersion &Version); |
| 1128 | |
| 1129 | /// \return STOREcnt or VScnt bit mask for given isa \p Version. |
| 1130 | /// returns 0 for versions that do not support STOREcnt or VScnt. |
| 1131 | /// STOREcnt and VScnt are the same counter, the name used |
| 1132 | /// depends on the ISA version. |
| 1133 | unsigned getStorecntBitMask(const IsaVersion &Version); |
| 1134 | |
| 1135 | // The following are only meaningful on targets that support |
| 1136 | // S_WAIT_LOADCNT_DSCNT and S_WAIT_STORECNT_DSCNT. |
| 1137 | |
| 1138 | /// \returns Decoded Waitcnt structure from given \p LoadcntDscnt for given |
| 1139 | /// isa \p Version. |
| 1140 | Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt); |
| 1141 | |
| 1142 | /// \returns Decoded Waitcnt structure from given \p StorecntDscnt for given |
| 1143 | /// isa \p Version. |
| 1144 | Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt); |
| 1145 | |
| 1146 | /// \returns \p Loadcnt and \p Dscnt components of \p Decoded encoded as an |
| 1147 | /// immediate that can be used with S_WAIT_LOADCNT_DSCNT for given isa |
| 1148 | /// \p Version. |
| 1149 | unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded); |
| 1150 | |
| 1151 | /// \returns \p Storecnt and \p Dscnt components of \p Decoded encoded as an |
| 1152 | /// immediate that can be used with S_WAIT_STORECNT_DSCNT for given isa |
| 1153 | /// \p Version. |
| 1154 | unsigned encodeStorecntDscnt(const IsaVersion &Version, const Waitcnt &Decoded); |
| 1155 | |
| 1156 | namespace Hwreg { |
| 1157 | |
| 1158 | using HwregId = EncodingField<5, 0>; |
| 1159 | using HwregOffset = EncodingField<10, 6>; |
| 1160 | |
| 1161 | struct HwregSize : EncodingField<15, 11, 32> { |
| 1162 | using EncodingField::EncodingField; |
| 1163 | constexpr uint64_t encode() const { return Value - 1; } |
| 1164 | static ValueType decode(uint64_t Encoded) { return Encoded + 1; } |
| 1165 | }; |
| 1166 | |
| 1167 | using HwregEncoding = EncodingFields<HwregId, HwregOffset, HwregSize>; |
| 1168 | |
| 1169 | } // namespace Hwreg |
| 1170 | |
| 1171 | namespace DepCtr { |
| 1172 | |
| 1173 | int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI); |
| 1174 | int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, |
| 1175 | const MCSubtargetInfo &STI); |
| 1176 | bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, |
| 1177 | const MCSubtargetInfo &STI); |
| 1178 | bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, |
| 1179 | bool &IsDefault, const MCSubtargetInfo &STI); |
| 1180 | |
| 1181 | /// \returns Decoded VaVdst from given immediate \p Encoded. |
| 1182 | unsigned decodeFieldVaVdst(unsigned Encoded); |
| 1183 | |
| 1184 | /// \returns Decoded VmVsrc from given immediate \p Encoded. |
| 1185 | unsigned decodeFieldVmVsrc(unsigned Encoded); |
| 1186 | |
| 1187 | /// \returns Decoded SaSdst from given immediate \p Encoded. |
| 1188 | unsigned decodeFieldSaSdst(unsigned Encoded); |
| 1189 | |
| 1190 | /// \returns Decoded VaSdst from given immediate \p Encoded. |
| 1191 | unsigned decodeFieldVaSdst(unsigned Encoded); |
| 1192 | |
| 1193 | /// \returns Decoded VaVcc from given immediate \p Encoded. |
| 1194 | unsigned decodeFieldVaVcc(unsigned Encoded); |
| 1195 | |
| 1196 | /// \returns Decoded SaSrc from given immediate \p Encoded. |
| 1197 | unsigned decodeFieldVaSsrc(unsigned Encoded); |
| 1198 | |
| 1199 | /// \returns Decoded HoldCnt from given immediate \p Encoded. |
| 1200 | unsigned decodeFieldHoldCnt(unsigned Encoded); |
| 1201 | |
| 1202 | /// \returns \p VmVsrc as an encoded Depctr immediate. |
| 1203 | unsigned encodeFieldVmVsrc(unsigned VmVsrc); |
| 1204 | |
| 1205 | /// \returns \p Encoded combined with encoded \p VmVsrc. |
| 1206 | unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc); |
| 1207 | |
| 1208 | /// \returns \p VaVdst as an encoded Depctr immediate. |
| 1209 | unsigned encodeFieldVaVdst(unsigned VaVdst); |
| 1210 | |
| 1211 | /// \returns \p Encoded combined with encoded \p VaVdst. |
| 1212 | unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst); |
| 1213 | |
| 1214 | /// \returns \p SaSdst as an encoded Depctr immediate. |
| 1215 | unsigned encodeFieldSaSdst(unsigned SaSdst); |
| 1216 | |
| 1217 | /// \returns \p Encoded combined with encoded \p SaSdst. |
| 1218 | unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst); |
| 1219 | |
| 1220 | /// \returns \p VaSdst as an encoded Depctr immediate. |
| 1221 | unsigned encodeFieldVaSdst(unsigned VaSdst); |
| 1222 | |
| 1223 | /// \returns \p Encoded combined with encoded \p VaSdst. |
| 1224 | unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst); |
| 1225 | |
| 1226 | /// \returns \p VaVcc as an encoded Depctr immediate. |
| 1227 | unsigned encodeFieldVaVcc(unsigned VaVcc); |
| 1228 | |
| 1229 | /// \returns \p Encoded combined with encoded \p VaVcc. |
| 1230 | unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc); |
| 1231 | |
| 1232 | /// \returns \p HoldCnt as an encoded Depctr immediate. |
| 1233 | unsigned encodeFieldHoldCnt(unsigned HoldCnt); |
| 1234 | |
| 1235 | /// \returns \p Encoded combined with encoded \p HoldCnt. |
| 1236 | unsigned encodeFieldHoldCnt(unsigned HoldCnt, unsigned Encoded); |
| 1237 | |
| 1238 | /// \returns \p VaSsrc as an encoded Depctr immediate. |
| 1239 | unsigned encodeFieldVaSsrc(unsigned VaSsrc); |
| 1240 | |
| 1241 | /// \returns \p Encoded combined with encoded \p VaSsrc. |
| 1242 | unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc); |
| 1243 | |
| 1244 | } // namespace DepCtr |
| 1245 | |
| 1246 | namespace Exp { |
| 1247 | |
| 1248 | bool getTgtName(unsigned Id, StringRef &Name, int &Index); |
| 1249 | |
| 1250 | LLVM_READONLY |
| 1251 | unsigned getTgtId(const StringRef Name); |
| 1252 | |
| 1253 | LLVM_READNONE |
| 1254 | bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI); |
| 1255 | |
| 1256 | } // namespace Exp |
| 1257 | |
| 1258 | namespace MTBUFFormat { |
| 1259 | |
| 1260 | LLVM_READNONE |
| 1261 | int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt); |
| 1262 | |
| 1263 | void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt); |
| 1264 | |
| 1265 | int64_t getDfmt(const StringRef Name); |
| 1266 | |
| 1267 | StringRef getDfmtName(unsigned Id); |
| 1268 | |
| 1269 | int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI); |
| 1270 | |
| 1271 | StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI); |
| 1272 | |
| 1273 | bool isValidDfmtNfmt(unsigned Val, const MCSubtargetInfo &STI); |
| 1274 | |
| 1275 | bool isValidNfmt(unsigned Val, const MCSubtargetInfo &STI); |
| 1276 | |
| 1277 | int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI); |
| 1278 | |
| 1279 | StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI); |
| 1280 | |
| 1281 | bool isValidUnifiedFormat(unsigned Val, const MCSubtargetInfo &STI); |
| 1282 | |
| 1283 | int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt, |
| 1284 | const MCSubtargetInfo &STI); |
| 1285 | |
| 1286 | bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI); |
| 1287 | |
| 1288 | unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI); |
| 1289 | |
| 1290 | } // namespace MTBUFFormat |
| 1291 | |
| 1292 | namespace SendMsg { |
| 1293 | |
| 1294 | LLVM_READNONE |
| 1295 | bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI); |
| 1296 | |
| 1297 | LLVM_READNONE |
| 1298 | bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, |
| 1299 | bool Strict = true); |
| 1300 | |
| 1301 | LLVM_READNONE |
| 1302 | bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, |
| 1303 | const MCSubtargetInfo &STI, bool Strict = true); |
| 1304 | |
| 1305 | LLVM_READNONE |
| 1306 | bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI); |
| 1307 | |
| 1308 | LLVM_READNONE |
| 1309 | bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI); |
| 1310 | |
| 1311 | void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, |
| 1312 | uint16_t &StreamId, const MCSubtargetInfo &STI); |
| 1313 | |
| 1314 | LLVM_READNONE |
| 1315 | uint64_t encodeMsg(uint64_t MsgId, uint64_t OpId, uint64_t StreamId); |
| 1316 | |
| 1317 | } // namespace SendMsg |
| 1318 | |
| 1319 | unsigned getInitialPSInputAddr(const Function &F); |
| 1320 | |
| 1321 | bool getHasColorExport(const Function &F); |
| 1322 | |
| 1323 | bool getHasDepthExport(const Function &F); |
| 1324 | |
| 1325 | bool hasDynamicVGPR(const Function &F); |
| 1326 | |
| 1327 | // Returns the value of the "amdgpu-dynamic-vgpr-block-size" attribute, or 0 if |
| 1328 | // the attribute is missing or its value is invalid. |
| 1329 | unsigned getDynamicVGPRBlockSize(const Function &F); |
| 1330 | |
| 1331 | LLVM_READNONE |
| 1332 | constexpr bool isShader(CallingConv::ID CC) { |
| 1333 | switch (CC) { |
| 1334 | case CallingConv::AMDGPU_VS: |
| 1335 | case CallingConv::AMDGPU_LS: |
| 1336 | case CallingConv::AMDGPU_HS: |
| 1337 | case CallingConv::AMDGPU_ES: |
| 1338 | case CallingConv::AMDGPU_GS: |
| 1339 | case CallingConv::AMDGPU_PS: |
| 1340 | case CallingConv::AMDGPU_CS_Chain: |
| 1341 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 1342 | case CallingConv::AMDGPU_CS: |
| 1343 | return true; |
| 1344 | default: |
| 1345 | return false; |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | LLVM_READNONE |
| 1350 | constexpr bool isGraphics(CallingConv::ID CC) { |
| 1351 | return isShader(CC) || CC == CallingConv::AMDGPU_Gfx; |
| 1352 | } |
| 1353 | |
| 1354 | LLVM_READNONE |
| 1355 | constexpr bool isCompute(CallingConv::ID CC) { |
| 1356 | return !isGraphics(CC) || CC == CallingConv::AMDGPU_CS; |
| 1357 | } |
| 1358 | |
| 1359 | LLVM_READNONE |
| 1360 | constexpr bool isEntryFunctionCC(CallingConv::ID CC) { |
| 1361 | switch (CC) { |
| 1362 | case CallingConv::AMDGPU_KERNEL: |
| 1363 | case CallingConv::SPIR_KERNEL: |
| 1364 | case CallingConv::AMDGPU_VS: |
| 1365 | case CallingConv::AMDGPU_GS: |
| 1366 | case CallingConv::AMDGPU_PS: |
| 1367 | case CallingConv::AMDGPU_CS: |
| 1368 | case CallingConv::AMDGPU_ES: |
| 1369 | case CallingConv::AMDGPU_HS: |
| 1370 | case CallingConv::AMDGPU_LS: |
| 1371 | return true; |
| 1372 | default: |
| 1373 | return false; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | LLVM_READNONE |
| 1378 | constexpr bool isChainCC(CallingConv::ID CC) { |
| 1379 | switch (CC) { |
| 1380 | case CallingConv::AMDGPU_CS_Chain: |
| 1381 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 1382 | return true; |
| 1383 | default: |
| 1384 | return false; |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | // These functions are considered entrypoints into the current module, i.e. they |
| 1389 | // are allowed to be called from outside the current module. This is different |
| 1390 | // from isEntryFunctionCC, which is only true for functions that are entered by |
| 1391 | // the hardware. Module entry points include all entry functions but also |
| 1392 | // include functions that can be called from other functions inside or outside |
| 1393 | // the current module. Module entry functions are allowed to allocate LDS. |
| 1394 | LLVM_READNONE |
| 1395 | constexpr bool isModuleEntryFunctionCC(CallingConv::ID CC) { |
| 1396 | switch (CC) { |
| 1397 | case CallingConv::AMDGPU_Gfx: |
| 1398 | return true; |
| 1399 | default: |
| 1400 | return isEntryFunctionCC(CC) || isChainCC(CC); |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | LLVM_READNONE |
| 1405 | constexpr inline bool isKernel(CallingConv::ID CC) { |
| 1406 | switch (CC) { |
| 1407 | case CallingConv::AMDGPU_KERNEL: |
| 1408 | case CallingConv::SPIR_KERNEL: |
| 1409 | return true; |
| 1410 | default: |
| 1411 | return false; |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | LLVM_READNONE |
| 1416 | constexpr bool canGuaranteeTCO(CallingConv::ID CC) { |
| 1417 | return CC == CallingConv::Fast; |
| 1418 | } |
| 1419 | |
| 1420 | /// Return true if we might ever do TCO for calls with this calling convention. |
| 1421 | LLVM_READNONE |
| 1422 | constexpr bool mayTailCallThisCC(CallingConv::ID CC) { |
| 1423 | switch (CC) { |
| 1424 | case CallingConv::C: |
| 1425 | case CallingConv::AMDGPU_Gfx: |
| 1426 | return true; |
| 1427 | default: |
| 1428 | return canGuaranteeTCO(CC); |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | bool hasXNACK(const MCSubtargetInfo &STI); |
| 1433 | bool hasSRAMECC(const MCSubtargetInfo &STI); |
| 1434 | bool hasMIMG_R128(const MCSubtargetInfo &STI); |
| 1435 | bool hasA16(const MCSubtargetInfo &STI); |
| 1436 | bool hasG16(const MCSubtargetInfo &STI); |
| 1437 | bool hasPackedD16(const MCSubtargetInfo &STI); |
| 1438 | bool hasGDS(const MCSubtargetInfo &STI); |
| 1439 | unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler = false); |
| 1440 | unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI); |
| 1441 | |
| 1442 | bool isSI(const MCSubtargetInfo &STI); |
| 1443 | bool isCI(const MCSubtargetInfo &STI); |
| 1444 | bool isVI(const MCSubtargetInfo &STI); |
| 1445 | bool isGFX9(const MCSubtargetInfo &STI); |
| 1446 | bool isGFX9_GFX10(const MCSubtargetInfo &STI); |
| 1447 | bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI); |
| 1448 | bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI); |
| 1449 | bool isGFX8Plus(const MCSubtargetInfo &STI); |
| 1450 | bool isGFX9Plus(const MCSubtargetInfo &STI); |
| 1451 | bool isNotGFX9Plus(const MCSubtargetInfo &STI); |
| 1452 | bool isGFX10(const MCSubtargetInfo &STI); |
| 1453 | bool isGFX10_GFX11(const MCSubtargetInfo &STI); |
| 1454 | bool isGFX10Plus(const MCSubtargetInfo &STI); |
| 1455 | bool isNotGFX10Plus(const MCSubtargetInfo &STI); |
| 1456 | bool isGFX10Before1030(const MCSubtargetInfo &STI); |
| 1457 | bool isGFX11(const MCSubtargetInfo &STI); |
| 1458 | bool isGFX11Plus(const MCSubtargetInfo &STI); |
| 1459 | bool isGFX12(const MCSubtargetInfo &STI); |
| 1460 | bool isGFX12Plus(const MCSubtargetInfo &STI); |
| 1461 | bool isGFX1250(const MCSubtargetInfo &STI); |
| 1462 | bool isNotGFX12Plus(const MCSubtargetInfo &STI); |
| 1463 | bool isNotGFX11Plus(const MCSubtargetInfo &STI); |
| 1464 | bool isGCN3Encoding(const MCSubtargetInfo &STI); |
| 1465 | bool isGFX10_AEncoding(const MCSubtargetInfo &STI); |
| 1466 | bool isGFX10_BEncoding(const MCSubtargetInfo &STI); |
| 1467 | bool hasGFX10_3Insts(const MCSubtargetInfo &STI); |
| 1468 | bool isGFX10_3_GFX11(const MCSubtargetInfo &STI); |
| 1469 | bool isGFX90A(const MCSubtargetInfo &STI); |
| 1470 | bool isGFX940(const MCSubtargetInfo &STI); |
| 1471 | bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI); |
| 1472 | bool hasMAIInsts(const MCSubtargetInfo &STI); |
| 1473 | bool hasVOPD(const MCSubtargetInfo &STI); |
| 1474 | bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI); |
| 1475 | int getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR); |
| 1476 | unsigned hasKernargPreload(const MCSubtargetInfo &STI); |
| 1477 | bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST); |
| 1478 | |
| 1479 | /// Is Reg - scalar register |
| 1480 | bool isSGPR(MCRegister Reg, const MCRegisterInfo *TRI); |
| 1481 | |
| 1482 | /// \returns if \p Reg occupies the high 16-bits of a 32-bit register. |
| 1483 | bool isHi16Reg(MCRegister Reg, const MCRegisterInfo &MRI); |
| 1484 | |
| 1485 | /// If \p Reg is a pseudo reg, return the correct hardware register given |
| 1486 | /// \p STI otherwise return \p Reg. |
| 1487 | MCRegister getMCReg(MCRegister Reg, const MCSubtargetInfo &STI); |
| 1488 | |
| 1489 | /// Convert hardware register \p Reg to a pseudo register |
| 1490 | LLVM_READNONE |
| 1491 | MCRegister mc2PseudoReg(MCRegister Reg); |
| 1492 | |
| 1493 | LLVM_READNONE |
| 1494 | bool isInlineValue(unsigned Reg); |
| 1495 | |
| 1496 | /// Is this an AMDGPU specific source operand? These include registers, |
| 1497 | /// inline constants, literals and mandatory literals (KImm). |
| 1498 | bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo); |
| 1499 | |
| 1500 | /// Is this a KImm operand? |
| 1501 | bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo); |
| 1502 | |
| 1503 | /// Is this floating-point operand? |
| 1504 | bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo); |
| 1505 | |
| 1506 | /// Does this operand support only inlinable literals? |
| 1507 | bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo); |
| 1508 | |
| 1509 | /// Get the size in bits of a register from the register class \p RC. |
| 1510 | unsigned getRegBitWidth(unsigned RCID); |
| 1511 | |
| 1512 | /// Get the size in bits of a register from the register class \p RC. |
| 1513 | unsigned getRegBitWidth(const MCRegisterClass &RC); |
| 1514 | |
| 1515 | /// Get size of register operand |
| 1516 | unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, |
| 1517 | unsigned OpNo); |
| 1518 | |
| 1519 | LLVM_READNONE |
| 1520 | inline unsigned getOperandSize(const MCOperandInfo &OpInfo) { |
| 1521 | switch (OpInfo.OperandType) { |
| 1522 | case AMDGPU::OPERAND_REG_IMM_INT32: |
| 1523 | case AMDGPU::OPERAND_REG_IMM_FP32: |
| 1524 | case AMDGPU::OPERAND_REG_INLINE_C_INT32: |
| 1525 | case AMDGPU::OPERAND_REG_INLINE_C_FP32: |
| 1526 | case AMDGPU::OPERAND_REG_INLINE_AC_INT32: |
| 1527 | case AMDGPU::OPERAND_REG_INLINE_AC_FP32: |
| 1528 | case AMDGPU::OPERAND_REG_IMM_V2INT32: |
| 1529 | case AMDGPU::OPERAND_REG_IMM_V2FP32: |
| 1530 | case AMDGPU::OPERAND_KIMM32: |
| 1531 | case AMDGPU::OPERAND_KIMM16: // mandatory literal is always size 4 |
| 1532 | case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: |
| 1533 | return 4; |
| 1534 | |
| 1535 | case AMDGPU::OPERAND_REG_IMM_INT64: |
| 1536 | case AMDGPU::OPERAND_REG_IMM_FP64: |
| 1537 | case AMDGPU::OPERAND_REG_INLINE_C_INT64: |
| 1538 | case AMDGPU::OPERAND_REG_INLINE_C_FP64: |
| 1539 | case AMDGPU::OPERAND_REG_INLINE_AC_FP64: |
| 1540 | return 8; |
| 1541 | |
| 1542 | case AMDGPU::OPERAND_REG_IMM_INT16: |
| 1543 | case AMDGPU::OPERAND_REG_IMM_BF16: |
| 1544 | case AMDGPU::OPERAND_REG_IMM_FP16: |
| 1545 | case AMDGPU::OPERAND_REG_INLINE_C_INT16: |
| 1546 | case AMDGPU::OPERAND_REG_INLINE_C_BF16: |
| 1547 | case AMDGPU::OPERAND_REG_INLINE_C_FP16: |
| 1548 | case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: |
| 1549 | case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: |
| 1550 | case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: |
| 1551 | case AMDGPU::OPERAND_REG_IMM_V2INT16: |
| 1552 | case AMDGPU::OPERAND_REG_IMM_V2BF16: |
| 1553 | case AMDGPU::OPERAND_REG_IMM_V2FP16: |
| 1554 | return 2; |
| 1555 | |
| 1556 | default: |
| 1557 | llvm_unreachable("unhandled operand type" ); |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | LLVM_READNONE |
| 1562 | inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) { |
| 1563 | return getOperandSize(OpInfo: Desc.operands()[OpNo]); |
| 1564 | } |
| 1565 | |
| 1566 | /// Is this literal inlinable, and not one of the values intended for floating |
| 1567 | /// point values. |
| 1568 | LLVM_READNONE |
| 1569 | inline bool isInlinableIntLiteral(int64_t Literal) { |
| 1570 | return Literal >= -16 && Literal <= 64; |
| 1571 | } |
| 1572 | |
| 1573 | /// Is this literal inlinable |
| 1574 | LLVM_READNONE |
| 1575 | bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi); |
| 1576 | |
| 1577 | LLVM_READNONE |
| 1578 | bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi); |
| 1579 | |
| 1580 | LLVM_READNONE |
| 1581 | bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi); |
| 1582 | |
| 1583 | LLVM_READNONE |
| 1584 | bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi); |
| 1585 | |
| 1586 | LLVM_READNONE |
| 1587 | bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi); |
| 1588 | |
| 1589 | LLVM_READNONE |
| 1590 | bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi); |
| 1591 | |
| 1592 | LLVM_READNONE |
| 1593 | std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal); |
| 1594 | |
| 1595 | LLVM_READNONE |
| 1596 | std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal); |
| 1597 | |
| 1598 | LLVM_READNONE |
| 1599 | std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal); |
| 1600 | |
| 1601 | LLVM_READNONE |
| 1602 | bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType); |
| 1603 | |
| 1604 | LLVM_READNONE |
| 1605 | bool isInlinableLiteralV2I16(uint32_t Literal); |
| 1606 | |
| 1607 | LLVM_READNONE |
| 1608 | bool isInlinableLiteralV2BF16(uint32_t Literal); |
| 1609 | |
| 1610 | LLVM_READNONE |
| 1611 | bool isInlinableLiteralV2F16(uint32_t Literal); |
| 1612 | |
| 1613 | LLVM_READNONE |
| 1614 | bool isValid32BitLiteral(uint64_t Val, bool IsFP64); |
| 1615 | |
| 1616 | bool isArgPassedInSGPR(const Argument *Arg); |
| 1617 | |
| 1618 | bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo); |
| 1619 | |
| 1620 | LLVM_READONLY |
| 1621 | bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, |
| 1622 | int64_t EncodedOffset); |
| 1623 | |
| 1624 | LLVM_READONLY |
| 1625 | bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, |
| 1626 | int64_t EncodedOffset, bool IsBuffer); |
| 1627 | |
| 1628 | /// Convert \p ByteOffset to dwords if the subtarget uses dword SMRD immediate |
| 1629 | /// offsets. |
| 1630 | uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset); |
| 1631 | |
| 1632 | /// \returns The encoding that will be used for \p ByteOffset in the |
| 1633 | /// SMRD offset field, or std::nullopt if it won't fit. On GFX9 and GFX10 |
| 1634 | /// S_LOAD instructions have a signed offset, on other subtargets it is |
| 1635 | /// unsigned. S_BUFFER has an unsigned offset for all subtargets. |
| 1636 | std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, |
| 1637 | int64_t ByteOffset, bool IsBuffer, |
| 1638 | bool HasSOffset = false); |
| 1639 | |
| 1640 | /// \return The encoding that can be used for a 32-bit literal offset in an SMRD |
| 1641 | /// instruction. This is only useful on CI.s |
| 1642 | std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, |
| 1643 | int64_t ByteOffset); |
| 1644 | |
| 1645 | /// For pre-GFX12 FLAT instructions the offset must be positive; |
| 1646 | /// MSB is ignored and forced to zero. |
| 1647 | /// |
| 1648 | /// \return The number of bits available for the signed offset field in flat |
| 1649 | /// instructions. Note that some forms of the instruction disallow negative |
| 1650 | /// offsets. |
| 1651 | unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST); |
| 1652 | |
| 1653 | /// \returns true if this offset is small enough to fit in the SMRD |
| 1654 | /// offset field. \p ByteOffset should be the offset in bytes and |
| 1655 | /// not the encoded offset. |
| 1656 | bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset); |
| 1657 | |
| 1658 | LLVM_READNONE |
| 1659 | inline bool isLegalDPALU_DPPControl(unsigned DC) { |
| 1660 | return DC >= DPP::ROW_NEWBCAST_FIRST && DC <= DPP::ROW_NEWBCAST_LAST; |
| 1661 | } |
| 1662 | |
| 1663 | /// \returns true if an instruction may have a 64-bit VGPR operand. |
| 1664 | bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc); |
| 1665 | |
| 1666 | /// \returns true if an instruction is a DP ALU DPP. |
| 1667 | bool isDPALU_DPP(const MCInstrDesc &OpDesc); |
| 1668 | |
| 1669 | /// \returns true if the intrinsic is divergent |
| 1670 | bool isIntrinsicSourceOfDivergence(unsigned IntrID); |
| 1671 | |
| 1672 | /// \returns true if the intrinsic is uniform |
| 1673 | bool isIntrinsicAlwaysUniform(unsigned IntrID); |
| 1674 | |
| 1675 | /// \returns lds block size in terms of dwords. \p |
| 1676 | /// This is used to calculate the lds size encoded for PAL metadata 3.0+ which |
| 1677 | /// must be defined in terms of bytes. |
| 1678 | unsigned getLdsDwGranularity(const MCSubtargetInfo &ST); |
| 1679 | |
| 1680 | } // end namespace AMDGPU |
| 1681 | |
| 1682 | raw_ostream &operator<<(raw_ostream &OS, |
| 1683 | const AMDGPU::IsaInfo::TargetIDSetting S); |
| 1684 | |
| 1685 | } // end namespace llvm |
| 1686 | |
| 1687 | #endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H |
| 1688 | |