| 1 | //===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the unwind opcode assembler for ARM exception handling |
| 10 | // table. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "ARMUnwindOpAsm.h" |
| 15 | #include "llvm/ADT/bit.h" |
| 16 | #include "llvm/Support/ARMEHABI.h" |
| 17 | #include "llvm/Support/LEB128.h" |
| 18 | #include <cassert> |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | namespace { |
| 23 | |
| 24 | /// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes |
| 25 | /// with MSB to LSB per uint32_t ordering. For example, the first byte will |
| 26 | /// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0, |
| 27 | /// 7, 6, 5, 4, 11, 10, 9, 8, and so on. |
| 28 | class UnwindOpcodeStreamer { |
| 29 | private: |
| 30 | SmallVectorImpl<uint8_t> &Vec; |
| 31 | size_t Pos = 3; |
| 32 | |
| 33 | public: |
| 34 | UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V) {} |
| 35 | |
| 36 | /// Emit the byte in MSB to LSB per uint32_t order. |
| 37 | void EmitByte(uint8_t elem) { |
| 38 | Vec[Pos] = elem; |
| 39 | Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u); |
| 40 | } |
| 41 | |
| 42 | /// Emit the size prefix. |
| 43 | void EmitSize(size_t Size) { |
| 44 | size_t SizeInWords = (Size + 3) / 4; |
| 45 | assert(SizeInWords <= 0x100u && |
| 46 | "Only 256 additional words are allowed for unwind opcodes" ); |
| 47 | EmitByte(elem: static_cast<uint8_t>(SizeInWords - 1)); |
| 48 | } |
| 49 | |
| 50 | /// Emit the personality index prefix. |
| 51 | void EmitPersonalityIndex(unsigned PI) { |
| 52 | assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX && |
| 53 | "Invalid personality prefix" ); |
| 54 | EmitByte(elem: ARM::EHABI::EHT_COMPACT | PI); |
| 55 | } |
| 56 | |
| 57 | /// Fill the rest of bytes with FINISH opcode. |
| 58 | void FillFinishOpcode() { |
| 59 | while (Pos < Vec.size()) |
| 60 | EmitByte(elem: ARM::EHABI::UNWIND_OPCODE_FINISH); |
| 61 | } |
| 62 | }; |
| 63 | |
| 64 | } // end anonymous namespace |
| 65 | |
| 66 | void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) { |
| 67 | if (RegSave == 0u) { |
| 68 | // That's the special case for RA PAC. |
| 69 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_RA_AUTH_CODE); |
| 70 | return; |
| 71 | } |
| 72 | |
| 73 | // One byte opcode to save register r14 and r11-r4 |
| 74 | if (RegSave & (1u << 4)) { |
| 75 | // The one byte opcode will always save r4, thus we can't use the one byte |
| 76 | // opcode when r4 is not in .save directive. |
| 77 | |
| 78 | // Compute the consecutive registers from r4 to r11. |
| 79 | uint32_t Mask = RegSave & 0xff0u; |
| 80 | uint32_t Range = llvm::countr_one(Value: Mask >> 5); // Exclude r4. |
| 81 | // Mask off non-consecutive registers. Keep r4. |
| 82 | Mask &= ~(0xffffffe0u << Range); |
| 83 | |
| 84 | // Emit this opcode when the mask covers every registers. |
| 85 | uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask); |
| 86 | if (UnmaskedReg == 0u) { |
| 87 | // Pop r[4 : (4 + n)] |
| 88 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range); |
| 89 | RegSave &= 0x000fu; |
| 90 | } else if (UnmaskedReg == (1u << 14)) { |
| 91 | // Pop r[14] + r[4 : (4 + n)] |
| 92 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range); |
| 93 | RegSave &= 0x000fu; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | // Two bytes opcode to save register r15-r4 |
| 98 | if ((RegSave & 0xfff0u) != 0) |
| 99 | EmitInt16(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4)); |
| 100 | |
| 101 | // Opcode to save register r3-r0 |
| 102 | if ((RegSave & 0x000fu) != 0) |
| 103 | EmitInt16(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu)); |
| 104 | } |
| 105 | |
| 106 | /// Emit unwind opcodes for .vsave directives |
| 107 | void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) { |
| 108 | // We only have 4 bits to save the offset in the opcode so look at the lower |
| 109 | // and upper 16 bits separately. |
| 110 | for (uint32_t Regs : {VFPRegSave & 0xffff0000u, VFPRegSave & 0x0000ffffu}) { |
| 111 | while (Regs) { |
| 112 | // Now look for a run of set bits. Remember the MSB and LSB of the run. |
| 113 | auto RangeMSB = llvm::bit_width(Value: Regs); |
| 114 | auto RangeLen = llvm::countl_one(Value: Regs << (32 - RangeMSB)); |
| 115 | auto RangeLSB = RangeMSB - RangeLen; |
| 116 | |
| 117 | int Opcode = RangeLSB >= 16 |
| 118 | ? ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 |
| 119 | : ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD; |
| 120 | |
| 121 | EmitInt16(Opcode: Opcode | ((RangeLSB % 16) << 4) | (RangeLen - 1)); |
| 122 | |
| 123 | // Zero out bits we're done with. |
| 124 | Regs &= ~(-1u << RangeLSB); |
| 125 | } |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | /// Emit unwind opcodes to copy address from source register to $sp. |
| 130 | void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) { |
| 131 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg); |
| 132 | } |
| 133 | |
| 134 | /// Emit unwind opcodes to add $sp with an offset. |
| 135 | void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) { |
| 136 | if (Offset > 0x200) { |
| 137 | uint8_t Buff[16]; |
| 138 | Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128; |
| 139 | size_t ULEBSize = encodeULEB128(Value: (Offset - 0x204) >> 2, p: Buff + 1); |
| 140 | emitBytes(Opcode: Buff, Size: ULEBSize + 1); |
| 141 | } else if (Offset > 0) { |
| 142 | if (Offset > 0x100) { |
| 143 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu); |
| 144 | Offset -= 0x100; |
| 145 | } |
| 146 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_INC_VSP | |
| 147 | static_cast<uint8_t>((Offset - 4) >> 2)); |
| 148 | } else if (Offset < 0) { |
| 149 | while (Offset < -0x100) { |
| 150 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu); |
| 151 | Offset += 0x100; |
| 152 | } |
| 153 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_DEC_VSP | |
| 154 | static_cast<uint8_t>(((-Offset) - 4) >> 2)); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex, |
| 159 | SmallVectorImpl<uint8_t> &Result) { |
| 160 | UnwindOpcodeStreamer OpStreamer(Result); |
| 161 | |
| 162 | if (HasPersonality) { |
| 163 | // User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ] |
| 164 | PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; |
| 165 | size_t TotalSize = Ops.size() + 1; |
| 166 | size_t RoundUpSize = (TotalSize + 3) / 4 * 4; |
| 167 | Result.resize(N: RoundUpSize); |
| 168 | OpStreamer.EmitSize(Size: RoundUpSize); |
| 169 | } else { |
| 170 | // If no personalityindex is specified, select ane |
| 171 | if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX) |
| 172 | PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0 |
| 173 | : ARM::EHABI::AEABI_UNWIND_CPP_PR1; |
| 174 | if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) { |
| 175 | // __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ] |
| 176 | assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0" ); |
| 177 | Result.resize(N: 4); |
| 178 | OpStreamer.EmitPersonalityIndex(PI: PersonalityIndex); |
| 179 | } else { |
| 180 | // __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ] |
| 181 | size_t TotalSize = Ops.size() + 2; |
| 182 | size_t RoundUpSize = (TotalSize + 3) / 4 * 4; |
| 183 | Result.resize(N: RoundUpSize); |
| 184 | OpStreamer.EmitPersonalityIndex(PI: PersonalityIndex); |
| 185 | OpStreamer.EmitSize(Size: RoundUpSize); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | // Copy the unwind opcodes |
| 190 | for (size_t i = OpBegins.size() - 1; i > 0; --i) |
| 191 | for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j) |
| 192 | OpStreamer.EmitByte(elem: Ops[j]); |
| 193 | |
| 194 | // Emit the padding finish opcodes if the size is not multiple of 4. |
| 195 | OpStreamer.FillFinishOpcode(); |
| 196 | |
| 197 | // Reset the assembler state |
| 198 | Reset(); |
| 199 | } |
| 200 | |