1 | //===- HexagonBlockRanges.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "HexagonBlockRanges.h" |
10 | #include "HexagonInstrInfo.h" |
11 | #include "HexagonSubtarget.h" |
12 | #include "llvm/ADT/BitVector.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/CodeGen/MachineBasicBlock.h" |
15 | #include "llvm/CodeGen/MachineFunction.h" |
16 | #include "llvm/CodeGen/MachineInstr.h" |
17 | #include "llvm/CodeGen/MachineOperand.h" |
18 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
19 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
20 | #include "llvm/MC/MCRegisterInfo.h" |
21 | #include "llvm/Support/Debug.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | #include <cassert> |
24 | #include <cstdint> |
25 | #include <iterator> |
26 | #include <map> |
27 | #include <utility> |
28 | |
29 | using namespace llvm; |
30 | |
31 | #define DEBUG_TYPE "hbr" |
32 | |
33 | bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { |
34 | // If A contains start(), or "this" contains A.start(), then overlap. |
35 | IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); |
36 | if (AS == S) |
37 | return true; |
38 | bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE. |
39 | bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E. |
40 | if ((AS < S && SbAE) || (S < AS && ASbE)) |
41 | return true; |
42 | // Otherwise no overlap. |
43 | return false; |
44 | } |
45 | |
46 | bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { |
47 | if (start() <= A.start()) { |
48 | // Treat "None" in the range end as equal to the range start. |
49 | IndexType E = (end() != IndexType::None) ? end() : start(); |
50 | IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); |
51 | if (AE <= E) |
52 | return true; |
53 | } |
54 | return false; |
55 | } |
56 | |
57 | void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { |
58 | // Allow merging adjacent ranges. |
59 | assert(end() == A.start() || overlaps(A)); |
60 | IndexType AS = A.start(), AE = A.end(); |
61 | if (AS < start() || start() == IndexType::None) |
62 | setStart(AS); |
63 | if (end() < AE || end() == IndexType::None) { |
64 | setEnd(AE); |
65 | TiedEnd = A.TiedEnd; |
66 | } else { |
67 | if (end() == AE) |
68 | TiedEnd |= A.TiedEnd; |
69 | } |
70 | if (A.Fixed) |
71 | Fixed = true; |
72 | } |
73 | |
74 | void HexagonBlockRanges::RangeList::include(const RangeList &RL) { |
75 | for (const auto &R : RL) |
76 | if (!is_contained(Range&: *this, Element: R)) |
77 | push_back(x: R); |
78 | } |
79 | |
80 | // Merge all overlapping ranges in the list, so that all that remains |
81 | // is a list of disjoint ranges. |
82 | void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { |
83 | if (empty()) |
84 | return; |
85 | |
86 | llvm::sort(C&: *this); |
87 | iterator Iter = begin(); |
88 | |
89 | while (Iter != end()-1) { |
90 | iterator Next = std::next(x: Iter); |
91 | // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. |
92 | // This allows merging dead ranges, but is not valid for live ranges. |
93 | bool Merge = MergeAdjacent && (Iter->end() == Next->start()); |
94 | if (Merge || Iter->overlaps(A: *Next)) { |
95 | Iter->merge(A: *Next); |
96 | erase(position: Next); |
97 | continue; |
98 | } |
99 | ++Iter; |
100 | } |
101 | } |
102 | |
103 | // Compute a range A-B and add it to the list. |
104 | void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, |
105 | const IndexRange &B) { |
106 | // Exclusion of non-overlapping ranges makes some checks simpler |
107 | // later in this function. |
108 | if (!A.overlaps(A: B)) { |
109 | // A - B = A. |
110 | add(Range: A); |
111 | return; |
112 | } |
113 | |
114 | IndexType AS = A.start(), AE = A.end(); |
115 | IndexType BS = B.start(), BE = B.end(); |
116 | |
117 | // If AE is None, then A is included in B, since A and B overlap. |
118 | // The result of subtraction if empty, so just return. |
119 | if (AE == IndexType::None) |
120 | return; |
121 | |
122 | if (AS < BS) { |
123 | // A starts before B. |
124 | // AE cannot be None since A and B overlap. |
125 | assert(AE != IndexType::None); |
126 | // Add the part of A that extends on the "less" side of B. |
127 | add(Start: AS, End: BS, Fixed: A.Fixed, TiedEnd: false); |
128 | } |
129 | |
130 | if (BE < AE) { |
131 | // BE cannot be Exit here. |
132 | if (BE == IndexType::None) |
133 | add(Start: BS, End: AE, Fixed: A.Fixed, TiedEnd: false); |
134 | else |
135 | add(Start: BE, End: AE, Fixed: A.Fixed, TiedEnd: false); |
136 | } |
137 | } |
138 | |
139 | // Subtract a given range from each element in the list. |
140 | void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { |
141 | // Cannot assume that the list is unionized (i.e. contains only non- |
142 | // overlapping ranges. |
143 | RangeList T; |
144 | for (iterator Next, I = begin(); I != end(); I = Next) { |
145 | IndexRange &Rg = *I; |
146 | if (Rg.overlaps(A: Range)) { |
147 | T.addsub(A: Rg, B: Range); |
148 | Next = this->erase(position: I); |
149 | } else { |
150 | Next = std::next(x: I); |
151 | } |
152 | } |
153 | include(RL: T); |
154 | } |
155 | |
156 | HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) |
157 | : Block(B) { |
158 | IndexType Idx = IndexType::First; |
159 | First = Idx; |
160 | for (auto &In : B) { |
161 | if (In.isDebugInstr()) |
162 | continue; |
163 | assert(getIndex(&In) == IndexType::None && "Instruction already in map" ); |
164 | Map.insert(x: std::make_pair(x&: Idx, y: &In)); |
165 | ++Idx; |
166 | } |
167 | Last = B.empty() ? IndexType::None : unsigned(Idx)-1; |
168 | } |
169 | |
170 | MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { |
171 | auto F = Map.find(x: Idx); |
172 | return (F != Map.end()) ? F->second : nullptr; |
173 | } |
174 | |
175 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( |
176 | MachineInstr *MI) const { |
177 | for (const auto &I : Map) |
178 | if (I.second == MI) |
179 | return I.first; |
180 | return IndexType::None; |
181 | } |
182 | |
183 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( |
184 | IndexType Idx) const { |
185 | assert (Idx != IndexType::None); |
186 | if (Idx == IndexType::Entry) |
187 | return IndexType::None; |
188 | if (Idx == IndexType::Exit) |
189 | return Last; |
190 | if (Idx == First) |
191 | return IndexType::Entry; |
192 | return unsigned(Idx)-1; |
193 | } |
194 | |
195 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( |
196 | IndexType Idx) const { |
197 | assert (Idx != IndexType::None); |
198 | if (Idx == IndexType::Entry) |
199 | return IndexType::First; |
200 | if (Idx == IndexType::Exit || Idx == Last) |
201 | return IndexType::None; |
202 | return unsigned(Idx)+1; |
203 | } |
204 | |
205 | void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, |
206 | MachineInstr *NewMI) { |
207 | for (auto &I : Map) { |
208 | if (I.second != OldMI) |
209 | continue; |
210 | if (NewMI != nullptr) |
211 | I.second = NewMI; |
212 | else |
213 | Map.erase(x: I.first); |
214 | break; |
215 | } |
216 | } |
217 | |
218 | HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) |
219 | : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), |
220 | TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), |
221 | Reserved(TRI.getReservedRegs(MF: mf)) { |
222 | // Consider all non-allocatable registers as reserved. |
223 | for (const TargetRegisterClass *RC : TRI.regclasses()) { |
224 | if (RC->isAllocatable()) |
225 | continue; |
226 | for (unsigned R : *RC) |
227 | Reserved[R] = true; |
228 | } |
229 | } |
230 | |
231 | HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( |
232 | const MachineBasicBlock &B, const MachineRegisterInfo &MRI, |
233 | const TargetRegisterInfo &TRI) { |
234 | RegisterSet LiveIns; |
235 | RegisterSet Tmp; |
236 | |
237 | for (auto I : B.liveins()) { |
238 | MCSubRegIndexIterator S(I.PhysReg, &TRI); |
239 | if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) { |
240 | Tmp.insert(x: {.Reg: I.PhysReg, .Sub: 0}); |
241 | continue; |
242 | } |
243 | for (; S.isValid(); ++S) { |
244 | unsigned SI = S.getSubRegIndex(); |
245 | if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SubIdx: SI)).any()) |
246 | Tmp.insert(x: {.Reg: S.getSubReg(), .Sub: 0}); |
247 | } |
248 | } |
249 | |
250 | for (auto R : Tmp) { |
251 | if (!Reserved[R.Reg]) |
252 | LiveIns.insert(x: R); |
253 | for (auto S : expandToSubRegs(R, MRI, TRI)) |
254 | if (!Reserved[S.Reg]) |
255 | LiveIns.insert(x: S); |
256 | } |
257 | return LiveIns; |
258 | } |
259 | |
260 | HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( |
261 | RegisterRef R, const MachineRegisterInfo &MRI, |
262 | const TargetRegisterInfo &TRI) { |
263 | RegisterSet SRs; |
264 | |
265 | if (R.Sub != 0) { |
266 | SRs.insert(x: R); |
267 | return SRs; |
268 | } |
269 | |
270 | if (R.Reg.isPhysical()) { |
271 | if (TRI.subregs(Reg: R.Reg).empty()) |
272 | SRs.insert(x: {.Reg: R.Reg, .Sub: 0}); |
273 | for (MCPhysReg I : TRI.subregs(Reg: R.Reg)) |
274 | SRs.insert(x: {.Reg: I, .Sub: 0}); |
275 | } else { |
276 | assert(R.Reg.isVirtual()); |
277 | auto &RC = *MRI.getRegClass(Reg: R.Reg); |
278 | unsigned PReg = *RC.begin(); |
279 | MCSubRegIndexIterator I(PReg, &TRI); |
280 | if (!I.isValid()) |
281 | SRs.insert(x: {.Reg: R.Reg, .Sub: 0}); |
282 | for (; I.isValid(); ++I) |
283 | SRs.insert(x: {.Reg: R.Reg, .Sub: I.getSubRegIndex()}); |
284 | } |
285 | return SRs; |
286 | } |
287 | |
288 | void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, |
289 | RegToRangeMap &LiveMap) { |
290 | std::map<RegisterRef,IndexType> LastDef, LastUse; |
291 | RegisterSet LiveOnEntry; |
292 | MachineBasicBlock &B = IndexMap.getBlock(); |
293 | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); |
294 | |
295 | for (auto R : getLiveIns(B, MRI, TRI)) |
296 | LiveOnEntry.insert(x: R); |
297 | |
298 | for (auto R : LiveOnEntry) |
299 | LastDef[R] = IndexType::Entry; |
300 | |
301 | auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { |
302 | auto LD = LastDef[R], LU = LastUse[R]; |
303 | if (LD == IndexType::None) |
304 | LD = IndexType::Entry; |
305 | if (LU == IndexType::None) |
306 | LU = IndexType::Exit; |
307 | LiveMap[R].add(Start: LD, End: LU, Fixed: false, TiedEnd: false); |
308 | LastUse[R] = LastDef[R] = IndexType::None; |
309 | }; |
310 | |
311 | RegisterSet Defs, Clobbers; |
312 | |
313 | for (auto &In : B) { |
314 | if (In.isDebugInstr()) |
315 | continue; |
316 | IndexType Index = IndexMap.getIndex(MI: &In); |
317 | // Process uses first. |
318 | for (auto &Op : In.operands()) { |
319 | if (!Op.isReg() || !Op.isUse() || Op.isUndef()) |
320 | continue; |
321 | RegisterRef R = { .Reg: Op.getReg(), .Sub: Op.getSubReg() }; |
322 | if (R.Reg.isPhysical() && Reserved[R.Reg]) |
323 | continue; |
324 | bool IsKill = Op.isKill(); |
325 | for (auto S : expandToSubRegs(R, MRI, TRI)) { |
326 | LastUse[S] = Index; |
327 | if (IsKill) |
328 | closeRange(S); |
329 | } |
330 | } |
331 | // Process defs and clobbers. |
332 | Defs.clear(); |
333 | Clobbers.clear(); |
334 | for (auto &Op : In.operands()) { |
335 | if (!Op.isReg() || !Op.isDef() || Op.isUndef()) |
336 | continue; |
337 | RegisterRef R = { .Reg: Op.getReg(), .Sub: Op.getSubReg() }; |
338 | for (auto S : expandToSubRegs(R, MRI, TRI)) { |
339 | if (S.Reg.isPhysical() && Reserved[S.Reg]) |
340 | continue; |
341 | if (Op.isDead()) |
342 | Clobbers.insert(x: S); |
343 | else |
344 | Defs.insert(x: S); |
345 | } |
346 | } |
347 | |
348 | for (auto &Op : In.operands()) { |
349 | if (!Op.isRegMask()) |
350 | continue; |
351 | const uint32_t *BM = Op.getRegMask(); |
352 | for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) { |
353 | // Skip registers that have subregisters. A register is preserved |
354 | // iff its bit is set in the regmask, so if R1:0 was preserved, both |
355 | // R1 and R0 would also be present. |
356 | if (!TRI.subregs(Reg: PR).empty()) |
357 | continue; |
358 | if (Reserved[PR]) |
359 | continue; |
360 | if (BM[PR/32] & (1u << (PR%32))) |
361 | continue; |
362 | RegisterRef R = { .Reg: PR, .Sub: 0 }; |
363 | if (!Defs.count(x: R)) |
364 | Clobbers.insert(x: R); |
365 | } |
366 | } |
367 | // Defs and clobbers can overlap, e.g. |
368 | // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1 |
369 | for (RegisterRef R : Defs) |
370 | Clobbers.erase(x: R); |
371 | |
372 | // Update maps for defs. |
373 | for (RegisterRef S : Defs) { |
374 | // Defs should already be expanded into subregs. |
375 | assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty()); |
376 | if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) |
377 | closeRange(S); |
378 | LastDef[S] = Index; |
379 | } |
380 | // Update maps for clobbers. |
381 | for (RegisterRef S : Clobbers) { |
382 | // Clobbers should already be expanded into subregs. |
383 | assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty()); |
384 | if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) |
385 | closeRange(S); |
386 | // Create a single-instruction range. |
387 | LastDef[S] = LastUse[S] = Index; |
388 | closeRange(S); |
389 | } |
390 | } |
391 | |
392 | // Collect live-on-exit. |
393 | RegisterSet LiveOnExit; |
394 | for (auto *SB : B.successors()) |
395 | for (auto R : getLiveIns(B: *SB, MRI, TRI)) |
396 | LiveOnExit.insert(x: R); |
397 | |
398 | for (auto R : LiveOnExit) |
399 | LastUse[R] = IndexType::Exit; |
400 | |
401 | // Process remaining registers. |
402 | RegisterSet Left; |
403 | for (auto &I : LastUse) |
404 | if (I.second != IndexType::None) |
405 | Left.insert(x: I.first); |
406 | for (auto &I : LastDef) |
407 | if (I.second != IndexType::None) |
408 | Left.insert(x: I.first); |
409 | for (auto R : Left) |
410 | closeRange(R); |
411 | |
412 | // Finalize the live ranges. |
413 | for (auto &P : LiveMap) |
414 | P.second.unionize(); |
415 | } |
416 | |
417 | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( |
418 | InstrIndexMap &IndexMap) { |
419 | RegToRangeMap LiveMap; |
420 | LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); |
421 | computeInitialLiveRanges(IndexMap, LiveMap); |
422 | LLVM_DEBUG(dbgs() << __func__ << ": live map\n" |
423 | << PrintRangeMap(LiveMap, TRI) << '\n'); |
424 | return LiveMap; |
425 | } |
426 | |
427 | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( |
428 | InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { |
429 | RegToRangeMap DeadMap; |
430 | |
431 | auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { |
432 | auto F = LiveMap.find(x: R); |
433 | if (F == LiveMap.end() || F->second.empty()) { |
434 | DeadMap[R].add(Start: IndexType::Entry, End: IndexType::Exit, Fixed: false, TiedEnd: false); |
435 | return; |
436 | } |
437 | |
438 | RangeList &RL = F->second; |
439 | RangeList::iterator A = RL.begin(), Z = RL.end()-1; |
440 | |
441 | // Try to create the initial range. |
442 | if (A->start() != IndexType::Entry) { |
443 | IndexType DE = IndexMap.getPrevIndex(Idx: A->start()); |
444 | if (DE != IndexType::Entry) |
445 | DeadMap[R].add(Start: IndexType::Entry, End: DE, Fixed: false, TiedEnd: false); |
446 | } |
447 | |
448 | while (A != Z) { |
449 | // Creating a dead range that follows A. Pay attention to empty |
450 | // ranges (i.e. those ending with "None"). |
451 | IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); |
452 | IndexType DS = IndexMap.getNextIndex(Idx: AE); |
453 | ++A; |
454 | IndexType DE = IndexMap.getPrevIndex(Idx: A->start()); |
455 | if (DS < DE) |
456 | DeadMap[R].add(Start: DS, End: DE, Fixed: false, TiedEnd: false); |
457 | } |
458 | |
459 | // Try to create the final range. |
460 | if (Z->end() != IndexType::Exit) { |
461 | IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); |
462 | IndexType DS = IndexMap.getNextIndex(Idx: ZE); |
463 | if (DS < IndexType::Exit) |
464 | DeadMap[R].add(Start: DS, End: IndexType::Exit, Fixed: false, TiedEnd: false); |
465 | } |
466 | }; |
467 | |
468 | MachineFunction &MF = *IndexMap.getBlock().getParent(); |
469 | auto &MRI = MF.getRegInfo(); |
470 | unsigned NumRegs = TRI.getNumRegs(); |
471 | BitVector Visited(NumRegs); |
472 | for (unsigned R = 1; R < NumRegs; ++R) { |
473 | for (auto S : expandToSubRegs(R: {.Reg: R,.Sub: 0}, MRI, TRI)) { |
474 | if (Reserved[S.Reg] || Visited[S.Reg]) |
475 | continue; |
476 | addDeadRanges(S); |
477 | Visited[S.Reg] = true; |
478 | } |
479 | } |
480 | for (auto &P : LiveMap) |
481 | if (P.first.Reg.isVirtual()) |
482 | addDeadRanges(P.first); |
483 | |
484 | LLVM_DEBUG(dbgs() << __func__ << ": dead map\n" |
485 | << PrintRangeMap(DeadMap, TRI) << '\n'); |
486 | return DeadMap; |
487 | } |
488 | |
489 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
490 | HexagonBlockRanges::IndexType Idx) { |
491 | if (Idx == HexagonBlockRanges::IndexType::None) |
492 | return OS << '-'; |
493 | if (Idx == HexagonBlockRanges::IndexType::Entry) |
494 | return OS << 'n'; |
495 | if (Idx == HexagonBlockRanges::IndexType::Exit) |
496 | return OS << 'x'; |
497 | return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; |
498 | } |
499 | |
500 | // A mapping to translate between instructions and their indices. |
501 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
502 | const HexagonBlockRanges::IndexRange &IR) { |
503 | OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); |
504 | if (IR.Fixed) |
505 | OS << '!'; |
506 | return OS; |
507 | } |
508 | |
509 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
510 | const HexagonBlockRanges::RangeList &RL) { |
511 | for (const auto &R : RL) |
512 | OS << R << " " ; |
513 | return OS; |
514 | } |
515 | |
516 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
517 | const HexagonBlockRanges::InstrIndexMap &M) { |
518 | for (auto &In : M.Block) { |
519 | HexagonBlockRanges::IndexType Idx = M.getIndex(MI: &In); |
520 | OS << Idx << (Idx == M.Last ? ". " : " " ) << In; |
521 | } |
522 | return OS; |
523 | } |
524 | |
525 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
526 | const HexagonBlockRanges::PrintRangeMap &P) { |
527 | for (const auto &I : P.Map) { |
528 | const HexagonBlockRanges::RangeList &RL = I.second; |
529 | OS << printReg(Reg: I.first.Reg, TRI: &P.TRI, SubIdx: I.first.Sub) << " -> " << RL << "\n" ; |
530 | } |
531 | return OS; |
532 | } |
533 | |