| 1 | //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Utility functions for Hexagon specific MCInst queries |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H |
| 14 | #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H |
| 15 | |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/ADT/iterator.h" |
| 19 | #include "llvm/ADT/iterator_range.h" |
| 20 | #include "llvm/MC/MCInst.h" |
| 21 | #include "llvm/Support/MathExtras.h" |
| 22 | #include <cstddef> |
| 23 | #include <cstdint> |
| 24 | |
| 25 | namespace llvm { |
| 26 | |
| 27 | class HexagonMCChecker; |
| 28 | class MCContext; |
| 29 | class MCExpr; |
| 30 | class MCInstrDesc; |
| 31 | class MCInstrInfo; |
| 32 | class MCRegisterInfo; |
| 33 | class MCSubtargetInfo; |
| 34 | |
| 35 | class DuplexCandidate { |
| 36 | public: |
| 37 | unsigned packetIndexI, packetIndexJ, iClass; |
| 38 | |
| 39 | DuplexCandidate(unsigned i, unsigned j, unsigned iClass) |
| 40 | : packetIndexI(i), packetIndexJ(j), iClass(iClass) {} |
| 41 | }; |
| 42 | |
| 43 | namespace Hexagon { |
| 44 | |
| 45 | class PacketIterator |
| 46 | : public llvm::iterator_facade_base< |
| 47 | PacketIterator, std::forward_iterator_tag, const MCInst> { |
| 48 | MCInstrInfo const &MCII; |
| 49 | MCInst::const_iterator BundleCurrent; |
| 50 | MCInst::const_iterator BundleEnd; |
| 51 | MCInst::const_iterator DuplexCurrent; |
| 52 | MCInst::const_iterator DuplexEnd; |
| 53 | |
| 54 | public: |
| 55 | PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst); |
| 56 | PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t); |
| 57 | |
| 58 | PacketIterator &operator++(); |
| 59 | MCInst const &operator*() const; |
| 60 | bool operator==(PacketIterator const &Other) const; |
| 61 | }; |
| 62 | |
| 63 | } // end namespace Hexagon |
| 64 | |
| 65 | namespace HexagonMCInstrInfo { |
| 66 | |
| 67 | constexpr size_t innerLoopOffset = 0; |
| 68 | constexpr int64_t innerLoopMask = 1 << innerLoopOffset; |
| 69 | |
| 70 | constexpr size_t outerLoopOffset = 1; |
| 71 | constexpr int64_t outerLoopMask = 1 << outerLoopOffset; |
| 72 | |
| 73 | // do not reorder memory load/stores by default load/stores are re-ordered |
| 74 | // and by default loads can be re-ordered |
| 75 | constexpr size_t memReorderDisabledOffset = 2; |
| 76 | constexpr int64_t memReorderDisabledMask = 1 << memReorderDisabledOffset; |
| 77 | |
| 78 | constexpr size_t splitNoMemOrderOffset = 3; |
| 79 | constexpr int64_t splitNoMemorderMask = 1 << splitNoMemOrderOffset; |
| 80 | |
| 81 | constexpr size_t noShuffleOffset = 4; |
| 82 | constexpr int64_t noShuffleMask = 1 << noShuffleOffset; |
| 83 | |
| 84 | constexpr size_t bundleInstructionsOffset = 1; |
| 85 | |
| 86 | void addConstant(MCInst &MI, uint64_t Value, MCContext &Context); |
| 87 | void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, |
| 88 | MCInst const &MCI); |
| 89 | |
| 90 | // Returns a iterator range of instructions in this bundle |
| 91 | iterator_range<Hexagon::PacketIterator> |
| 92 | bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI); |
| 93 | iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI); |
| 94 | |
| 95 | // Returns the number of instructions in the bundle |
| 96 | size_t bundleSize(MCInst const &MCI); |
| 97 | |
| 98 | // Put the packet in to canonical form, compound, duplex, pad, and shuffle |
| 99 | bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 100 | MCContext &Context, MCInst &MCB, |
| 101 | HexagonMCChecker *Checker, |
| 102 | bool AttemptCompatibility = false); |
| 103 | bool IsABranchingInst(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 104 | MCInst const &I); |
| 105 | |
| 106 | // Create a duplex instruction given the two subinsts |
| 107 | MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0, |
| 108 | MCInst const &inst1); |
| 109 | MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst, |
| 110 | MCOperand const &MO); |
| 111 | |
| 112 | // Convert this instruction in to a duplex subinst |
| 113 | MCInst deriveSubInst(MCInst const &Inst); |
| 114 | |
| 115 | // Return the extender for instruction at Index or nullptr if none |
| 116 | MCInst const *extenderForIndex(MCInst const &MCB, size_t Index); |
| 117 | void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, |
| 118 | MCInst const &MCI); |
| 119 | |
| 120 | // Return memory access size in bytes |
| 121 | unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI); |
| 122 | |
| 123 | // Return memory access size |
| 124 | unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI); |
| 125 | |
| 126 | MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI); |
| 127 | |
| 128 | // Return which duplex group this instruction belongs to |
| 129 | unsigned getDuplexCandidateGroup(MCInst const &MI); |
| 130 | |
| 131 | // Return a list of all possible instruction duplex combinations |
| 132 | SmallVector<DuplexCandidate, 8> |
| 133 | getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 134 | MCInst const &MCB); |
| 135 | unsigned getDuplexRegisterNumbering(MCRegister Reg); |
| 136 | |
| 137 | MCExpr const &getExpr(MCExpr const &Expr); |
| 138 | |
| 139 | // Return the index of the extendable operand |
| 140 | unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI); |
| 141 | |
| 142 | // Return a reference to the extendable operand |
| 143 | MCOperand const &getExtendableOperand(MCInstrInfo const &MCII, |
| 144 | MCInst const &MCI); |
| 145 | |
| 146 | // Return the implicit alignment of the extendable operand |
| 147 | unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI); |
| 148 | |
| 149 | // Return the number of logical bits of the extendable operand |
| 150 | unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI); |
| 151 | |
| 152 | // Check if the extendable operand is signed. |
| 153 | bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI); |
| 154 | |
| 155 | // Return the max value that a constant extendable operand can have |
| 156 | // without being extended. |
| 157 | int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI); |
| 158 | |
| 159 | // Return the min value that a constant extendable operand can have |
| 160 | // without being extended. |
| 161 | int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI); |
| 162 | |
| 163 | // Return instruction name |
| 164 | StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI); |
| 165 | |
| 166 | // Return the operand index for the new value. |
| 167 | unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI); |
| 168 | |
| 169 | // Return the operand that consumes or produces a new value. |
| 170 | MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI); |
| 171 | unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI); |
| 172 | MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII, |
| 173 | MCInst const &MCI); |
| 174 | |
| 175 | // Return the Hexagon ISA class for the insn. |
| 176 | unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI); |
| 177 | |
| 178 | /// Return the resources used by this instruction |
| 179 | unsigned getCVIResources(MCInstrInfo const &MCII, |
| 180 | MCSubtargetInfo const &STI, |
| 181 | MCInst const &MCI); |
| 182 | |
| 183 | /// Return the slots used by the insn. |
| 184 | unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 185 | MCInst const &MCI); |
| 186 | unsigned getOtherReservedSlots(MCInstrInfo const &MCII, |
| 187 | MCSubtargetInfo const &STI, MCInst const &MCI); |
| 188 | bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI); |
| 189 | |
| 190 | // Does the packet have an extender for the instruction at Index |
| 191 | bool hasExtenderForIndex(MCInst const &MCB, size_t Index); |
| 192 | |
| 193 | bool hasImmExt(MCInst const &MCI); |
| 194 | |
| 195 | // Return whether the instruction is a legal new-value producer. |
| 196 | bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI); |
| 197 | bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI); |
| 198 | bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI); |
| 199 | bool hasHvxTmp(MCInstrInfo const &MCII, MCInst const &MCI); |
| 200 | unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb); |
| 201 | |
| 202 | int64_t minConstant(MCInst const &MCI, size_t Index); |
| 203 | template <unsigned N, unsigned S> |
| 204 | bool inRange(MCInst const &MCI, size_t Index) { |
| 205 | return isShiftedUInt<N, S>(minConstant(MCI, Index)); |
| 206 | } |
| 207 | template <unsigned N, unsigned S> |
| 208 | bool inSRange(MCInst const &MCI, size_t Index) { |
| 209 | return isShiftedInt<N, S>(minConstant(MCI, Index)); |
| 210 | } |
| 211 | template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) { |
| 212 | return isUInt<N>(minConstant(MCI, Index)); |
| 213 | } |
| 214 | |
| 215 | // Return the instruction at Index |
| 216 | MCInst const &instruction(MCInst const &MCB, size_t Index); |
| 217 | bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI); |
| 218 | |
| 219 | // Returns whether this MCInst is a wellformed bundle |
| 220 | bool isBundle(MCInst const &MCI); |
| 221 | |
| 222 | // Return whether the insn is an actual insn. |
| 223 | bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI); |
| 224 | bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI); |
| 225 | bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI); |
| 226 | bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI); |
| 227 | bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI); |
| 228 | |
| 229 | // Return whether the instruction needs to be constant extended. |
| 230 | bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI); |
| 231 | bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI); |
| 232 | |
| 233 | // Is this double register suitable for use in a duplex subinst |
| 234 | bool isDblRegForSubInst(MCRegister Reg); |
| 235 | |
| 236 | // Is this a duplex instruction |
| 237 | bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI); |
| 238 | |
| 239 | // Can these instructions be duplexed |
| 240 | bool isDuplexPair(MCInst const &MIa, MCInst const &MIb); |
| 241 | |
| 242 | // Can these duplex classes be combine in to a duplex instruction |
| 243 | bool isDuplexPairMatch(unsigned Ga, unsigned Gb); |
| 244 | |
| 245 | // Return true if the insn may be extended based on the operand value. |
| 246 | bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI); |
| 247 | |
| 248 | // Return whether the instruction must be always extended. |
| 249 | bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI); |
| 250 | |
| 251 | /// Return whether it is a floating-point insn. |
| 252 | bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI); |
| 253 | |
| 254 | bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI); |
| 255 | |
| 256 | // Returns whether this instruction is an immediate extender |
| 257 | bool isImmext(MCInst const &MCI); |
| 258 | |
| 259 | // Returns whether this bundle is an endloop0 |
| 260 | bool isInnerLoop(MCInst const &MCI); |
| 261 | |
| 262 | // Is this an integer register |
| 263 | bool isIntReg(MCRegister Reg); |
| 264 | |
| 265 | // Is this register suitable for use in a duplex subinst |
| 266 | bool isIntRegForSubInst(MCRegister Reg); |
| 267 | bool isMemReorderDisabled(MCInst const &MCI); |
| 268 | |
| 269 | // Return whether the insn is a new-value consumer. |
| 270 | bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI); |
| 271 | /// Return true if the operand is a new-value store insn. |
| 272 | bool isNewValueStore(MCInstrInfo const &MCII, MCInst const &MCI); |
| 273 | bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short); |
| 274 | |
| 275 | // Can these two instructions be duplexed |
| 276 | bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa, |
| 277 | bool ExtendedA, MCInst const &MIb, bool ExtendedB, |
| 278 | bool bisReversable, MCSubtargetInfo const &STI); |
| 279 | |
| 280 | // Returns whether this bundle is an endloop1 |
| 281 | bool isOuterLoop(MCInst const &MCI); |
| 282 | |
| 283 | // Return whether this instruction is predicated |
| 284 | bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI); |
| 285 | bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI); |
| 286 | bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI); |
| 287 | |
| 288 | // Return whether the predicate sense is true |
| 289 | bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI); |
| 290 | |
| 291 | // Return true if this is a scalar predicate register. |
| 292 | bool isPredReg(MCRegisterInfo const &MRI, MCRegister Reg); |
| 293 | |
| 294 | // Returns true if the Ith operand is a predicate register. |
| 295 | bool isPredRegister(MCInstrInfo const &MCII, MCInst const &Inst, unsigned I); |
| 296 | |
| 297 | // Return whether the insn is a prefix. |
| 298 | bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI); |
| 299 | |
| 300 | // Return whether the insn is solo, i.e., cannot be in a packet. |
| 301 | bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI); |
| 302 | |
| 303 | /// Return whether the insn can be packaged only with A and X-type insns. |
| 304 | bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI); |
| 305 | |
| 306 | /// Return whether the insn can be packaged only with an A-type insn in slot #1. |
| 307 | bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI); |
| 308 | bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI); |
| 309 | bool isSubInstruction(MCInst const &MCI); |
| 310 | bool isVector(MCInstrInfo const &MCII, MCInst const &MCI); |
| 311 | bool mustExtend(MCExpr const &Expr); |
| 312 | bool mustNotExtend(MCExpr const &Expr); |
| 313 | |
| 314 | // Returns true if this instruction requires a slot to execute. |
| 315 | bool requiresSlot(MCSubtargetInfo const &STI, MCInst const &MCI); |
| 316 | |
| 317 | |
| 318 | // Returns true if \a MCB would require endloop padding. |
| 319 | bool LoopNeedsPadding(MCInst const &MCB); |
| 320 | |
| 321 | unsigned packetSize(StringRef CPU); |
| 322 | |
| 323 | // Returns the maximum number of slots available in the given |
| 324 | // subtarget's packets. |
| 325 | unsigned packetSizeSlots(MCSubtargetInfo const &STI); |
| 326 | |
| 327 | // Returns the number of slots consumed by this packet, considering duplexed |
| 328 | // and compound instructions. |
| 329 | unsigned slotsConsumed(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 330 | MCInst const &MCI); |
| 331 | |
| 332 | // Pad the bundle with nops to satisfy endloop requirements. |
| 333 | void padEndloop(MCInst &MCI, MCContext &Context); |
| 334 | class PredicateInfo { |
| 335 | public: |
| 336 | PredicateInfo() : Operand(0), PredicatedTrue(false) {} |
| 337 | PredicateInfo(MCRegister Register, unsigned Operand, bool PredicatedTrue) |
| 338 | : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {} |
| 339 | bool isPredicated() const; |
| 340 | MCRegister Register; |
| 341 | unsigned Operand; |
| 342 | bool PredicatedTrue; |
| 343 | }; |
| 344 | PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI); |
| 345 | bool (MCInstrInfo const &MCII, MCInst const &MCI); |
| 346 | |
| 347 | // Replace the instructions inside MCB, represented by Candidate |
| 348 | void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate); |
| 349 | |
| 350 | bool s27_2_reloc(MCExpr const &Expr); |
| 351 | // Marks a bundle as endloop0 |
| 352 | void setInnerLoop(MCInst &MCI); |
| 353 | void setMemReorderDisabled(MCInst &MCI); |
| 354 | void setMustExtend(MCExpr const &Expr, bool Val = true); |
| 355 | void setMustNotExtend(MCExpr const &Expr, bool Val = true); |
| 356 | void setS27_2_reloc(MCExpr const &Expr, bool Val = true); |
| 357 | |
| 358 | // Marks a bundle as endloop1 |
| 359 | void setOuterLoop(MCInst &MCI); |
| 360 | |
| 361 | // Would duplexing this instruction create a requirement to extend |
| 362 | bool subInstWouldBeExtended(MCInst const &potentialDuplex); |
| 363 | unsigned SubregisterBit(MCRegister Consumer, MCRegister Producer, |
| 364 | MCRegister Producer2); |
| 365 | |
| 366 | bool IsVecRegSingle(MCRegister VecReg); |
| 367 | bool IsVecRegPair(MCRegister VecReg); |
| 368 | bool IsReverseVecRegPair(MCRegister VecReg); |
| 369 | bool IsSingleConsumerRefPairProducer(MCRegister Producer, MCRegister Consumer); |
| 370 | |
| 371 | /// Returns an ordered pair of the constituent register ordinals for |
| 372 | /// each of the elements of \a VecRegPair. For example, Hexagon::W0 ("v0:1") |
| 373 | /// returns { 0, 1 } and Hexagon::W1 ("v3:2") returns { 3, 2 }. |
| 374 | std::pair<unsigned, unsigned> GetVecRegPairIndices(MCRegister VecRegPair); |
| 375 | |
| 376 | // Attempt to find and replace compound pairs |
| 377 | void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 378 | MCContext &Context, MCInst &MCI); |
| 379 | |
| 380 | } // end namespace HexagonMCInstrInfo |
| 381 | |
| 382 | } // end namespace llvm |
| 383 | |
| 384 | #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H |
| 385 | |