| 1 | //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass mutates the form of VSX FMA instructions to avoid unnecessary |
| 10 | // copies. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "PPC.h" |
| 15 | #include "PPCInstrInfo.h" |
| 16 | #include "PPCTargetMachine.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
| 19 | #include "llvm/CodeGen/LiveIntervals.h" |
| 20 | #include "llvm/CodeGen/MachineDominators.h" |
| 21 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 22 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 23 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 24 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 25 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 26 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 27 | #include "llvm/CodeGen/SlotIndexes.h" |
| 28 | #include "llvm/MC/TargetRegistry.h" |
| 29 | #include "llvm/Support/CommandLine.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/ErrorHandling.h" |
| 32 | #include "llvm/Support/raw_ostream.h" |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | // Temporarily disable FMA mutation by default, since it doesn't handle |
| 37 | // cross-basic-block intervals well. |
| 38 | // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html |
| 39 | // http://reviews.llvm.org/D17087 |
| 40 | static cl::opt<bool> DisableVSXFMAMutate( |
| 41 | "disable-ppc-vsx-fma-mutation" , |
| 42 | cl::desc("Disable VSX FMA instruction mutation" ), cl::init(Val: true), |
| 43 | cl::Hidden); |
| 44 | |
| 45 | #define DEBUG_TYPE "ppc-vsx-fma-mutate" |
| 46 | |
| 47 | namespace llvm { namespace PPC { |
| 48 | int getAltVSXFMAOpcode(uint16_t Opcode); |
| 49 | } } |
| 50 | |
| 51 | namespace { |
| 52 | // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers |
| 53 | // (Altivec and scalar floating-point registers), we need to transform the |
| 54 | // copies into subregister copies with other restrictions. |
| 55 | struct PPCVSXFMAMutate : public MachineFunctionPass { |
| 56 | static char ID; |
| 57 | PPCVSXFMAMutate() : MachineFunctionPass(ID) {} |
| 58 | |
| 59 | LiveIntervals *LIS; |
| 60 | const PPCInstrInfo *TII; |
| 61 | |
| 62 | protected: |
| 63 | bool processBlock(MachineBasicBlock &MBB) { |
| 64 | bool Changed = false; |
| 65 | |
| 66 | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 67 | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
| 68 | for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); |
| 69 | I != IE; ++I) { |
| 70 | MachineInstr &MI = *I; |
| 71 | |
| 72 | // The default (A-type) VSX FMA form kills the addend (it is taken from |
| 73 | // the target register, which is then updated to reflect the result of |
| 74 | // the FMA). If the instruction, however, kills one of the registers |
| 75 | // used for the product, then we can use the M-form instruction (which |
| 76 | // will take that value from the to-be-defined register). |
| 77 | |
| 78 | int AltOpc = PPC::getAltVSXFMAOpcode(Opcode: MI.getOpcode()); |
| 79 | if (AltOpc == -1) |
| 80 | continue; |
| 81 | |
| 82 | // This pass is run after register coalescing, and so we're looking for |
| 83 | // a situation like this: |
| 84 | // ... |
| 85 | // %5 = COPY %9; VSLRC:%5,%9 |
| 86 | // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16, |
| 87 | // implicit %rm; VSLRC:%5,%17,%16 |
| 88 | // ... |
| 89 | // %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19, |
| 90 | // implicit %rm; VSLRC:%9,%17,%19 |
| 91 | // ... |
| 92 | // Where we can eliminate the copy by changing from the A-type to the |
| 93 | // M-type instruction. Specifically, for this example, this means: |
| 94 | // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16, |
| 95 | // implicit %rm; VSLRC:%5,%17,%16 |
| 96 | // is replaced by: |
| 97 | // %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9, |
| 98 | // implicit %rm; VSLRC:%16,%18,%9 |
| 99 | // and we remove: %5 = COPY %9; VSLRC:%5,%9 |
| 100 | |
| 101 | SlotIndex FMAIdx = LIS->getInstructionIndex(Instr: MI); |
| 102 | |
| 103 | VNInfo *AddendValNo = |
| 104 | LIS->getInterval(Reg: MI.getOperand(i: 1).getReg()).Query(Idx: FMAIdx).valueIn(); |
| 105 | |
| 106 | // This can be null if the register is undef. |
| 107 | if (!AddendValNo) |
| 108 | continue; |
| 109 | |
| 110 | MachineInstr *AddendMI = LIS->getInstructionFromIndex(index: AddendValNo->def); |
| 111 | |
| 112 | // The addend and this instruction must be in the same block. |
| 113 | |
| 114 | if (!AddendMI || AddendMI->getParent() != MI.getParent()) |
| 115 | continue; |
| 116 | |
| 117 | // The addend must be a full copy within the same register class. |
| 118 | |
| 119 | if (!AddendMI->isFullCopy()) |
| 120 | continue; |
| 121 | |
| 122 | Register AddendSrcReg = AddendMI->getOperand(i: 1).getReg(); |
| 123 | if (AddendSrcReg.isVirtual()) { |
| 124 | if (MRI.getRegClass(Reg: AddendMI->getOperand(i: 0).getReg()) != |
| 125 | MRI.getRegClass(Reg: AddendSrcReg)) |
| 126 | continue; |
| 127 | } else { |
| 128 | // If AddendSrcReg is a physical register, make sure the destination |
| 129 | // register class contains it. |
| 130 | if (!MRI.getRegClass(Reg: AddendMI->getOperand(i: 0).getReg()) |
| 131 | ->contains(Reg: AddendSrcReg)) |
| 132 | continue; |
| 133 | } |
| 134 | |
| 135 | // In theory, there could be other uses of the addend copy before this |
| 136 | // fma. We could deal with this, but that would require additional |
| 137 | // logic below and I suspect it will not occur in any relevant |
| 138 | // situations. Additionally, check whether the copy source is killed |
| 139 | // prior to the fma. In order to replace the addend here with the |
| 140 | // source of the copy, it must still be live here. We can't use |
| 141 | // interval testing for a physical register, so as long as we're |
| 142 | // walking the MIs we may as well test liveness here. |
| 143 | // |
| 144 | // FIXME: There is a case that occurs in practice, like this: |
| 145 | // %9 = COPY %f1; VSSRC:%9 |
| 146 | // ... |
| 147 | // %6 = COPY %9; VSSRC:%6,%9 |
| 148 | // %7 = COPY %9; VSSRC:%7,%9 |
| 149 | // %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC: |
| 150 | // %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC: |
| 151 | // %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC: |
| 152 | // which prevents an otherwise-profitable transformation. |
| 153 | bool OtherUsers = false, KillsAddendSrc = false; |
| 154 | for (auto J = std::prev(x: I), JE = MachineBasicBlock::iterator(AddendMI); |
| 155 | J != JE; --J) { |
| 156 | if (J->readsVirtualRegister(Reg: AddendMI->getOperand(i: 0).getReg())) { |
| 157 | OtherUsers = true; |
| 158 | break; |
| 159 | } |
| 160 | if (J->modifiesRegister(Reg: AddendSrcReg, TRI) || |
| 161 | J->killsRegister(Reg: AddendSrcReg, TRI)) { |
| 162 | KillsAddendSrc = true; |
| 163 | break; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | if (OtherUsers || KillsAddendSrc) |
| 168 | continue; |
| 169 | |
| 170 | |
| 171 | // The transformation doesn't work well with things like: |
| 172 | // %5 = A-form-op %5, %11, %5; |
| 173 | // unless %11 is also a kill, so skip when it is not, |
| 174 | // and check operand 3 to see it is also a kill to handle the case: |
| 175 | // %5 = A-form-op %5, %5, %11; |
| 176 | // where %5 and %11 are both kills. This case would be skipped |
| 177 | // otherwise. |
| 178 | Register OldFMAReg = MI.getOperand(i: 0).getReg(); |
| 179 | |
| 180 | // Find one of the product operands that is killed by this instruction. |
| 181 | unsigned KilledProdOp = 0, OtherProdOp = 0; |
| 182 | Register Reg2 = MI.getOperand(i: 2).getReg(); |
| 183 | Register Reg3 = MI.getOperand(i: 3).getReg(); |
| 184 | if (LIS->getInterval(Reg: Reg2).Query(Idx: FMAIdx).isKill() |
| 185 | && Reg2 != OldFMAReg) { |
| 186 | KilledProdOp = 2; |
| 187 | OtherProdOp = 3; |
| 188 | } else if (LIS->getInterval(Reg: Reg3).Query(Idx: FMAIdx).isKill() |
| 189 | && Reg3 != OldFMAReg) { |
| 190 | KilledProdOp = 3; |
| 191 | OtherProdOp = 2; |
| 192 | } |
| 193 | |
| 194 | // If there are no usable killed product operands, then this |
| 195 | // transformation is likely not profitable. |
| 196 | if (!KilledProdOp) |
| 197 | continue; |
| 198 | |
| 199 | // If the addend copy is used only by this MI, then the addend source |
| 200 | // register is likely not live here. This could be fixed (based on the |
| 201 | // legality checks above, the live range for the addend source register |
| 202 | // could be extended), but it seems likely that such a trivial copy can |
| 203 | // be coalesced away later, and thus is not worth the effort. |
| 204 | if (AddendSrcReg.isVirtual() && |
| 205 | !LIS->getInterval(Reg: AddendSrcReg).liveAt(index: FMAIdx)) |
| 206 | continue; |
| 207 | |
| 208 | // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. |
| 209 | |
| 210 | Register KilledProdReg = MI.getOperand(i: KilledProdOp).getReg(); |
| 211 | Register OtherProdReg = MI.getOperand(i: OtherProdOp).getReg(); |
| 212 | |
| 213 | unsigned AddSubReg = AddendMI->getOperand(i: 1).getSubReg(); |
| 214 | unsigned KilledProdSubReg = MI.getOperand(i: KilledProdOp).getSubReg(); |
| 215 | unsigned OtherProdSubReg = MI.getOperand(i: OtherProdOp).getSubReg(); |
| 216 | |
| 217 | bool AddRegKill = AddendMI->getOperand(i: 1).isKill(); |
| 218 | bool KilledProdRegKill = MI.getOperand(i: KilledProdOp).isKill(); |
| 219 | bool OtherProdRegKill = MI.getOperand(i: OtherProdOp).isKill(); |
| 220 | |
| 221 | bool AddRegUndef = AddendMI->getOperand(i: 1).isUndef(); |
| 222 | bool KilledProdRegUndef = MI.getOperand(i: KilledProdOp).isUndef(); |
| 223 | bool OtherProdRegUndef = MI.getOperand(i: OtherProdOp).isUndef(); |
| 224 | |
| 225 | // If there isn't a class that fits, we can't perform the transform. |
| 226 | // This is needed for correctness with a mixture of VSX and Altivec |
| 227 | // instructions to make sure that a low VSX register is not assigned to |
| 228 | // the Altivec instruction. |
| 229 | if (!MRI.constrainRegClass(Reg: KilledProdReg, |
| 230 | RC: MRI.getRegClass(Reg: OldFMAReg))) |
| 231 | continue; |
| 232 | |
| 233 | assert(OldFMAReg == AddendMI->getOperand(0).getReg() && |
| 234 | "Addend copy not tied to old FMA output!" ); |
| 235 | |
| 236 | LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI); |
| 237 | |
| 238 | MI.getOperand(i: 0).setReg(KilledProdReg); |
| 239 | MI.getOperand(i: 1).setReg(KilledProdReg); |
| 240 | MI.getOperand(i: 3).setReg(AddendSrcReg); |
| 241 | |
| 242 | MI.getOperand(i: 0).setSubReg(KilledProdSubReg); |
| 243 | MI.getOperand(i: 1).setSubReg(KilledProdSubReg); |
| 244 | MI.getOperand(i: 3).setSubReg(AddSubReg); |
| 245 | |
| 246 | MI.getOperand(i: 1).setIsKill(KilledProdRegKill); |
| 247 | MI.getOperand(i: 3).setIsKill(AddRegKill); |
| 248 | |
| 249 | MI.getOperand(i: 1).setIsUndef(KilledProdRegUndef); |
| 250 | MI.getOperand(i: 3).setIsUndef(AddRegUndef); |
| 251 | |
| 252 | MI.setDesc(TII->get(Opcode: AltOpc)); |
| 253 | |
| 254 | // If the addend is also a multiplicand, replace it with the addend |
| 255 | // source in both places. |
| 256 | if (OtherProdReg == AddendMI->getOperand(i: 0).getReg()) { |
| 257 | MI.getOperand(i: 2).setReg(AddendSrcReg); |
| 258 | MI.getOperand(i: 2).setSubReg(AddSubReg); |
| 259 | MI.getOperand(i: 2).setIsKill(AddRegKill); |
| 260 | MI.getOperand(i: 2).setIsUndef(AddRegUndef); |
| 261 | } else { |
| 262 | MI.getOperand(i: 2).setReg(OtherProdReg); |
| 263 | MI.getOperand(i: 2).setSubReg(OtherProdSubReg); |
| 264 | MI.getOperand(i: 2).setIsKill(OtherProdRegKill); |
| 265 | MI.getOperand(i: 2).setIsUndef(OtherProdRegUndef); |
| 266 | } |
| 267 | |
| 268 | LLVM_DEBUG(dbgs() << " -> " << MI); |
| 269 | |
| 270 | // The killed product operand was killed here, so we can reuse it now |
| 271 | // for the result of the fma. |
| 272 | |
| 273 | LiveInterval &FMAInt = LIS->getInterval(Reg: OldFMAReg); |
| 274 | VNInfo *FMAValNo = FMAInt.getVNInfoAt(Idx: FMAIdx.getRegSlot()); |
| 275 | for (auto UI = MRI.reg_nodbg_begin(RegNo: OldFMAReg), UE = MRI.reg_nodbg_end(); |
| 276 | UI != UE;) { |
| 277 | MachineOperand &UseMO = *UI; |
| 278 | MachineInstr *UseMI = UseMO.getParent(); |
| 279 | ++UI; |
| 280 | |
| 281 | // Don't replace the result register of the copy we're about to erase. |
| 282 | if (UseMI == AddendMI) |
| 283 | continue; |
| 284 | |
| 285 | UseMO.substVirtReg(Reg: KilledProdReg, SubIdx: KilledProdSubReg, *TRI); |
| 286 | } |
| 287 | |
| 288 | // Recalculate the live intervals of the killed product operand. |
| 289 | LIS->removeInterval(Reg: KilledProdReg); |
| 290 | LiveInterval &NewFMAInt = |
| 291 | LIS->createAndComputeVirtRegInterval(Reg: KilledProdReg); |
| 292 | |
| 293 | LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); |
| 294 | (void)NewFMAInt; |
| 295 | |
| 296 | // Extend the live interval of the addend source (it might end at the |
| 297 | // copy to be removed, or somewhere in between there and here). This |
| 298 | // is necessary only if it is a physical register. |
| 299 | if (!AddendSrcReg.isVirtual()) |
| 300 | for (MCRegUnit Unit : TRI->regunits(Reg: AddendSrcReg.asMCReg())) { |
| 301 | LiveRange &AddendSrcRange = LIS->getRegUnit(Unit); |
| 302 | AddendSrcRange.extendInBlock(StartIdx: LIS->getMBBStartIdx(mbb: &MBB), |
| 303 | Kill: FMAIdx.getRegSlot()); |
| 304 | LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n'); |
| 305 | } |
| 306 | |
| 307 | FMAInt.removeValNo(ValNo: FMAValNo); |
| 308 | LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); |
| 309 | |
| 310 | // Remove the (now unused) copy. |
| 311 | |
| 312 | LLVM_DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); |
| 313 | LIS->RemoveMachineInstrFromMaps(MI&: *AddendMI); |
| 314 | AddendMI->eraseFromParent(); |
| 315 | |
| 316 | Changed = true; |
| 317 | } |
| 318 | |
| 319 | return Changed; |
| 320 | } |
| 321 | |
| 322 | public: |
| 323 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 324 | if (skipFunction(F: MF.getFunction())) |
| 325 | return false; |
| 326 | |
| 327 | // If we don't have VSX then go ahead and return without doing |
| 328 | // anything. |
| 329 | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
| 330 | if (!STI.hasVSX()) |
| 331 | return false; |
| 332 | |
| 333 | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
| 334 | |
| 335 | TII = STI.getInstrInfo(); |
| 336 | |
| 337 | bool Changed = false; |
| 338 | |
| 339 | if (DisableVSXFMAMutate) |
| 340 | return Changed; |
| 341 | |
| 342 | for (MachineBasicBlock &B : llvm::make_early_inc_range(Range&: MF)) |
| 343 | if (processBlock(MBB&: B)) |
| 344 | Changed = true; |
| 345 | |
| 346 | return Changed; |
| 347 | } |
| 348 | |
| 349 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 350 | AU.addRequired<LiveIntervalsWrapperPass>(); |
| 351 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 352 | AU.addRequired<SlotIndexesWrapperPass>(); |
| 353 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 354 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 355 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 356 | MachineFunctionPass::getAnalysisUsage(AU); |
| 357 | } |
| 358 | }; |
| 359 | } |
| 360 | |
| 361 | INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, |
| 362 | "PowerPC VSX FMA Mutation" , false, false) |
| 363 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
| 364 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
| 365 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 366 | INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, |
| 367 | "PowerPC VSX FMA Mutation" , false, false) |
| 368 | |
| 369 | char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; |
| 370 | |
| 371 | char PPCVSXFMAMutate::ID = 0; |
| 372 | FunctionPass *llvm::createPPCVSXFMAMutatePass() { |
| 373 | return new PPCVSXFMAMutate(); |
| 374 | } |
| 375 | |