1 | //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass mutates the form of VSX FMA instructions to avoid unnecessary |
10 | // copies. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "PPC.h" |
15 | #include "PPCInstrInfo.h" |
16 | #include "PPCTargetMachine.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/Statistic.h" |
19 | #include "llvm/CodeGen/LiveIntervals.h" |
20 | #include "llvm/CodeGen/MachineDominators.h" |
21 | #include "llvm/CodeGen/MachineFrameInfo.h" |
22 | #include "llvm/CodeGen/MachineFunctionPass.h" |
23 | #include "llvm/CodeGen/MachineMemOperand.h" |
24 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
25 | #include "llvm/CodeGen/PseudoSourceValue.h" |
26 | #include "llvm/CodeGen/ScheduleDAG.h" |
27 | #include "llvm/CodeGen/SlotIndexes.h" |
28 | #include "llvm/MC/TargetRegistry.h" |
29 | #include "llvm/Support/CommandLine.h" |
30 | #include "llvm/Support/Debug.h" |
31 | #include "llvm/Support/ErrorHandling.h" |
32 | #include "llvm/Support/raw_ostream.h" |
33 | |
34 | using namespace llvm; |
35 | |
36 | // Temporarily disable FMA mutation by default, since it doesn't handle |
37 | // cross-basic-block intervals well. |
38 | // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html |
39 | // http://reviews.llvm.org/D17087 |
40 | static cl::opt<bool> DisableVSXFMAMutate( |
41 | "disable-ppc-vsx-fma-mutation" , |
42 | cl::desc("Disable VSX FMA instruction mutation" ), cl::init(Val: true), |
43 | cl::Hidden); |
44 | |
45 | #define DEBUG_TYPE "ppc-vsx-fma-mutate" |
46 | |
47 | namespace llvm { namespace PPC { |
48 | int getAltVSXFMAOpcode(uint16_t Opcode); |
49 | } } |
50 | |
51 | namespace { |
52 | // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers |
53 | // (Altivec and scalar floating-point registers), we need to transform the |
54 | // copies into subregister copies with other restrictions. |
55 | struct PPCVSXFMAMutate : public MachineFunctionPass { |
56 | static char ID; |
57 | PPCVSXFMAMutate() : MachineFunctionPass(ID) {} |
58 | |
59 | LiveIntervals *LIS; |
60 | const PPCInstrInfo *TII; |
61 | |
62 | protected: |
63 | bool processBlock(MachineBasicBlock &MBB) { |
64 | bool Changed = false; |
65 | |
66 | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
67 | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
68 | for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); |
69 | I != IE; ++I) { |
70 | MachineInstr &MI = *I; |
71 | |
72 | // The default (A-type) VSX FMA form kills the addend (it is taken from |
73 | // the target register, which is then updated to reflect the result of |
74 | // the FMA). If the instruction, however, kills one of the registers |
75 | // used for the product, then we can use the M-form instruction (which |
76 | // will take that value from the to-be-defined register). |
77 | |
78 | int AltOpc = PPC::getAltVSXFMAOpcode(Opcode: MI.getOpcode()); |
79 | if (AltOpc == -1) |
80 | continue; |
81 | |
82 | // This pass is run after register coalescing, and so we're looking for |
83 | // a situation like this: |
84 | // ... |
85 | // %5 = COPY %9; VSLRC:%5,%9 |
86 | // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16, |
87 | // implicit %rm; VSLRC:%5,%17,%16 |
88 | // ... |
89 | // %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19, |
90 | // implicit %rm; VSLRC:%9,%17,%19 |
91 | // ... |
92 | // Where we can eliminate the copy by changing from the A-type to the |
93 | // M-type instruction. Specifically, for this example, this means: |
94 | // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16, |
95 | // implicit %rm; VSLRC:%5,%17,%16 |
96 | // is replaced by: |
97 | // %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9, |
98 | // implicit %rm; VSLRC:%16,%18,%9 |
99 | // and we remove: %5 = COPY %9; VSLRC:%5,%9 |
100 | |
101 | SlotIndex FMAIdx = LIS->getInstructionIndex(Instr: MI); |
102 | |
103 | VNInfo *AddendValNo = |
104 | LIS->getInterval(Reg: MI.getOperand(i: 1).getReg()).Query(Idx: FMAIdx).valueIn(); |
105 | |
106 | // This can be null if the register is undef. |
107 | if (!AddendValNo) |
108 | continue; |
109 | |
110 | MachineInstr *AddendMI = LIS->getInstructionFromIndex(index: AddendValNo->def); |
111 | |
112 | // The addend and this instruction must be in the same block. |
113 | |
114 | if (!AddendMI || AddendMI->getParent() != MI.getParent()) |
115 | continue; |
116 | |
117 | // The addend must be a full copy within the same register class. |
118 | |
119 | if (!AddendMI->isFullCopy()) |
120 | continue; |
121 | |
122 | Register AddendSrcReg = AddendMI->getOperand(i: 1).getReg(); |
123 | if (AddendSrcReg.isVirtual()) { |
124 | if (MRI.getRegClass(Reg: AddendMI->getOperand(i: 0).getReg()) != |
125 | MRI.getRegClass(Reg: AddendSrcReg)) |
126 | continue; |
127 | } else { |
128 | // If AddendSrcReg is a physical register, make sure the destination |
129 | // register class contains it. |
130 | if (!MRI.getRegClass(Reg: AddendMI->getOperand(i: 0).getReg()) |
131 | ->contains(Reg: AddendSrcReg)) |
132 | continue; |
133 | } |
134 | |
135 | // In theory, there could be other uses of the addend copy before this |
136 | // fma. We could deal with this, but that would require additional |
137 | // logic below and I suspect it will not occur in any relevant |
138 | // situations. Additionally, check whether the copy source is killed |
139 | // prior to the fma. In order to replace the addend here with the |
140 | // source of the copy, it must still be live here. We can't use |
141 | // interval testing for a physical register, so as long as we're |
142 | // walking the MIs we may as well test liveness here. |
143 | // |
144 | // FIXME: There is a case that occurs in practice, like this: |
145 | // %9 = COPY %f1; VSSRC:%9 |
146 | // ... |
147 | // %6 = COPY %9; VSSRC:%6,%9 |
148 | // %7 = COPY %9; VSSRC:%7,%9 |
149 | // %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC: |
150 | // %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC: |
151 | // %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC: |
152 | // which prevents an otherwise-profitable transformation. |
153 | bool OtherUsers = false, KillsAddendSrc = false; |
154 | for (auto J = std::prev(x: I), JE = MachineBasicBlock::iterator(AddendMI); |
155 | J != JE; --J) { |
156 | if (J->readsVirtualRegister(Reg: AddendMI->getOperand(i: 0).getReg())) { |
157 | OtherUsers = true; |
158 | break; |
159 | } |
160 | if (J->modifiesRegister(Reg: AddendSrcReg, TRI) || |
161 | J->killsRegister(Reg: AddendSrcReg, TRI)) { |
162 | KillsAddendSrc = true; |
163 | break; |
164 | } |
165 | } |
166 | |
167 | if (OtherUsers || KillsAddendSrc) |
168 | continue; |
169 | |
170 | |
171 | // The transformation doesn't work well with things like: |
172 | // %5 = A-form-op %5, %11, %5; |
173 | // unless %11 is also a kill, so skip when it is not, |
174 | // and check operand 3 to see it is also a kill to handle the case: |
175 | // %5 = A-form-op %5, %5, %11; |
176 | // where %5 and %11 are both kills. This case would be skipped |
177 | // otherwise. |
178 | Register OldFMAReg = MI.getOperand(i: 0).getReg(); |
179 | |
180 | // Find one of the product operands that is killed by this instruction. |
181 | unsigned KilledProdOp = 0, OtherProdOp = 0; |
182 | Register Reg2 = MI.getOperand(i: 2).getReg(); |
183 | Register Reg3 = MI.getOperand(i: 3).getReg(); |
184 | if (LIS->getInterval(Reg: Reg2).Query(Idx: FMAIdx).isKill() |
185 | && Reg2 != OldFMAReg) { |
186 | KilledProdOp = 2; |
187 | OtherProdOp = 3; |
188 | } else if (LIS->getInterval(Reg: Reg3).Query(Idx: FMAIdx).isKill() |
189 | && Reg3 != OldFMAReg) { |
190 | KilledProdOp = 3; |
191 | OtherProdOp = 2; |
192 | } |
193 | |
194 | // If there are no usable killed product operands, then this |
195 | // transformation is likely not profitable. |
196 | if (!KilledProdOp) |
197 | continue; |
198 | |
199 | // If the addend copy is used only by this MI, then the addend source |
200 | // register is likely not live here. This could be fixed (based on the |
201 | // legality checks above, the live range for the addend source register |
202 | // could be extended), but it seems likely that such a trivial copy can |
203 | // be coalesced away later, and thus is not worth the effort. |
204 | if (AddendSrcReg.isVirtual() && |
205 | !LIS->getInterval(Reg: AddendSrcReg).liveAt(index: FMAIdx)) |
206 | continue; |
207 | |
208 | // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. |
209 | |
210 | Register KilledProdReg = MI.getOperand(i: KilledProdOp).getReg(); |
211 | Register OtherProdReg = MI.getOperand(i: OtherProdOp).getReg(); |
212 | |
213 | unsigned AddSubReg = AddendMI->getOperand(i: 1).getSubReg(); |
214 | unsigned KilledProdSubReg = MI.getOperand(i: KilledProdOp).getSubReg(); |
215 | unsigned OtherProdSubReg = MI.getOperand(i: OtherProdOp).getSubReg(); |
216 | |
217 | bool AddRegKill = AddendMI->getOperand(i: 1).isKill(); |
218 | bool KilledProdRegKill = MI.getOperand(i: KilledProdOp).isKill(); |
219 | bool OtherProdRegKill = MI.getOperand(i: OtherProdOp).isKill(); |
220 | |
221 | bool AddRegUndef = AddendMI->getOperand(i: 1).isUndef(); |
222 | bool KilledProdRegUndef = MI.getOperand(i: KilledProdOp).isUndef(); |
223 | bool OtherProdRegUndef = MI.getOperand(i: OtherProdOp).isUndef(); |
224 | |
225 | // If there isn't a class that fits, we can't perform the transform. |
226 | // This is needed for correctness with a mixture of VSX and Altivec |
227 | // instructions to make sure that a low VSX register is not assigned to |
228 | // the Altivec instruction. |
229 | if (!MRI.constrainRegClass(Reg: KilledProdReg, |
230 | RC: MRI.getRegClass(Reg: OldFMAReg))) |
231 | continue; |
232 | |
233 | assert(OldFMAReg == AddendMI->getOperand(0).getReg() && |
234 | "Addend copy not tied to old FMA output!" ); |
235 | |
236 | LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI); |
237 | |
238 | MI.getOperand(i: 0).setReg(KilledProdReg); |
239 | MI.getOperand(i: 1).setReg(KilledProdReg); |
240 | MI.getOperand(i: 3).setReg(AddendSrcReg); |
241 | |
242 | MI.getOperand(i: 0).setSubReg(KilledProdSubReg); |
243 | MI.getOperand(i: 1).setSubReg(KilledProdSubReg); |
244 | MI.getOperand(i: 3).setSubReg(AddSubReg); |
245 | |
246 | MI.getOperand(i: 1).setIsKill(KilledProdRegKill); |
247 | MI.getOperand(i: 3).setIsKill(AddRegKill); |
248 | |
249 | MI.getOperand(i: 1).setIsUndef(KilledProdRegUndef); |
250 | MI.getOperand(i: 3).setIsUndef(AddRegUndef); |
251 | |
252 | MI.setDesc(TII->get(Opcode: AltOpc)); |
253 | |
254 | // If the addend is also a multiplicand, replace it with the addend |
255 | // source in both places. |
256 | if (OtherProdReg == AddendMI->getOperand(i: 0).getReg()) { |
257 | MI.getOperand(i: 2).setReg(AddendSrcReg); |
258 | MI.getOperand(i: 2).setSubReg(AddSubReg); |
259 | MI.getOperand(i: 2).setIsKill(AddRegKill); |
260 | MI.getOperand(i: 2).setIsUndef(AddRegUndef); |
261 | } else { |
262 | MI.getOperand(i: 2).setReg(OtherProdReg); |
263 | MI.getOperand(i: 2).setSubReg(OtherProdSubReg); |
264 | MI.getOperand(i: 2).setIsKill(OtherProdRegKill); |
265 | MI.getOperand(i: 2).setIsUndef(OtherProdRegUndef); |
266 | } |
267 | |
268 | LLVM_DEBUG(dbgs() << " -> " << MI); |
269 | |
270 | // The killed product operand was killed here, so we can reuse it now |
271 | // for the result of the fma. |
272 | |
273 | LiveInterval &FMAInt = LIS->getInterval(Reg: OldFMAReg); |
274 | VNInfo *FMAValNo = FMAInt.getVNInfoAt(Idx: FMAIdx.getRegSlot()); |
275 | for (auto UI = MRI.reg_nodbg_begin(RegNo: OldFMAReg), UE = MRI.reg_nodbg_end(); |
276 | UI != UE;) { |
277 | MachineOperand &UseMO = *UI; |
278 | MachineInstr *UseMI = UseMO.getParent(); |
279 | ++UI; |
280 | |
281 | // Don't replace the result register of the copy we're about to erase. |
282 | if (UseMI == AddendMI) |
283 | continue; |
284 | |
285 | UseMO.substVirtReg(Reg: KilledProdReg, SubIdx: KilledProdSubReg, *TRI); |
286 | } |
287 | |
288 | // Recalculate the live intervals of the killed product operand. |
289 | LIS->removeInterval(Reg: KilledProdReg); |
290 | LiveInterval &NewFMAInt = |
291 | LIS->createAndComputeVirtRegInterval(Reg: KilledProdReg); |
292 | |
293 | LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); |
294 | (void)NewFMAInt; |
295 | |
296 | // Extend the live interval of the addend source (it might end at the |
297 | // copy to be removed, or somewhere in between there and here). This |
298 | // is necessary only if it is a physical register. |
299 | if (!AddendSrcReg.isVirtual()) |
300 | for (MCRegUnit Unit : TRI->regunits(Reg: AddendSrcReg.asMCReg())) { |
301 | LiveRange &AddendSrcRange = LIS->getRegUnit(Unit); |
302 | AddendSrcRange.extendInBlock(StartIdx: LIS->getMBBStartIdx(mbb: &MBB), |
303 | Kill: FMAIdx.getRegSlot()); |
304 | LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n'); |
305 | } |
306 | |
307 | FMAInt.removeValNo(ValNo: FMAValNo); |
308 | LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); |
309 | |
310 | // Remove the (now unused) copy. |
311 | |
312 | LLVM_DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); |
313 | LIS->RemoveMachineInstrFromMaps(MI&: *AddendMI); |
314 | AddendMI->eraseFromParent(); |
315 | |
316 | Changed = true; |
317 | } |
318 | |
319 | return Changed; |
320 | } |
321 | |
322 | public: |
323 | bool runOnMachineFunction(MachineFunction &MF) override { |
324 | if (skipFunction(F: MF.getFunction())) |
325 | return false; |
326 | |
327 | // If we don't have VSX then go ahead and return without doing |
328 | // anything. |
329 | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
330 | if (!STI.hasVSX()) |
331 | return false; |
332 | |
333 | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
334 | |
335 | TII = STI.getInstrInfo(); |
336 | |
337 | bool Changed = false; |
338 | |
339 | if (DisableVSXFMAMutate) |
340 | return Changed; |
341 | |
342 | for (MachineBasicBlock &B : llvm::make_early_inc_range(Range&: MF)) |
343 | if (processBlock(MBB&: B)) |
344 | Changed = true; |
345 | |
346 | return Changed; |
347 | } |
348 | |
349 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
350 | AU.addRequired<LiveIntervalsWrapperPass>(); |
351 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
352 | AU.addRequired<SlotIndexesWrapperPass>(); |
353 | AU.addPreserved<SlotIndexesWrapperPass>(); |
354 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
355 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
356 | MachineFunctionPass::getAnalysisUsage(AU); |
357 | } |
358 | }; |
359 | } |
360 | |
361 | INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, |
362 | "PowerPC VSX FMA Mutation" , false, false) |
363 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
364 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
365 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
366 | INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, |
367 | "PowerPC VSX FMA Mutation" , false, false) |
368 | |
369 | char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; |
370 | |
371 | char PPCVSXFMAMutate::ID = 0; |
372 | FunctionPass *llvm::createPPCVSXFMAMutatePass() { |
373 | return new PPCVSXFMAMutate(); |
374 | } |
375 | |