| 1 | //===-- RISCVMakeCompressible.cpp - Make more instructions compressible ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass searches for instructions that are prevented from being compressed |
| 10 | // by one of the following: |
| 11 | // |
| 12 | // 1. The use of a single uncompressed register. |
| 13 | // 2. A base register + offset where the offset is too large to be compressed |
| 14 | // and the base register may or may not be compressed. |
| 15 | // |
| 16 | // |
| 17 | // For case 1, if a compressed register is available, then the uncompressed |
| 18 | // register is copied to the compressed register and its uses are replaced. |
| 19 | // |
| 20 | // For example, storing zero uses the incompressible zero register: |
| 21 | // sw zero, 0(a0) # if zero |
| 22 | // sw zero, 8(a0) # if zero |
| 23 | // sw zero, 4(a0) # if zero |
| 24 | // sw zero, 24(a0) # if zero |
| 25 | // |
| 26 | // If a compressed register (e.g. a1) is available, the above can be transformed |
| 27 | // to the following to improve code size: |
| 28 | // li a1, 0 |
| 29 | // c.sw a1, 0(a0) |
| 30 | // c.sw a1, 8(a0) |
| 31 | // c.sw a1, 4(a0) |
| 32 | // c.sw a1, 24(a0) |
| 33 | // |
| 34 | // |
| 35 | // For case 2, if a compressed register is available, then the original base |
| 36 | // is copied and adjusted such that: |
| 37 | // |
| 38 | // new_base_register = base_register + adjustment |
| 39 | // base_register + large_offset = new_base_register + small_offset |
| 40 | // |
| 41 | // For example, the following offsets are too large for c.sw: |
| 42 | // lui a2, 983065 |
| 43 | // sw a1, -236(a2) |
| 44 | // sw a1, -240(a2) |
| 45 | // sw a1, -244(a2) |
| 46 | // sw a1, -248(a2) |
| 47 | // sw a1, -252(a2) |
| 48 | // sw a0, -256(a2) |
| 49 | // |
| 50 | // If a compressed register is available (e.g. a3), a new base could be created |
| 51 | // such that the addresses can accessed with a compressible offset, thus |
| 52 | // improving code size: |
| 53 | // lui a2, 983065 |
| 54 | // addi a3, a2, -256 |
| 55 | // c.sw a1, 20(a3) |
| 56 | // c.sw a1, 16(a3) |
| 57 | // c.sw a1, 12(a3) |
| 58 | // c.sw a1, 8(a3) |
| 59 | // c.sw a1, 4(a3) |
| 60 | // c.sw a0, 0(a3) |
| 61 | // |
| 62 | // |
| 63 | // This optimization is only applied if there are enough uses of the copied |
| 64 | // register for code size to be reduced. |
| 65 | // |
| 66 | //===----------------------------------------------------------------------===// |
| 67 | |
| 68 | #include "RISCV.h" |
| 69 | #include "RISCVSubtarget.h" |
| 70 | #include "llvm/CodeGen/Passes.h" |
| 71 | #include "llvm/CodeGen/RegisterScavenging.h" |
| 72 | #include "llvm/MC/TargetRegistry.h" |
| 73 | #include "llvm/Support/Debug.h" |
| 74 | |
| 75 | using namespace llvm; |
| 76 | |
| 77 | #define DEBUG_TYPE "riscv-make-compressible" |
| 78 | #define RISCV_COMPRESS_INSTRS_NAME "RISC-V Make Compressible" |
| 79 | |
| 80 | namespace { |
| 81 | |
| 82 | struct RISCVMakeCompressibleOpt : public MachineFunctionPass { |
| 83 | static char ID; |
| 84 | |
| 85 | bool runOnMachineFunction(MachineFunction &Fn) override; |
| 86 | |
| 87 | RISCVMakeCompressibleOpt() : MachineFunctionPass(ID) {} |
| 88 | |
| 89 | StringRef getPassName() const override { return RISCV_COMPRESS_INSTRS_NAME; } |
| 90 | }; |
| 91 | } // namespace |
| 92 | |
| 93 | char RISCVMakeCompressibleOpt::ID = 0; |
| 94 | INITIALIZE_PASS(RISCVMakeCompressibleOpt, "riscv-make-compressible" , |
| 95 | RISCV_COMPRESS_INSTRS_NAME, false, false) |
| 96 | |
| 97 | // Return log2(widthInBytes) of load/store done by Opcode. |
| 98 | static unsigned log2LdstWidth(unsigned Opcode) { |
| 99 | switch (Opcode) { |
| 100 | default: |
| 101 | llvm_unreachable("Unexpected opcode" ); |
| 102 | case RISCV::LBU: |
| 103 | case RISCV::SB: |
| 104 | return 0; |
| 105 | case RISCV::LH: |
| 106 | case RISCV::LH_INX: |
| 107 | case RISCV::LHU: |
| 108 | case RISCV::SH: |
| 109 | case RISCV::SH_INX: |
| 110 | return 1; |
| 111 | case RISCV::LW: |
| 112 | case RISCV::LW_INX: |
| 113 | case RISCV::SW: |
| 114 | case RISCV::SW_INX: |
| 115 | case RISCV::FLW: |
| 116 | case RISCV::FSW: |
| 117 | return 2; |
| 118 | case RISCV::LD: |
| 119 | case RISCV::LD_RV32: |
| 120 | case RISCV::SD: |
| 121 | case RISCV::SD_RV32: |
| 122 | case RISCV::FLD: |
| 123 | case RISCV::FSD: |
| 124 | return 3; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | // Return bit field size of immediate operand of Opcode. |
| 129 | static unsigned offsetMask(unsigned Opcode) { |
| 130 | switch (Opcode) { |
| 131 | default: |
| 132 | llvm_unreachable("Unexpected opcode" ); |
| 133 | case RISCV::LBU: |
| 134 | case RISCV::SB: |
| 135 | return maskTrailingOnes<unsigned>(N: 2U); |
| 136 | case RISCV::LH: |
| 137 | case RISCV::LH_INX: |
| 138 | case RISCV::LHU: |
| 139 | case RISCV::SH: |
| 140 | case RISCV::SH_INX: |
| 141 | return maskTrailingOnes<unsigned>(N: 1U); |
| 142 | case RISCV::LW: |
| 143 | case RISCV::LW_INX: |
| 144 | case RISCV::SW: |
| 145 | case RISCV::SW_INX: |
| 146 | case RISCV::FLW: |
| 147 | case RISCV::FSW: |
| 148 | case RISCV::LD: |
| 149 | case RISCV::LD_RV32: |
| 150 | case RISCV::SD: |
| 151 | case RISCV::SD_RV32: |
| 152 | case RISCV::FLD: |
| 153 | case RISCV::FSD: |
| 154 | return maskTrailingOnes<unsigned>(N: 5U); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | // Return a mask for the offset bits of a non-stack-pointer based compressed |
| 159 | // load/store. |
| 160 | static uint8_t compressedLDSTOffsetMask(unsigned Opcode) { |
| 161 | return offsetMask(Opcode) << log2LdstWidth(Opcode); |
| 162 | } |
| 163 | |
| 164 | // Return true if Offset fits within a compressed stack-pointer based |
| 165 | // load/store. |
| 166 | static bool compressibleSPOffset(int64_t Offset, unsigned Opcode) { |
| 167 | // Compressed sp-based loads and stores only work for 32/64 bits. |
| 168 | switch (log2LdstWidth(Opcode)) { |
| 169 | case 2: |
| 170 | return isShiftedUInt<6, 2>(x: Offset); |
| 171 | case 3: |
| 172 | return isShiftedUInt<6, 3>(x: Offset); |
| 173 | } |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | // Given an offset for a load/store, return the adjustment required to the base |
| 178 | // register such that the address can be accessed with a compressible offset. |
| 179 | // This will return 0 if the offset is already compressible. |
| 180 | static int64_t getBaseAdjustForCompression(int64_t Offset, unsigned Opcode) { |
| 181 | // Return the excess bits that do not fit in a compressible offset. |
| 182 | return Offset & ~compressedLDSTOffsetMask(Opcode); |
| 183 | } |
| 184 | |
| 185 | // Return true if Reg is in a compressed register class. |
| 186 | static bool isCompressedReg(Register Reg) { |
| 187 | return RISCV::GPRCRegClass.contains(Reg) || |
| 188 | RISCV::GPRF16CRegClass.contains(Reg) || |
| 189 | RISCV::GPRF32CRegClass.contains(Reg) || |
| 190 | RISCV::FPR32CRegClass.contains(Reg) || |
| 191 | RISCV::FPR64CRegClass.contains(Reg) || |
| 192 | RISCV::GPRPairCRegClass.contains(Reg); |
| 193 | } |
| 194 | |
| 195 | // Return true if MI is a load for which there exists a compressed version. |
| 196 | static bool isCompressibleLoad(const MachineInstr &MI) { |
| 197 | const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>(); |
| 198 | |
| 199 | switch (MI.getOpcode()) { |
| 200 | default: |
| 201 | return false; |
| 202 | case RISCV::LBU: |
| 203 | case RISCV::LH: |
| 204 | case RISCV::LH_INX: |
| 205 | case RISCV::LHU: |
| 206 | return STI.hasStdExtZcb(); |
| 207 | case RISCV::LW: |
| 208 | case RISCV::LW_INX: |
| 209 | case RISCV::LD: |
| 210 | return STI.hasStdExtZca(); |
| 211 | case RISCV::LD_RV32: |
| 212 | return STI.hasStdExtZclsd(); |
| 213 | case RISCV::FLW: |
| 214 | return !STI.is64Bit() && STI.hasStdExtCOrZcfOrZce(); |
| 215 | case RISCV::FLD: |
| 216 | return STI.hasStdExtCOrZcd(); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // Return true if MI is a store for which there exists a compressed version. |
| 221 | static bool isCompressibleStore(const MachineInstr &MI) { |
| 222 | const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>(); |
| 223 | |
| 224 | switch (MI.getOpcode()) { |
| 225 | default: |
| 226 | return false; |
| 227 | case RISCV::SB: |
| 228 | case RISCV::SH: |
| 229 | case RISCV::SH_INX: |
| 230 | return STI.hasStdExtZcb(); |
| 231 | case RISCV::SW: |
| 232 | case RISCV::SW_INX: |
| 233 | case RISCV::SD: |
| 234 | return STI.hasStdExtZca(); |
| 235 | case RISCV::SD_RV32: |
| 236 | return STI.hasStdExtZclsd(); |
| 237 | case RISCV::FSW: |
| 238 | return !STI.is64Bit() && STI.hasStdExtCOrZcfOrZce(); |
| 239 | case RISCV::FSD: |
| 240 | return STI.hasStdExtCOrZcd(); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | // Find a single register and/or large offset which, if compressible, would |
| 245 | // allow the given instruction to be compressed. |
| 246 | // |
| 247 | // Possible return values: |
| 248 | // |
| 249 | // {Reg, 0} - Uncompressed Reg needs replacing with a compressed |
| 250 | // register. |
| 251 | // {Reg, N} - Reg needs replacing with a compressed register and |
| 252 | // N needs adding to the new register. (Reg may be |
| 253 | // compressed or uncompressed). |
| 254 | // {RISCV::NoRegister, 0} - No suitable optimization found for this |
| 255 | // instruction. |
| 256 | static RegImmPair getRegImmPairPreventingCompression(const MachineInstr &MI) { |
| 257 | const unsigned Opcode = MI.getOpcode(); |
| 258 | |
| 259 | if (isCompressibleLoad(MI) || isCompressibleStore(MI)) { |
| 260 | const MachineOperand &MOImm = MI.getOperand(i: 2); |
| 261 | if (!MOImm.isImm()) |
| 262 | return RegImmPair(RISCV::NoRegister, 0); |
| 263 | |
| 264 | int64_t Offset = MOImm.getImm(); |
| 265 | int64_t NewBaseAdjust = getBaseAdjustForCompression(Offset, Opcode); |
| 266 | Register Base = MI.getOperand(i: 1).getReg(); |
| 267 | |
| 268 | // Memory accesses via the stack pointer do not have a requirement for |
| 269 | // either of the registers to be compressible and can take a larger offset. |
| 270 | if (RISCV::SPRegClass.contains(Reg: Base)) { |
| 271 | if (!compressibleSPOffset(Offset, Opcode) && NewBaseAdjust) |
| 272 | return RegImmPair(Base, NewBaseAdjust); |
| 273 | } else { |
| 274 | Register SrcDest = MI.getOperand(i: 0).getReg(); |
| 275 | bool SrcDestCompressed = isCompressedReg(Reg: SrcDest); |
| 276 | bool BaseCompressed = isCompressedReg(Reg: Base); |
| 277 | |
| 278 | // If only Base and/or offset prevent compression, then return Base and |
| 279 | // any adjustment required to make the offset compressible. |
| 280 | if ((!BaseCompressed || NewBaseAdjust) && SrcDestCompressed) |
| 281 | return RegImmPair(Base, NewBaseAdjust); |
| 282 | |
| 283 | // For loads, we can only change the base register since dest is defined |
| 284 | // rather than used. |
| 285 | // |
| 286 | // For stores, we can change SrcDest (and Base if SrcDest == Base) but |
| 287 | // cannot resolve an incompressible offset in this case. |
| 288 | if (isCompressibleStore(MI)) { |
| 289 | if (!SrcDestCompressed && (BaseCompressed || SrcDest == Base) && |
| 290 | !NewBaseAdjust) |
| 291 | return RegImmPair(SrcDest, NewBaseAdjust); |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | return RegImmPair(RISCV::NoRegister, 0); |
| 296 | } |
| 297 | |
| 298 | // Check all uses after FirstMI of the given register, keeping a vector of |
| 299 | // instructions that would be compressible if the given register (and offset if |
| 300 | // applicable) were compressible. |
| 301 | // |
| 302 | // If there are enough uses for this optimization to improve code size and a |
| 303 | // compressed register is available, return that compressed register. |
| 304 | static Register analyzeCompressibleUses(MachineInstr &FirstMI, |
| 305 | RegImmPair RegImm, |
| 306 | SmallVectorImpl<MachineInstr *> &MIs) { |
| 307 | MachineBasicBlock &MBB = *FirstMI.getParent(); |
| 308 | const TargetRegisterInfo *TRI = |
| 309 | MBB.getParent()->getSubtarget().getRegisterInfo(); |
| 310 | |
| 311 | for (MachineBasicBlock::instr_iterator I = FirstMI.getIterator(), |
| 312 | E = MBB.instr_end(); |
| 313 | I != E; ++I) { |
| 314 | MachineInstr &MI = *I; |
| 315 | |
| 316 | // Determine if this is an instruction which would benefit from using the |
| 317 | // new register. |
| 318 | RegImmPair CandidateRegImm = getRegImmPairPreventingCompression(MI); |
| 319 | if (CandidateRegImm.Reg == RegImm.Reg && CandidateRegImm.Imm == RegImm.Imm) |
| 320 | MIs.push_back(Elt: &MI); |
| 321 | |
| 322 | // If RegImm.Reg is modified by this instruction, then we cannot optimize |
| 323 | // past this instruction. If the register is already compressed, then it may |
| 324 | // possible to optimize a large offset in the current instruction - this |
| 325 | // will have been detected by the preceding call to |
| 326 | // getRegImmPairPreventingCompression. |
| 327 | if (MI.modifiesRegister(Reg: RegImm.Reg, TRI)) |
| 328 | break; |
| 329 | } |
| 330 | |
| 331 | // Adjusting the base costs one new uncompressed addi and therefore three uses |
| 332 | // are required for a code size reduction. If no base adjustment is required, |
| 333 | // then copying the register costs one new c.mv (or c.li Rd, 0 for "copying" |
| 334 | // the zero register) and therefore two uses are required for a code size |
| 335 | // reduction. For GPR pairs, we need 2 ADDIs to copy so we need three users. |
| 336 | unsigned CopyCost = RISCV::GPRPairRegClass.contains(Reg: RegImm.Reg) ? 2 : 1; |
| 337 | assert((RegImm.Imm == 0 || CopyCost == 1) && "GPRPair should have zero imm" ); |
| 338 | if (MIs.size() <= CopyCost || (RegImm.Imm != 0 && MIs.size() <= 2)) |
| 339 | return Register(); |
| 340 | |
| 341 | // Find a compressible register which will be available from the first |
| 342 | // instruction we care about to the last. |
| 343 | const TargetRegisterClass *RCToScavenge; |
| 344 | |
| 345 | // Work out the compressed register class from which to scavenge. |
| 346 | if (RISCV::GPRRegClass.contains(Reg: RegImm.Reg)) |
| 347 | RCToScavenge = &RISCV::GPRCRegClass; |
| 348 | else if (RISCV::GPRF16RegClass.contains(Reg: RegImm.Reg)) |
| 349 | RCToScavenge = &RISCV::GPRF16CRegClass; |
| 350 | else if (RISCV::GPRF32RegClass.contains(Reg: RegImm.Reg)) |
| 351 | RCToScavenge = &RISCV::GPRF32CRegClass; |
| 352 | else if (RISCV::FPR32RegClass.contains(Reg: RegImm.Reg)) |
| 353 | RCToScavenge = &RISCV::FPR32CRegClass; |
| 354 | else if (RISCV::FPR64RegClass.contains(Reg: RegImm.Reg)) |
| 355 | RCToScavenge = &RISCV::FPR64CRegClass; |
| 356 | else if (RISCV::GPRPairRegClass.contains(Reg: RegImm.Reg)) |
| 357 | RCToScavenge = &RISCV::GPRPairCRegClass; |
| 358 | else |
| 359 | return Register(); |
| 360 | |
| 361 | RegScavenger RS; |
| 362 | RS.enterBasicBlockEnd(MBB); |
| 363 | RS.backward(I: std::next(x: MIs.back()->getIterator())); |
| 364 | return RS.scavengeRegisterBackwards(RC: *RCToScavenge, To: FirstMI.getIterator(), |
| 365 | /*RestoreAfter=*/false, /*SPAdj=*/0, |
| 366 | /*AllowSpill=*/false); |
| 367 | } |
| 368 | |
| 369 | // Update uses of the old register in the given instruction to the new register. |
| 370 | static void updateOperands(MachineInstr &MI, RegImmPair OldRegImm, |
| 371 | Register NewReg) { |
| 372 | unsigned Opcode = MI.getOpcode(); |
| 373 | |
| 374 | // If this pass is extended to support more instructions, the check for |
| 375 | // definedness may need to be strengthened. |
| 376 | assert((isCompressibleLoad(MI) || isCompressibleStore(MI)) && |
| 377 | "Unsupported instruction for this optimization." ); |
| 378 | |
| 379 | int SkipN = 0; |
| 380 | |
| 381 | // Skip the first (value) operand to a store instruction (except if the store |
| 382 | // offset is zero) in order to avoid an incorrect transformation. |
| 383 | // e.g. sd a0, 808(a0) to addi a2, a0, 768; sd a2, 40(a2) |
| 384 | if (isCompressibleStore(MI) && OldRegImm.Imm != 0) |
| 385 | SkipN = 1; |
| 386 | |
| 387 | // Update registers |
| 388 | for (MachineOperand &MO : drop_begin(RangeOrContainer: MI.operands(), N: SkipN)) |
| 389 | if (MO.isReg() && MO.getReg() == OldRegImm.Reg) { |
| 390 | // Do not update operands that define the old register. |
| 391 | // |
| 392 | // The new register was scavenged for the range of instructions that are |
| 393 | // being updated, therefore it should not be defined within this range |
| 394 | // except possibly in the final instruction. |
| 395 | if (MO.isDef()) { |
| 396 | assert(isCompressibleLoad(MI)); |
| 397 | continue; |
| 398 | } |
| 399 | // Update reg |
| 400 | MO.setReg(NewReg); |
| 401 | } |
| 402 | |
| 403 | // Update offset |
| 404 | MachineOperand &MOImm = MI.getOperand(i: 2); |
| 405 | int64_t NewOffset = MOImm.getImm() & compressedLDSTOffsetMask(Opcode); |
| 406 | MOImm.setImm(NewOffset); |
| 407 | } |
| 408 | |
| 409 | bool RISCVMakeCompressibleOpt::runOnMachineFunction(MachineFunction &Fn) { |
| 410 | // This is a size optimization. |
| 411 | if (skipFunction(F: Fn.getFunction()) || !Fn.getFunction().hasMinSize()) |
| 412 | return false; |
| 413 | |
| 414 | const RISCVSubtarget &STI = Fn.getSubtarget<RISCVSubtarget>(); |
| 415 | const RISCVInstrInfo &TII = *STI.getInstrInfo(); |
| 416 | |
| 417 | // This optimization only makes sense if compressed instructions are emitted. |
| 418 | if (!STI.hasStdExtZca()) |
| 419 | return false; |
| 420 | |
| 421 | for (MachineBasicBlock &MBB : Fn) { |
| 422 | LLVM_DEBUG(dbgs() << "MBB: " << MBB.getName() << "\n" ); |
| 423 | for (MachineInstr &MI : MBB) { |
| 424 | // Determine if this instruction would otherwise be compressed if not for |
| 425 | // an incompressible register or offset. |
| 426 | RegImmPair RegImm = getRegImmPairPreventingCompression(MI); |
| 427 | if (!RegImm.Reg && RegImm.Imm == 0) |
| 428 | continue; |
| 429 | |
| 430 | // Determine if there is a set of instructions for which replacing this |
| 431 | // register with a compressed register (and compressible offset if |
| 432 | // applicable) is possible and will allow compression. |
| 433 | SmallVector<MachineInstr *, 8> MIs; |
| 434 | Register NewReg = analyzeCompressibleUses(FirstMI&: MI, RegImm, MIs); |
| 435 | if (!NewReg) |
| 436 | continue; |
| 437 | |
| 438 | // Create the appropriate copy and/or offset. |
| 439 | if (RISCV::GPRRegClass.contains(Reg: RegImm.Reg)) { |
| 440 | assert(isInt<12>(RegImm.Imm)); |
| 441 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode: RISCV::ADDI), DestReg: NewReg) |
| 442 | .addReg(RegNo: RegImm.Reg) |
| 443 | .addImm(Val: RegImm.Imm); |
| 444 | } else { |
| 445 | assert(RegImm.Imm == 0); |
| 446 | TII.copyPhysReg(MBB, MBBI: MI, DL: MI.getDebugLoc(), DstReg: NewReg, SrcReg: RegImm.Reg, |
| 447 | /*KillSrc*/ false); |
| 448 | } |
| 449 | |
| 450 | // Update the set of instructions to use the compressed register and |
| 451 | // compressible offset instead. These instructions should now be |
| 452 | // compressible. |
| 453 | // TODO: Update all uses if RegImm.Imm == 0? Not just those that are |
| 454 | // expected to become compressible. |
| 455 | for (MachineInstr *UpdateMI : MIs) |
| 456 | updateOperands(MI&: *UpdateMI, OldRegImm: RegImm, NewReg); |
| 457 | } |
| 458 | } |
| 459 | return true; |
| 460 | } |
| 461 | |
| 462 | /// Returns an instance of the Make Compressible Optimization pass. |
| 463 | FunctionPass *llvm::createRISCVMakeCompressibleOptPass() { |
| 464 | return new RISCVMakeCompressibleOpt(); |
| 465 | } |
| 466 | |