| 1 | //===- X86InterleavedAccess.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file contains the X86 implementation of the interleaved accesses |
| 11 | /// optimization generating X86-specific instructions/intrinsics for |
| 12 | /// interleaved access groups. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "X86ISelLowering.h" |
| 17 | #include "X86Subtarget.h" |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/Analysis/VectorUtils.h" |
| 21 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 22 | #include "llvm/IR/DataLayout.h" |
| 23 | #include "llvm/IR/DerivedTypes.h" |
| 24 | #include "llvm/IR/IRBuilder.h" |
| 25 | #include "llvm/IR/Instruction.h" |
| 26 | #include "llvm/IR/Instructions.h" |
| 27 | #include "llvm/IR/Type.h" |
| 28 | #include "llvm/IR/Value.h" |
| 29 | #include "llvm/Support/Casting.h" |
| 30 | #include <algorithm> |
| 31 | #include <cassert> |
| 32 | #include <cmath> |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | namespace { |
| 37 | |
| 38 | /// This class holds necessary information to represent an interleaved |
| 39 | /// access group and supports utilities to lower the group into |
| 40 | /// X86-specific instructions/intrinsics. |
| 41 | /// E.g. A group of interleaving access loads (Factor = 2; accessing every |
| 42 | /// other element) |
| 43 | /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr |
| 44 | /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> |
| 45 | /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> |
| 46 | class X86InterleavedAccessGroup { |
| 47 | /// Reference to the wide-load instruction of an interleaved access |
| 48 | /// group. |
| 49 | Instruction *const Inst; |
| 50 | |
| 51 | /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. |
| 52 | ArrayRef<ShuffleVectorInst *> Shuffles; |
| 53 | |
| 54 | /// Reference to the starting index of each user-shuffle. |
| 55 | ArrayRef<unsigned> Indices; |
| 56 | |
| 57 | /// Reference to the interleaving stride in terms of elements. |
| 58 | const unsigned Factor; |
| 59 | |
| 60 | /// Reference to the underlying target. |
| 61 | const X86Subtarget &Subtarget; |
| 62 | |
| 63 | const DataLayout &DL; |
| 64 | |
| 65 | IRBuilder<> &Builder; |
| 66 | |
| 67 | /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors |
| 68 | /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. |
| 69 | void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, |
| 70 | SmallVectorImpl<Instruction *> &DecomposedVectors); |
| 71 | |
| 72 | /// Performs matrix transposition on a 4x4 matrix \p InputVectors and |
| 73 | /// returns the transposed-vectors in \p TransposedVectors. |
| 74 | /// E.g. |
| 75 | /// InputVectors: |
| 76 | /// In-V0 = p1, p2, p3, p4 |
| 77 | /// In-V1 = q1, q2, q3, q4 |
| 78 | /// In-V2 = r1, r2, r3, r4 |
| 79 | /// In-V3 = s1, s2, s3, s4 |
| 80 | /// OutputVectors: |
| 81 | /// Out-V0 = p1, q1, r1, s1 |
| 82 | /// Out-V1 = p2, q2, r2, s2 |
| 83 | /// Out-V2 = p3, q3, r3, s3 |
| 84 | /// Out-V3 = P4, q4, r4, s4 |
| 85 | void transpose_4x4(ArrayRef<Instruction *> InputVectors, |
| 86 | SmallVectorImpl<Value *> &TransposedMatrix); |
| 87 | void interleave8bitStride4(ArrayRef<Instruction *> InputVectors, |
| 88 | SmallVectorImpl<Value *> &TransposedMatrix, |
| 89 | unsigned NumSubVecElems); |
| 90 | void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors, |
| 91 | SmallVectorImpl<Value *> &TransposedMatrix); |
| 92 | void interleave8bitStride3(ArrayRef<Instruction *> InputVectors, |
| 93 | SmallVectorImpl<Value *> &TransposedMatrix, |
| 94 | unsigned NumSubVecElems); |
| 95 | void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors, |
| 96 | SmallVectorImpl<Value *> &TransposedMatrix, |
| 97 | unsigned NumSubVecElems); |
| 98 | |
| 99 | public: |
| 100 | /// In order to form an interleaved access group X86InterleavedAccessGroup |
| 101 | /// requires a wide-load instruction \p 'I', a group of interleaved-vectors |
| 102 | /// \p Shuffs, reference to the first indices of each interleaved-vector |
| 103 | /// \p 'Ind' and the interleaving stride factor \p F. In order to generate |
| 104 | /// X86-specific instructions/intrinsics it also requires the underlying |
| 105 | /// target information \p STarget. |
| 106 | explicit X86InterleavedAccessGroup(Instruction *I, |
| 107 | ArrayRef<ShuffleVectorInst *> Shuffs, |
| 108 | ArrayRef<unsigned> Ind, const unsigned F, |
| 109 | const X86Subtarget &STarget, |
| 110 | IRBuilder<> &B) |
| 111 | : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), |
| 112 | DL(Inst->getDataLayout()), Builder(B) {} |
| 113 | |
| 114 | /// Returns true if this interleaved access group can be lowered into |
| 115 | /// x86-specific instructions/intrinsics, false otherwise. |
| 116 | bool isSupported() const; |
| 117 | |
| 118 | /// Lowers this interleaved access group into X86-specific |
| 119 | /// instructions/intrinsics. |
| 120 | bool lowerIntoOptimizedSequence(); |
| 121 | }; |
| 122 | |
| 123 | } // end anonymous namespace |
| 124 | |
| 125 | bool X86InterleavedAccessGroup::isSupported() const { |
| 126 | VectorType *ShuffleVecTy = Shuffles[0]->getType(); |
| 127 | Type *ShuffleEltTy = ShuffleVecTy->getElementType(); |
| 128 | unsigned ShuffleElemSize = DL.getTypeSizeInBits(Ty: ShuffleEltTy); |
| 129 | unsigned WideInstSize; |
| 130 | |
| 131 | // Currently, lowering is supported for the following vectors: |
| 132 | // Stride 4: |
| 133 | // 1. Store and load of 4-element vectors of 64 bits on AVX. |
| 134 | // 2. Store of 16/32-element vectors of 8 bits on AVX. |
| 135 | // Stride 3: |
| 136 | // 1. Load of 16/32-element vectors of 8 bits on AVX. |
| 137 | if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) |
| 138 | return false; |
| 139 | |
| 140 | if (isa<LoadInst>(Val: Inst)) { |
| 141 | WideInstSize = DL.getTypeSizeInBits(Ty: Inst->getType()); |
| 142 | if (cast<LoadInst>(Val: Inst)->getPointerAddressSpace()) |
| 143 | return false; |
| 144 | } else |
| 145 | WideInstSize = DL.getTypeSizeInBits(Ty: Shuffles[0]->getType()); |
| 146 | |
| 147 | // We support shuffle represents stride 4 for byte type with size of |
| 148 | // WideInstSize. |
| 149 | if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) |
| 150 | return true; |
| 151 | |
| 152 | if (ShuffleElemSize == 8 && isa<StoreInst>(Val: Inst) && Factor == 4 && |
| 153 | (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || |
| 154 | WideInstSize == 2048)) |
| 155 | return true; |
| 156 | |
| 157 | if (ShuffleElemSize == 8 && Factor == 3 && |
| 158 | (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) |
| 159 | return true; |
| 160 | |
| 161 | return false; |
| 162 | } |
| 163 | |
| 164 | void X86InterleavedAccessGroup::decompose( |
| 165 | Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, |
| 166 | SmallVectorImpl<Instruction *> &DecomposedVectors) { |
| 167 | assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && |
| 168 | "Expected Load or Shuffle" ); |
| 169 | |
| 170 | Type *VecWidth = VecInst->getType(); |
| 171 | (void)VecWidth; |
| 172 | assert(VecWidth->isVectorTy() && |
| 173 | DL.getTypeSizeInBits(VecWidth) >= |
| 174 | DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && |
| 175 | "Invalid Inst-size!!!" ); |
| 176 | |
| 177 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(Val: VecInst)) { |
| 178 | Value *Op0 = SVI->getOperand(i_nocapture: 0); |
| 179 | Value *Op1 = SVI->getOperand(i_nocapture: 1); |
| 180 | |
| 181 | // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. |
| 182 | for (unsigned i = 0; i < NumSubVectors; ++i) |
| 183 | DecomposedVectors.push_back( |
| 184 | Elt: cast<ShuffleVectorInst>(Val: Builder.CreateShuffleVector( |
| 185 | V1: Op0, V2: Op1, |
| 186 | Mask: createSequentialMask(Start: Indices[i], NumInts: SubVecTy->getNumElements(), |
| 187 | NumUndefs: 0)))); |
| 188 | return; |
| 189 | } |
| 190 | |
| 191 | // Decompose the load instruction. |
| 192 | LoadInst *LI = cast<LoadInst>(Val: VecInst); |
| 193 | Type *VecBaseTy; |
| 194 | unsigned int NumLoads = NumSubVectors; |
| 195 | // In the case of stride 3 with a vector of 32 elements load the information |
| 196 | // in the following way: |
| 197 | // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] |
| 198 | unsigned VecLength = DL.getTypeSizeInBits(Ty: VecWidth); |
| 199 | Value *VecBasePtr = LI->getPointerOperand(); |
| 200 | if (VecLength == 768 || VecLength == 1536) { |
| 201 | VecBaseTy = FixedVectorType::get(ElementType: Type::getInt8Ty(C&: LI->getContext()), NumElts: 16); |
| 202 | NumLoads = NumSubVectors * (VecLength / 384); |
| 203 | } else { |
| 204 | VecBaseTy = SubVecTy; |
| 205 | } |
| 206 | // Generate N loads of T type. |
| 207 | assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && |
| 208 | "VecBaseTy's size must be a multiple of 8" ); |
| 209 | const Align FirstAlignment = LI->getAlign(); |
| 210 | const Align SubsequentAlignment = commonAlignment( |
| 211 | A: FirstAlignment, Offset: VecBaseTy->getPrimitiveSizeInBits().getFixedValue() / 8); |
| 212 | Align Alignment = FirstAlignment; |
| 213 | for (unsigned i = 0; i < NumLoads; i++) { |
| 214 | // TODO: Support inbounds GEP. |
| 215 | Value *NewBasePtr = |
| 216 | Builder.CreateGEP(Ty: VecBaseTy, Ptr: VecBasePtr, IdxList: Builder.getInt32(C: i)); |
| 217 | Instruction *NewLoad = |
| 218 | Builder.CreateAlignedLoad(Ty: VecBaseTy, Ptr: NewBasePtr, Align: Alignment); |
| 219 | DecomposedVectors.push_back(Elt: NewLoad); |
| 220 | Alignment = SubsequentAlignment; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | // Changing the scale of the vector type by reducing the number of elements and |
| 225 | // doubling the scalar size. |
| 226 | static MVT scaleVectorType(MVT VT) { |
| 227 | unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; |
| 228 | return MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: ScalarSize), |
| 229 | NumElements: VT.getVectorNumElements() / 2); |
| 230 | } |
| 231 | |
| 232 | static constexpr int Concat[] = { |
| 233 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 234 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 235 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 236 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; |
| 237 | |
| 238 | // genShuffleBland - Creates shuffle according to two vectors.This function is |
| 239 | // only works on instructions with lane inside 256 registers. According to |
| 240 | // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The |
| 241 | // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. |
| 242 | // Where the 'LowOffset' refers to the first vector and the highOffset refers to |
| 243 | // the second vector. |
| 244 | // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| |
| 245 | // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| |
| 246 | // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| |
| 247 | // For the sequence to work as a mirror to the load. |
| 248 | // We must consider the elements order as above. |
| 249 | // In this function we are combining two types of shuffles. |
| 250 | // The first one is vpshufed and the second is a type of "blend" shuffle. |
| 251 | // By computing the shuffle on a sequence of 16 elements(one lane) and add the |
| 252 | // correct offset. We are creating a vpsuffed + blend sequence between two |
| 253 | // shuffles. |
| 254 | static void genShuffleBland(MVT VT, ArrayRef<int> Mask, |
| 255 | SmallVectorImpl<int> &Out, int LowOffset, |
| 256 | int HighOffset) { |
| 257 | assert(VT.getSizeInBits() >= 256 && |
| 258 | "This function doesn't accept width smaller then 256" ); |
| 259 | unsigned NumOfElm = VT.getVectorNumElements(); |
| 260 | for (int I : Mask) |
| 261 | Out.push_back(Elt: I + LowOffset); |
| 262 | for (int I : Mask) |
| 263 | Out.push_back(Elt: I + HighOffset + NumOfElm); |
| 264 | } |
| 265 | |
| 266 | // reorderSubVector returns the data to is the original state. And de-facto is |
| 267 | // the opposite of the function concatSubVector. |
| 268 | |
| 269 | // For VecElems = 16 |
| 270 | // Invec[0] - |0| TransposedMatrix[0] - |0| |
| 271 | // Invec[1] - |1| => TransposedMatrix[1] - |1| |
| 272 | // Invec[2] - |2| TransposedMatrix[2] - |2| |
| 273 | |
| 274 | // For VecElems = 32 |
| 275 | // Invec[0] - |0|3| TransposedMatrix[0] - |0|1| |
| 276 | // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3| |
| 277 | // Invec[2] - |2|5| TransposedMatrix[2] - |4|5| |
| 278 | |
| 279 | // For VecElems = 64 |
| 280 | // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 | |
| 281 | // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 | |
| 282 | // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| |
| 283 | |
| 284 | static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, |
| 285 | ArrayRef<Value *> Vec, ArrayRef<int> VPShuf, |
| 286 | unsigned VecElems, unsigned Stride, |
| 287 | IRBuilder<> &Builder) { |
| 288 | |
| 289 | if (VecElems == 16) { |
| 290 | for (unsigned i = 0; i < Stride; i++) |
| 291 | TransposedMatrix[i] = Builder.CreateShuffleVector(V: Vec[i], Mask: VPShuf); |
| 292 | return; |
| 293 | } |
| 294 | |
| 295 | SmallVector<int, 32> OptimizeShuf; |
| 296 | Value *Temp[8]; |
| 297 | |
| 298 | for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { |
| 299 | genShuffleBland(VT, Mask: VPShuf, Out&: OptimizeShuf, LowOffset: (i / Stride) * 16, |
| 300 | HighOffset: (i + 1) / Stride * 16); |
| 301 | Temp[i / 2] = Builder.CreateShuffleVector( |
| 302 | V1: Vec[i % Stride], V2: Vec[(i + 1) % Stride], Mask: OptimizeShuf); |
| 303 | OptimizeShuf.clear(); |
| 304 | } |
| 305 | |
| 306 | if (VecElems == 32) { |
| 307 | std::copy(first: Temp, last: Temp + Stride, result: TransposedMatrix.begin()); |
| 308 | return; |
| 309 | } else |
| 310 | for (unsigned i = 0; i < Stride; i++) |
| 311 | TransposedMatrix[i] = |
| 312 | Builder.CreateShuffleVector(V1: Temp[2 * i], V2: Temp[2 * i + 1], Mask: Concat); |
| 313 | } |
| 314 | |
| 315 | void X86InterleavedAccessGroup::interleave8bitStride4VF8( |
| 316 | ArrayRef<Instruction *> Matrix, |
| 317 | SmallVectorImpl<Value *> &TransposedMatrix) { |
| 318 | // Assuming we start from the following vectors: |
| 319 | // Matrix[0]= c0 c1 c2 c3 c4 ... c7 |
| 320 | // Matrix[1]= m0 m1 m2 m3 m4 ... m7 |
| 321 | // Matrix[2]= y0 y1 y2 y3 y4 ... y7 |
| 322 | // Matrix[3]= k0 k1 k2 k3 k4 ... k7 |
| 323 | |
| 324 | MVT VT = MVT::v8i16; |
| 325 | TransposedMatrix.resize(N: 2); |
| 326 | SmallVector<int, 16> MaskLow; |
| 327 | SmallVector<int, 32> MaskLowTemp1, MaskLowWord; |
| 328 | SmallVector<int, 32> MaskHighTemp1, MaskHighWord; |
| 329 | |
| 330 | for (unsigned i = 0; i < 8; ++i) { |
| 331 | MaskLow.push_back(Elt: i); |
| 332 | MaskLow.push_back(Elt: i + 8); |
| 333 | } |
| 334 | |
| 335 | createUnpackShuffleMask(VT, Mask&: MaskLowTemp1, Lo: true, Unary: false); |
| 336 | createUnpackShuffleMask(VT, Mask&: MaskHighTemp1, Lo: false, Unary: false); |
| 337 | narrowShuffleMaskElts(Scale: 2, Mask: MaskHighTemp1, ScaledMask&: MaskHighWord); |
| 338 | narrowShuffleMaskElts(Scale: 2, Mask: MaskLowTemp1, ScaledMask&: MaskLowWord); |
| 339 | // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 |
| 340 | // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 |
| 341 | Value *IntrVec1Low = |
| 342 | Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[1], Mask: MaskLow); |
| 343 | Value *IntrVec2Low = |
| 344 | Builder.CreateShuffleVector(V1: Matrix[2], V2: Matrix[3], Mask: MaskLow); |
| 345 | |
| 346 | // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 |
| 347 | // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 |
| 348 | |
| 349 | TransposedMatrix[0] = |
| 350 | Builder.CreateShuffleVector(V1: IntrVec1Low, V2: IntrVec2Low, Mask: MaskLowWord); |
| 351 | TransposedMatrix[1] = |
| 352 | Builder.CreateShuffleVector(V1: IntrVec1Low, V2: IntrVec2Low, Mask: MaskHighWord); |
| 353 | } |
| 354 | |
| 355 | void X86InterleavedAccessGroup::interleave8bitStride4( |
| 356 | ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix, |
| 357 | unsigned NumOfElm) { |
| 358 | // Example: Assuming we start from the following vectors: |
| 359 | // Matrix[0]= c0 c1 c2 c3 c4 ... c31 |
| 360 | // Matrix[1]= m0 m1 m2 m3 m4 ... m31 |
| 361 | // Matrix[2]= y0 y1 y2 y3 y4 ... y31 |
| 362 | // Matrix[3]= k0 k1 k2 k3 k4 ... k31 |
| 363 | |
| 364 | MVT VT = MVT::getVectorVT(VT: MVT::i8, NumElements: NumOfElm); |
| 365 | MVT HalfVT = scaleVectorType(VT); |
| 366 | |
| 367 | TransposedMatrix.resize(N: 4); |
| 368 | SmallVector<int, 32> MaskHigh; |
| 369 | SmallVector<int, 32> MaskLow; |
| 370 | SmallVector<int, 32> LowHighMask[2]; |
| 371 | SmallVector<int, 32> MaskHighTemp; |
| 372 | SmallVector<int, 32> MaskLowTemp; |
| 373 | |
| 374 | // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 |
| 375 | // shuffle pattern. |
| 376 | |
| 377 | createUnpackShuffleMask(VT, Mask&: MaskLow, Lo: true, Unary: false); |
| 378 | createUnpackShuffleMask(VT, Mask&: MaskHigh, Lo: false, Unary: false); |
| 379 | |
| 380 | // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 |
| 381 | // shuffle pattern. |
| 382 | |
| 383 | createUnpackShuffleMask(VT: HalfVT, Mask&: MaskLowTemp, Lo: true, Unary: false); |
| 384 | createUnpackShuffleMask(VT: HalfVT, Mask&: MaskHighTemp, Lo: false, Unary: false); |
| 385 | narrowShuffleMaskElts(Scale: 2, Mask: MaskLowTemp, ScaledMask&: LowHighMask[0]); |
| 386 | narrowShuffleMaskElts(Scale: 2, Mask: MaskHighTemp, ScaledMask&: LowHighMask[1]); |
| 387 | |
| 388 | // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 |
| 389 | // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 |
| 390 | // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 |
| 391 | // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 |
| 392 | Value *IntrVec[4]; |
| 393 | |
| 394 | IntrVec[0] = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[1], Mask: MaskLow); |
| 395 | IntrVec[1] = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[1], Mask: MaskHigh); |
| 396 | IntrVec[2] = Builder.CreateShuffleVector(V1: Matrix[2], V2: Matrix[3], Mask: MaskLow); |
| 397 | IntrVec[3] = Builder.CreateShuffleVector(V1: Matrix[2], V2: Matrix[3], Mask: MaskHigh); |
| 398 | |
| 399 | // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 |
| 400 | // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 |
| 401 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 |
| 402 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 |
| 403 | |
| 404 | Value *VecOut[4]; |
| 405 | for (int i = 0; i < 4; i++) |
| 406 | VecOut[i] = Builder.CreateShuffleVector(V1: IntrVec[i / 2], V2: IntrVec[i / 2 + 2], |
| 407 | Mask: LowHighMask[i % 2]); |
| 408 | |
| 409 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 |
| 410 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 |
| 411 | // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 |
| 412 | // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 |
| 413 | |
| 414 | if (VT == MVT::v16i8) { |
| 415 | std::copy(first: VecOut, last: VecOut + 4, result: TransposedMatrix.begin()); |
| 416 | return; |
| 417 | } |
| 418 | |
| 419 | reorderSubVector(VT, TransposedMatrix, Vec: VecOut, VPShuf: ArrayRef(Concat, 16), VecElems: NumOfElm, |
| 420 | Stride: 4, Builder); |
| 421 | } |
| 422 | |
| 423 | // createShuffleStride returns shuffle mask of size N. |
| 424 | // The shuffle pattern is as following : |
| 425 | // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), |
| 426 | // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., |
| 427 | // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} |
| 428 | // Where Lane is the # of lanes in a register: |
| 429 | // VectorSize = 128 => Lane = 1 |
| 430 | // VectorSize = 256 => Lane = 2 |
| 431 | // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 |
| 432 | // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} |
| 433 | static void createShuffleStride(MVT VT, int Stride, |
| 434 | SmallVectorImpl<int> &Mask) { |
| 435 | int VectorSize = VT.getSizeInBits(); |
| 436 | int VF = VT.getVectorNumElements(); |
| 437 | int LaneCount = std::max(a: VectorSize / 128, b: 1); |
| 438 | for (int Lane = 0; Lane < LaneCount; Lane++) |
| 439 | for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) |
| 440 | Mask.push_back(Elt: (i * Stride) % LaneSize + LaneSize * Lane); |
| 441 | } |
| 442 | |
| 443 | // setGroupSize sets 'SizeInfo' to the size(number of elements) of group |
| 444 | // inside mask a shuffleMask. A mask contains exactly 3 groups, where |
| 445 | // each group is a monotonically increasing sequence with stride 3. |
| 446 | // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} |
| 447 | static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) { |
| 448 | int VectorSize = VT.getSizeInBits(); |
| 449 | int VF = VT.getVectorNumElements() / std::max(a: VectorSize / 128, b: 1); |
| 450 | for (int i = 0, FirstGroupElement = 0; i < 3; i++) { |
| 451 | int GroupSize = std::ceil(x: (VF - FirstGroupElement) / 3.0); |
| 452 | SizeInfo.push_back(Elt: GroupSize); |
| 453 | FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. |
| 458 | // vpalign works according to lanes |
| 459 | // Where Lane is the # of lanes in a register: |
| 460 | // VectorWide = 128 => Lane = 1 |
| 461 | // VectorWide = 256 => Lane = 2 |
| 462 | // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. |
| 463 | // For Lane = 2 shuffle pattern is: |
| 464 | // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. |
| 465 | // Imm variable sets the offset amount. The result of the |
| 466 | // function is stored inside ShuffleMask vector and it built as described in |
| 467 | // the begin of the description. AlignDirection is a boolean that indicates the |
| 468 | // direction of the alignment. (false - align to the "right" side while true - |
| 469 | // align to the "left" side) |
| 470 | static void DecodePALIGNRMask(MVT VT, unsigned Imm, |
| 471 | SmallVectorImpl<int> &ShuffleMask, |
| 472 | bool AlignDirection = true, bool Unary = false) { |
| 473 | unsigned NumElts = VT.getVectorNumElements(); |
| 474 | unsigned NumLanes = std::max(a: (int)VT.getSizeInBits() / 128, b: 1); |
| 475 | unsigned NumLaneElts = NumElts / NumLanes; |
| 476 | |
| 477 | Imm = AlignDirection ? Imm : (NumLaneElts - Imm); |
| 478 | unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); |
| 479 | |
| 480 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| 481 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
| 482 | unsigned Base = i + Offset; |
| 483 | // if i+offset is out of this lane then we actually need the other source |
| 484 | // If Unary the other source is the first source. |
| 485 | if (Base >= NumLaneElts) |
| 486 | Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; |
| 487 | ShuffleMask.push_back(Elt: Base + l); |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | // concatSubVector - The function rebuilds the data to a correct expected |
| 493 | // order. An assumption(The shape of the matrix) was taken for the |
| 494 | // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. |
| 495 | // This function ensures that the data is built in correct way for the lane |
| 496 | // instructions. Each lane inside the vector is a 128-bit length. |
| 497 | // |
| 498 | // The 'InVec' argument contains the data in increasing order. In InVec[0] You |
| 499 | // can find the first 128 bit data. The number of different lanes inside a |
| 500 | // vector depends on the 'VecElems'.In general, the formula is |
| 501 | // VecElems * type / 128. The size of the array 'InVec' depends and equal to |
| 502 | // 'VecElems'. |
| 503 | |
| 504 | // For VecElems = 16 |
| 505 | // Invec[0] - |0| Vec[0] - |0| |
| 506 | // Invec[1] - |1| => Vec[1] - |1| |
| 507 | // Invec[2] - |2| Vec[2] - |2| |
| 508 | |
| 509 | // For VecElems = 32 |
| 510 | // Invec[0] - |0|1| Vec[0] - |0|3| |
| 511 | // Invec[1] - |2|3| => Vec[1] - |1|4| |
| 512 | // Invec[2] - |4|5| Vec[2] - |2|5| |
| 513 | |
| 514 | // For VecElems = 64 |
| 515 | // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 | |
| 516 | // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10| |
| 517 | // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| |
| 518 | |
| 519 | static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, |
| 520 | unsigned VecElems, IRBuilder<> &Builder) { |
| 521 | if (VecElems == 16) { |
| 522 | for (int i = 0; i < 3; i++) |
| 523 | Vec[i] = InVec[i]; |
| 524 | return; |
| 525 | } |
| 526 | |
| 527 | for (unsigned j = 0; j < VecElems / 32; j++) |
| 528 | for (int i = 0; i < 3; i++) |
| 529 | Vec[i + j * 3] = Builder.CreateShuffleVector( |
| 530 | V1: InVec[j * 6 + i], V2: InVec[j * 6 + i + 3], Mask: ArrayRef(Concat, 32)); |
| 531 | |
| 532 | if (VecElems == 32) |
| 533 | return; |
| 534 | |
| 535 | for (int i = 0; i < 3; i++) |
| 536 | Vec[i] = Builder.CreateShuffleVector(V1: Vec[i], V2: Vec[i + 3], Mask: Concat); |
| 537 | } |
| 538 | |
| 539 | void X86InterleavedAccessGroup::deinterleave8bitStride3( |
| 540 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, |
| 541 | unsigned VecElems) { |
| 542 | // Example: Assuming we start from the following vectors: |
| 543 | // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 |
| 544 | // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 |
| 545 | // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 |
| 546 | |
| 547 | TransposedMatrix.resize(N: 3); |
| 548 | SmallVector<int, 32> VPShuf; |
| 549 | SmallVector<int, 32> VPAlign[2]; |
| 550 | SmallVector<int, 32> VPAlign2; |
| 551 | SmallVector<int, 32> VPAlign3; |
| 552 | SmallVector<int, 3> GroupSize; |
| 553 | Value *Vec[6], *TempVector[3]; |
| 554 | |
| 555 | MVT VT = MVT::getVT(Ty: Shuffles[0]->getType()); |
| 556 | |
| 557 | createShuffleStride(VT, Stride: 3, Mask&: VPShuf); |
| 558 | setGroupSize(VT, SizeInfo&: GroupSize); |
| 559 | |
| 560 | for (int i = 0; i < 2; i++) |
| 561 | DecodePALIGNRMask(VT, Imm: GroupSize[2 - i], ShuffleMask&: VPAlign[i], AlignDirection: false); |
| 562 | |
| 563 | DecodePALIGNRMask(VT, Imm: GroupSize[2] + GroupSize[1], ShuffleMask&: VPAlign2, AlignDirection: true, Unary: true); |
| 564 | DecodePALIGNRMask(VT, Imm: GroupSize[1], ShuffleMask&: VPAlign3, AlignDirection: true, Unary: true); |
| 565 | |
| 566 | concatSubVector(Vec, InVec, VecElems, Builder); |
| 567 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 |
| 568 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 |
| 569 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 |
| 570 | |
| 571 | for (int i = 0; i < 3; i++) |
| 572 | Vec[i] = Builder.CreateShuffleVector(V: Vec[i], Mask: VPShuf); |
| 573 | |
| 574 | // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 |
| 575 | // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 |
| 576 | // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 |
| 577 | |
| 578 | for (int i = 0; i < 3; i++) |
| 579 | TempVector[i] = |
| 580 | Builder.CreateShuffleVector(V1: Vec[(i + 2) % 3], V2: Vec[i], Mask: VPAlign[0]); |
| 581 | |
| 582 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 |
| 583 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 |
| 584 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 585 | |
| 586 | for (int i = 0; i < 3; i++) |
| 587 | Vec[i] = Builder.CreateShuffleVector(V1: TempVector[(i + 1) % 3], V2: TempVector[i], |
| 588 | Mask: VPAlign[1]); |
| 589 | |
| 590 | // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 |
| 591 | // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 592 | // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 |
| 593 | |
| 594 | Value *TempVec = Builder.CreateShuffleVector(V: Vec[1], Mask: VPAlign3); |
| 595 | TransposedMatrix[0] = Builder.CreateShuffleVector(V: Vec[0], Mask: VPAlign2); |
| 596 | TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; |
| 597 | TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; |
| 598 | } |
| 599 | |
| 600 | // group2Shuffle reorder the shuffle stride back into continuous order. |
| 601 | // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => |
| 602 | // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. |
| 603 | static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask, |
| 604 | SmallVectorImpl<int> &Output) { |
| 605 | int IndexGroup[3] = {0, 0, 0}; |
| 606 | int Index = 0; |
| 607 | int VectorWidth = VT.getSizeInBits(); |
| 608 | int VF = VT.getVectorNumElements(); |
| 609 | // Find the index of the different groups. |
| 610 | int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; |
| 611 | for (int i = 0; i < 3; i++) { |
| 612 | IndexGroup[(Index * 3) % (VF / Lane)] = Index; |
| 613 | Index += Mask[i]; |
| 614 | } |
| 615 | // According to the index compute the convert mask. |
| 616 | for (int i = 0; i < VF / Lane; i++) { |
| 617 | Output.push_back(Elt: IndexGroup[i % 3]); |
| 618 | IndexGroup[i % 3]++; |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | void X86InterleavedAccessGroup::interleave8bitStride3( |
| 623 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, |
| 624 | unsigned VecElems) { |
| 625 | // Example: Assuming we start from the following vectors: |
| 626 | // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 |
| 627 | // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 628 | // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 |
| 629 | |
| 630 | TransposedMatrix.resize(N: 3); |
| 631 | SmallVector<int, 3> GroupSize; |
| 632 | SmallVector<int, 32> VPShuf; |
| 633 | SmallVector<int, 32> VPAlign[3]; |
| 634 | SmallVector<int, 32> VPAlign2; |
| 635 | SmallVector<int, 32> VPAlign3; |
| 636 | |
| 637 | Value *Vec[3], *TempVector[3]; |
| 638 | MVT VT = MVT::getVectorVT(VT: MVT::i8, NumElements: VecElems); |
| 639 | |
| 640 | setGroupSize(VT, SizeInfo&: GroupSize); |
| 641 | |
| 642 | for (int i = 0; i < 3; i++) |
| 643 | DecodePALIGNRMask(VT, Imm: GroupSize[i], ShuffleMask&: VPAlign[i]); |
| 644 | |
| 645 | DecodePALIGNRMask(VT, Imm: GroupSize[1] + GroupSize[2], ShuffleMask&: VPAlign2, AlignDirection: false, Unary: true); |
| 646 | DecodePALIGNRMask(VT, Imm: GroupSize[1], ShuffleMask&: VPAlign3, AlignDirection: false, Unary: true); |
| 647 | |
| 648 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 |
| 649 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 |
| 650 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 651 | |
| 652 | Vec[0] = Builder.CreateShuffleVector(V: InVec[0], Mask: VPAlign2); |
| 653 | Vec[1] = Builder.CreateShuffleVector(V: InVec[1], Mask: VPAlign3); |
| 654 | Vec[2] = InVec[2]; |
| 655 | |
| 656 | // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 |
| 657 | // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 |
| 658 | // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 |
| 659 | |
| 660 | for (int i = 0; i < 3; i++) |
| 661 | TempVector[i] = |
| 662 | Builder.CreateShuffleVector(V1: Vec[i], V2: Vec[(i + 2) % 3], Mask: VPAlign[1]); |
| 663 | |
| 664 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 |
| 665 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 |
| 666 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 |
| 667 | |
| 668 | for (int i = 0; i < 3; i++) |
| 669 | Vec[i] = Builder.CreateShuffleVector(V1: TempVector[i], V2: TempVector[(i + 1) % 3], |
| 670 | Mask: VPAlign[2]); |
| 671 | |
| 672 | // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 |
| 673 | // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 |
| 674 | // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 |
| 675 | |
| 676 | unsigned NumOfElm = VT.getVectorNumElements(); |
| 677 | group2Shuffle(VT, Mask&: GroupSize, Output&: VPShuf); |
| 678 | reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, VecElems: NumOfElm, Stride: 3, Builder); |
| 679 | } |
| 680 | |
| 681 | void X86InterleavedAccessGroup::transpose_4x4( |
| 682 | ArrayRef<Instruction *> Matrix, |
| 683 | SmallVectorImpl<Value *> &TransposedMatrix) { |
| 684 | assert(Matrix.size() == 4 && "Invalid matrix size" ); |
| 685 | TransposedMatrix.resize(N: 4); |
| 686 | |
| 687 | // dst = src1[0,1],src2[0,1] |
| 688 | static constexpr int IntMask1[] = {0, 1, 4, 5}; |
| 689 | ArrayRef<int> Mask = ArrayRef(IntMask1, 4); |
| 690 | Value *IntrVec1 = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[2], Mask); |
| 691 | Value *IntrVec2 = Builder.CreateShuffleVector(V1: Matrix[1], V2: Matrix[3], Mask); |
| 692 | |
| 693 | // dst = src1[2,3],src2[2,3] |
| 694 | static constexpr int IntMask2[] = {2, 3, 6, 7}; |
| 695 | Mask = ArrayRef(IntMask2, 4); |
| 696 | Value *IntrVec3 = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[2], Mask); |
| 697 | Value *IntrVec4 = Builder.CreateShuffleVector(V1: Matrix[1], V2: Matrix[3], Mask); |
| 698 | |
| 699 | // dst = src1[0],src2[0],src1[2],src2[2] |
| 700 | static constexpr int IntMask3[] = {0, 4, 2, 6}; |
| 701 | Mask = ArrayRef(IntMask3, 4); |
| 702 | TransposedMatrix[0] = Builder.CreateShuffleVector(V1: IntrVec1, V2: IntrVec2, Mask); |
| 703 | TransposedMatrix[2] = Builder.CreateShuffleVector(V1: IntrVec3, V2: IntrVec4, Mask); |
| 704 | |
| 705 | // dst = src1[1],src2[1],src1[3],src2[3] |
| 706 | static constexpr int IntMask4[] = {1, 5, 3, 7}; |
| 707 | Mask = ArrayRef(IntMask4, 4); |
| 708 | TransposedMatrix[1] = Builder.CreateShuffleVector(V1: IntrVec1, V2: IntrVec2, Mask); |
| 709 | TransposedMatrix[3] = Builder.CreateShuffleVector(V1: IntrVec3, V2: IntrVec4, Mask); |
| 710 | } |
| 711 | |
| 712 | // Lowers this interleaved access group into X86-specific |
| 713 | // instructions/intrinsics. |
| 714 | bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { |
| 715 | SmallVector<Instruction *, 4> DecomposedVectors; |
| 716 | SmallVector<Value *, 4> TransposedVectors; |
| 717 | auto *ShuffleTy = cast<FixedVectorType>(Val: Shuffles[0]->getType()); |
| 718 | |
| 719 | if (isa<LoadInst>(Val: Inst)) { |
| 720 | auto *ShuffleEltTy = cast<FixedVectorType>(Val: Inst->getType()); |
| 721 | unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; |
| 722 | switch (NumSubVecElems) { |
| 723 | default: |
| 724 | return false; |
| 725 | case 4: |
| 726 | case 8: |
| 727 | case 16: |
| 728 | case 32: |
| 729 | case 64: |
| 730 | if (ShuffleTy->getNumElements() != NumSubVecElems) |
| 731 | return false; |
| 732 | break; |
| 733 | } |
| 734 | |
| 735 | // Try to generate target-sized register(/instruction). |
| 736 | decompose(VecInst: Inst, NumSubVectors: Factor, SubVecTy: ShuffleTy, DecomposedVectors); |
| 737 | |
| 738 | // Perform matrix-transposition in order to compute interleaved |
| 739 | // results by generating some sort of (optimized) target-specific |
| 740 | // instructions. |
| 741 | |
| 742 | if (NumSubVecElems == 4) |
| 743 | transpose_4x4(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors); |
| 744 | else |
| 745 | deinterleave8bitStride3(InVec: DecomposedVectors, TransposedMatrix&: TransposedVectors, |
| 746 | VecElems: NumSubVecElems); |
| 747 | |
| 748 | // Now replace the unoptimized-interleaved-vectors with the |
| 749 | // transposed-interleaved vectors. |
| 750 | for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) |
| 751 | Shuffles[i]->replaceAllUsesWith(V: TransposedVectors[Indices[i]]); |
| 752 | |
| 753 | return true; |
| 754 | } |
| 755 | |
| 756 | Type *ShuffleEltTy = ShuffleTy->getElementType(); |
| 757 | unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; |
| 758 | |
| 759 | // Lower the interleaved stores: |
| 760 | // 1. Decompose the interleaved wide shuffle into individual shuffle |
| 761 | // vectors. |
| 762 | decompose(VecInst: Shuffles[0], NumSubVectors: Factor, |
| 763 | SubVecTy: FixedVectorType::get(ElementType: ShuffleEltTy, NumElts: NumSubVecElems), |
| 764 | DecomposedVectors); |
| 765 | |
| 766 | // 2. Transpose the interleaved-vectors into vectors of contiguous |
| 767 | // elements. |
| 768 | switch (NumSubVecElems) { |
| 769 | case 4: |
| 770 | transpose_4x4(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors); |
| 771 | break; |
| 772 | case 8: |
| 773 | interleave8bitStride4VF8(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors); |
| 774 | break; |
| 775 | case 16: |
| 776 | case 32: |
| 777 | case 64: |
| 778 | if (Factor == 4) |
| 779 | interleave8bitStride4(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors, |
| 780 | NumOfElm: NumSubVecElems); |
| 781 | if (Factor == 3) |
| 782 | interleave8bitStride3(InVec: DecomposedVectors, TransposedMatrix&: TransposedVectors, |
| 783 | VecElems: NumSubVecElems); |
| 784 | break; |
| 785 | default: |
| 786 | return false; |
| 787 | } |
| 788 | |
| 789 | // 3. Concatenate the contiguous-vectors back into a wide vector. |
| 790 | Value *WideVec = concatenateVectors(Builder, Vecs: TransposedVectors); |
| 791 | |
| 792 | // 4. Generate a store instruction for wide-vec. |
| 793 | StoreInst *SI = cast<StoreInst>(Val: Inst); |
| 794 | Builder.CreateAlignedStore(Val: WideVec, Ptr: SI->getPointerOperand(), Align: SI->getAlign()); |
| 795 | |
| 796 | return true; |
| 797 | } |
| 798 | |
| 799 | // Lower interleaved load(s) into target specific instructions/ |
| 800 | // intrinsics. Lowering sequence varies depending on the vector-types, factor, |
| 801 | // number of shuffles and ISA. |
| 802 | // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. |
| 803 | bool X86TargetLowering::lowerInterleavedLoad( |
| 804 | LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, |
| 805 | ArrayRef<unsigned> Indices, unsigned Factor) const { |
| 806 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| 807 | "Invalid interleave factor" ); |
| 808 | assert(!Shuffles.empty() && "Empty shufflevector input" ); |
| 809 | assert(Shuffles.size() == Indices.size() && |
| 810 | "Unmatched number of shufflevectors and indices" ); |
| 811 | |
| 812 | // Create an interleaved access group. |
| 813 | IRBuilder<> Builder(LI); |
| 814 | X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, |
| 815 | Builder); |
| 816 | |
| 817 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); |
| 818 | } |
| 819 | |
| 820 | bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, |
| 821 | ShuffleVectorInst *SVI, |
| 822 | unsigned Factor) const { |
| 823 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| 824 | "Invalid interleave factor" ); |
| 825 | |
| 826 | assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == |
| 827 | 0 && |
| 828 | "Invalid interleaved store" ); |
| 829 | |
| 830 | // Holds the indices of SVI that correspond to the starting index of each |
| 831 | // interleaved shuffle. |
| 832 | auto Mask = SVI->getShuffleMask(); |
| 833 | SmallVector<unsigned, 4> Indices(Mask.take_front(N: Factor)); |
| 834 | |
| 835 | ArrayRef<ShuffleVectorInst *> Shuffles = ArrayRef(SVI); |
| 836 | |
| 837 | // Create an interleaved access group. |
| 838 | IRBuilder<> Builder(SI); |
| 839 | X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, |
| 840 | Builder); |
| 841 | |
| 842 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); |
| 843 | } |
| 844 | |