| 1 | //===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a target parser to recognise hardware features |
| 10 | // for RISC-V CPUs. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/TargetParser/RISCVTargetParser.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/StringSwitch.h" |
| 17 | #include "llvm/TargetParser/RISCVISAInfo.h" |
| 18 | |
| 19 | namespace llvm { |
| 20 | namespace RISCV { |
| 21 | |
| 22 | enum CPUKind : unsigned { |
| 23 | #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \ |
| 24 | FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID) \ |
| 25 | CK_##ENUM, |
| 26 | #define TUNE_PROC(ENUM, NAME) CK_##ENUM, |
| 27 | #include "llvm/TargetParser/RISCVTargetParserDef.inc" |
| 28 | }; |
| 29 | |
| 30 | constexpr CPUInfo RISCVCPUInfo[] = { |
| 31 | #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \ |
| 32 | FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID) \ |
| 33 | { \ |
| 34 | NAME, \ |
| 35 | DEFAULT_MARCH, \ |
| 36 | FAST_SCALAR_UNALIGN, \ |
| 37 | FAST_VECTOR_UNALIGN, \ |
| 38 | {MVENDORID, MARCHID, MIMPID}, \ |
| 39 | }, |
| 40 | #include "llvm/TargetParser/RISCVTargetParserDef.inc" |
| 41 | }; |
| 42 | |
| 43 | static const CPUInfo *getCPUInfoByName(StringRef CPU) { |
| 44 | for (auto &C : RISCVCPUInfo) |
| 45 | if (C.Name == CPU) |
| 46 | return &C; |
| 47 | return nullptr; |
| 48 | } |
| 49 | |
| 50 | bool hasFastScalarUnalignedAccess(StringRef CPU) { |
| 51 | const CPUInfo *Info = getCPUInfoByName(CPU); |
| 52 | return Info && Info->FastScalarUnalignedAccess; |
| 53 | } |
| 54 | |
| 55 | bool hasFastVectorUnalignedAccess(StringRef CPU) { |
| 56 | const CPUInfo *Info = getCPUInfoByName(CPU); |
| 57 | return Info && Info->FastVectorUnalignedAccess; |
| 58 | } |
| 59 | |
| 60 | bool hasValidCPUModel(StringRef CPU) { return getCPUModel(CPU).isValid(); } |
| 61 | |
| 62 | CPUModel getCPUModel(StringRef CPU) { |
| 63 | const CPUInfo *Info = getCPUInfoByName(CPU); |
| 64 | if (!Info) |
| 65 | return {.MVendorID: 0, .MArchID: 0, .MImpID: 0}; |
| 66 | return Info->Model; |
| 67 | } |
| 68 | |
| 69 | StringRef getCPUNameFromCPUModel(const CPUModel &Model) { |
| 70 | if (!Model.isValid()) |
| 71 | return "" ; |
| 72 | |
| 73 | for (auto &C : RISCVCPUInfo) |
| 74 | if (C.Model == Model) |
| 75 | return C.Name; |
| 76 | return "" ; |
| 77 | } |
| 78 | |
| 79 | bool parseCPU(StringRef CPU, bool IsRV64) { |
| 80 | const CPUInfo *Info = getCPUInfoByName(CPU); |
| 81 | |
| 82 | if (!Info) |
| 83 | return false; |
| 84 | return Info->is64Bit() == IsRV64; |
| 85 | } |
| 86 | |
| 87 | bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) { |
| 88 | std::optional<CPUKind> Kind = |
| 89 | llvm::StringSwitch<std::optional<CPUKind>>(TuneCPU) |
| 90 | #define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM) |
| 91 | #include "llvm/TargetParser/RISCVTargetParserDef.inc" |
| 92 | .Default(Value: std::nullopt); |
| 93 | |
| 94 | if (Kind.has_value()) |
| 95 | return true; |
| 96 | |
| 97 | // Fallback to parsing as a CPU. |
| 98 | return parseCPU(CPU: TuneCPU, IsRV64); |
| 99 | } |
| 100 | |
| 101 | StringRef getMArchFromMcpu(StringRef CPU) { |
| 102 | const CPUInfo *Info = getCPUInfoByName(CPU); |
| 103 | if (!Info) |
| 104 | return "" ; |
| 105 | return Info->DefaultMarch; |
| 106 | } |
| 107 | |
| 108 | void fillValidCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) { |
| 109 | for (const auto &C : RISCVCPUInfo) { |
| 110 | if (IsRV64 == C.is64Bit()) |
| 111 | Values.emplace_back(Args: C.Name); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | void fillValidTuneCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) { |
| 116 | for (const auto &C : RISCVCPUInfo) { |
| 117 | if (IsRV64 == C.is64Bit()) |
| 118 | Values.emplace_back(Args: C.Name); |
| 119 | } |
| 120 | #define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME)); |
| 121 | #include "llvm/TargetParser/RISCVTargetParserDef.inc" |
| 122 | } |
| 123 | |
| 124 | // This function is currently used by IREE, so it's not dead code. |
| 125 | void getFeaturesForCPU(StringRef CPU, |
| 126 | SmallVectorImpl<std::string> &EnabledFeatures, |
| 127 | bool NeedPlus) { |
| 128 | StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU); |
| 129 | if (MarchFromCPU == "" ) |
| 130 | return; |
| 131 | |
| 132 | EnabledFeatures.clear(); |
| 133 | auto RII = RISCVISAInfo::parseArchString( |
| 134 | Arch: MarchFromCPU, /* EnableExperimentalExtension */ true); |
| 135 | |
| 136 | if (llvm::errorToBool(Err: RII.takeError())) |
| 137 | return; |
| 138 | |
| 139 | std::vector<std::string> FeatStrings = |
| 140 | (*RII)->toFeatures(/* AddAllExtensions */ false); |
| 141 | for (const auto &F : FeatStrings) |
| 142 | if (NeedPlus) |
| 143 | EnabledFeatures.push_back(Elt: F); |
| 144 | else |
| 145 | EnabledFeatures.push_back(Elt: F.substr(pos: 1)); |
| 146 | } |
| 147 | |
| 148 | } // namespace RISCV |
| 149 | |
| 150 | namespace RISCVVType { |
| 151 | // Encode VTYPE into the binary format used by the the VSETVLI instruction which |
| 152 | // is used by our MC layer representation. |
| 153 | // |
| 154 | // Bits | Name | Description |
| 155 | // -----+------------+------------------------------------------------ |
| 156 | // 7 | vma | Vector mask agnostic |
| 157 | // 6 | vta | Vector tail agnostic |
| 158 | // 5:3 | vsew[2:0] | Standard element width (SEW) setting |
| 159 | // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting |
| 160 | unsigned encodeVTYPE(VLMUL VLMul, unsigned SEW, bool TailAgnostic, |
| 161 | bool MaskAgnostic) { |
| 162 | assert(isValidSEW(SEW) && "Invalid SEW" ); |
| 163 | unsigned VLMulBits = static_cast<unsigned>(VLMul); |
| 164 | unsigned VSEWBits = encodeSEW(SEW); |
| 165 | unsigned VTypeI = (VSEWBits << 3) | (VLMulBits & 0x7); |
| 166 | if (TailAgnostic) |
| 167 | VTypeI |= 0x40; |
| 168 | if (MaskAgnostic) |
| 169 | VTypeI |= 0x80; |
| 170 | |
| 171 | return VTypeI; |
| 172 | } |
| 173 | |
| 174 | unsigned encodeXSfmmVType(unsigned SEW, unsigned Widen, bool AltFmt) { |
| 175 | assert(isValidSEW(SEW) && "Invalid SEW" ); |
| 176 | assert((Widen == 1 || Widen == 2 || Widen == 4) && "Invalid Widen" ); |
| 177 | unsigned VSEWBits = encodeSEW(SEW); |
| 178 | unsigned TWiden = Log2_32(Value: Widen) + 1; |
| 179 | unsigned VTypeI = (VSEWBits << 3) | AltFmt << 8 | TWiden << 9; |
| 180 | return VTypeI; |
| 181 | } |
| 182 | |
| 183 | std::pair<unsigned, bool> decodeVLMUL(VLMUL VLMul) { |
| 184 | switch (VLMul) { |
| 185 | default: |
| 186 | llvm_unreachable("Unexpected LMUL value!" ); |
| 187 | case LMUL_1: |
| 188 | case LMUL_2: |
| 189 | case LMUL_4: |
| 190 | case LMUL_8: |
| 191 | return std::make_pair(x: 1 << static_cast<unsigned>(VLMul), y: false); |
| 192 | case LMUL_F2: |
| 193 | case LMUL_F4: |
| 194 | case LMUL_F8: |
| 195 | return std::make_pair(x: 1 << (8 - static_cast<unsigned>(VLMul)), y: true); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | void printVType(unsigned VType, raw_ostream &OS) { |
| 200 | unsigned Sew = getSEW(VType); |
| 201 | OS << "e" << Sew; |
| 202 | |
| 203 | unsigned LMul; |
| 204 | bool Fractional; |
| 205 | std::tie(args&: LMul, args&: Fractional) = decodeVLMUL(VLMul: getVLMUL(VType)); |
| 206 | |
| 207 | if (Fractional) |
| 208 | OS << ", mf" ; |
| 209 | else |
| 210 | OS << ", m" ; |
| 211 | OS << LMul; |
| 212 | |
| 213 | if (isTailAgnostic(VType)) |
| 214 | OS << ", ta" ; |
| 215 | else |
| 216 | OS << ", tu" ; |
| 217 | |
| 218 | if (isMaskAgnostic(VType)) |
| 219 | OS << ", ma" ; |
| 220 | else |
| 221 | OS << ", mu" ; |
| 222 | } |
| 223 | |
| 224 | unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul) { |
| 225 | unsigned LMul; |
| 226 | bool Fractional; |
| 227 | std::tie(args&: LMul, args&: Fractional) = decodeVLMUL(VLMul); |
| 228 | |
| 229 | // Convert LMul to a fixed point value with 3 fractional bits. |
| 230 | LMul = Fractional ? (8 / LMul) : (LMul * 8); |
| 231 | |
| 232 | assert(SEW >= 8 && "Unexpected SEW value" ); |
| 233 | return (SEW * 8) / LMul; |
| 234 | } |
| 235 | |
| 236 | std::optional<VLMUL> getSameRatioLMUL(unsigned SEW, VLMUL VLMul, unsigned EEW) { |
| 237 | unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMul); |
| 238 | unsigned EMULFixedPoint = (EEW * 8) / Ratio; |
| 239 | bool Fractional = EMULFixedPoint < 8; |
| 240 | unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8; |
| 241 | if (!isValidLMUL(LMUL: EMUL, Fractional)) |
| 242 | return std::nullopt; |
| 243 | return RISCVVType::encodeLMUL(LMUL: EMUL, Fractional); |
| 244 | } |
| 245 | |
| 246 | } // namespace RISCVVType |
| 247 | |
| 248 | } // namespace llvm |
| 249 | |