| 1 | //===- MaterializationUtils.cpp - Builds and manipulates coroutine frame |
| 2 | //-------------===// |
| 3 | // |
| 4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // This file contains classes used to materialize insts after suspends points. |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | |
| 12 | #include "llvm/Transforms/Coroutines/MaterializationUtils.h" |
| 13 | #include "CoroInternal.h" |
| 14 | #include "llvm/ADT/PostOrderIterator.h" |
| 15 | #include "llvm/IR/Dominators.h" |
| 16 | #include "llvm/IR/InstIterator.h" |
| 17 | #include "llvm/IR/Instruction.h" |
| 18 | #include "llvm/IR/ModuleSlotTracker.h" |
| 19 | #include "llvm/Transforms/Coroutines/SpillUtils.h" |
| 20 | #include <deque> |
| 21 | |
| 22 | using namespace llvm; |
| 23 | |
| 24 | using namespace coro; |
| 25 | |
| 26 | // The "coro-suspend-crossing" flag is very noisy. There is another debug type, |
| 27 | // "coro-frame", which results in leaner debug spew. |
| 28 | #define DEBUG_TYPE "coro-suspend-crossing" |
| 29 | |
| 30 | namespace { |
| 31 | |
| 32 | // RematGraph is used to construct a DAG for rematerializable instructions |
| 33 | // When the constructor is invoked with a candidate instruction (which is |
| 34 | // materializable) it builds a DAG of materializable instructions from that |
| 35 | // point. |
| 36 | // Typically, for each instruction identified as re-materializable across a |
| 37 | // suspend point, a RematGraph will be created. |
| 38 | struct RematGraph { |
| 39 | // Each RematNode in the graph contains the edges to instructions providing |
| 40 | // operands in the current node. |
| 41 | struct RematNode { |
| 42 | Instruction *Node; |
| 43 | SmallVector<RematNode *> Operands; |
| 44 | RematNode() = default; |
| 45 | RematNode(Instruction *V) : Node(V) {} |
| 46 | }; |
| 47 | |
| 48 | RematNode *EntryNode; |
| 49 | using RematNodeMap = |
| 50 | SmallMapVector<Instruction *, std::unique_ptr<RematNode>, 8>; |
| 51 | RematNodeMap Remats; |
| 52 | const std::function<bool(Instruction &)> &MaterializableCallback; |
| 53 | SuspendCrossingInfo &Checker; |
| 54 | |
| 55 | RematGraph(const std::function<bool(Instruction &)> &MaterializableCallback, |
| 56 | Instruction *I, SuspendCrossingInfo &Checker) |
| 57 | : MaterializableCallback(MaterializableCallback), Checker(Checker) { |
| 58 | std::unique_ptr<RematNode> FirstNode = std::make_unique<RematNode>(args&: I); |
| 59 | EntryNode = FirstNode.get(); |
| 60 | std::deque<std::unique_ptr<RematNode>> WorkList; |
| 61 | addNode(NUPtr: std::move(FirstNode), WorkList, FirstUse: cast<User>(Val: I)); |
| 62 | while (WorkList.size()) { |
| 63 | std::unique_ptr<RematNode> N = std::move(WorkList.front()); |
| 64 | WorkList.pop_front(); |
| 65 | addNode(NUPtr: std::move(N), WorkList, FirstUse: cast<User>(Val: I)); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | void addNode(std::unique_ptr<RematNode> NUPtr, |
| 70 | std::deque<std::unique_ptr<RematNode>> &WorkList, |
| 71 | User *FirstUse) { |
| 72 | RematNode *N = NUPtr.get(); |
| 73 | auto [It, Inserted] = Remats.try_emplace(Key: N->Node); |
| 74 | if (!Inserted) |
| 75 | return; |
| 76 | |
| 77 | // We haven't see this node yet - add to the list |
| 78 | It->second = std::move(NUPtr); |
| 79 | for (auto &Def : N->Node->operands()) { |
| 80 | Instruction *D = dyn_cast<Instruction>(Val: Def.get()); |
| 81 | if (!D || !MaterializableCallback(*D) || |
| 82 | !Checker.isDefinitionAcrossSuspend(I&: *D, U: FirstUse)) |
| 83 | continue; |
| 84 | |
| 85 | if (auto It = Remats.find(Key: D); It != Remats.end()) { |
| 86 | // Already have this in the graph |
| 87 | N->Operands.push_back(Elt: It->second.get()); |
| 88 | continue; |
| 89 | } |
| 90 | |
| 91 | bool NoMatch = true; |
| 92 | for (auto &I : WorkList) { |
| 93 | if (I->Node == D) { |
| 94 | NoMatch = false; |
| 95 | N->Operands.push_back(Elt: I.get()); |
| 96 | break; |
| 97 | } |
| 98 | } |
| 99 | if (NoMatch) { |
| 100 | // Create a new node |
| 101 | std::unique_ptr<RematNode> ChildNode = std::make_unique<RematNode>(args&: D); |
| 102 | N->Operands.push_back(Elt: ChildNode.get()); |
| 103 | WorkList.push_back(x: std::move(ChildNode)); |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 109 | static void dumpBasicBlockLabel(const BasicBlock *BB, |
| 110 | ModuleSlotTracker &MST) { |
| 111 | if (BB->hasName()) { |
| 112 | dbgs() << BB->getName(); |
| 113 | return; |
| 114 | } |
| 115 | |
| 116 | dbgs() << MST.getLocalSlot(BB); |
| 117 | } |
| 118 | |
| 119 | void dump() const { |
| 120 | BasicBlock *BB = EntryNode->Node->getParent(); |
| 121 | Function *F = BB->getParent(); |
| 122 | |
| 123 | ModuleSlotTracker MST(F->getParent()); |
| 124 | MST.incorporateFunction(*F); |
| 125 | |
| 126 | dbgs() << "Entry (" ; |
| 127 | dumpBasicBlockLabel(BB, MST); |
| 128 | dbgs() << ") : " << *EntryNode->Node << "\n" ; |
| 129 | for (auto &E : Remats) { |
| 130 | dbgs() << *(E.first) << "\n" ; |
| 131 | for (RematNode *U : E.second->Operands) |
| 132 | dbgs() << " " << *U->Node << "\n" ; |
| 133 | } |
| 134 | } |
| 135 | #endif |
| 136 | }; |
| 137 | |
| 138 | } // namespace |
| 139 | |
| 140 | namespace llvm { |
| 141 | template <> struct GraphTraits<RematGraph *> { |
| 142 | using NodeRef = RematGraph::RematNode *; |
| 143 | using ChildIteratorType = RematGraph::RematNode **; |
| 144 | |
| 145 | static NodeRef getEntryNode(RematGraph *G) { return G->EntryNode; } |
| 146 | static ChildIteratorType child_begin(NodeRef N) { |
| 147 | return N->Operands.begin(); |
| 148 | } |
| 149 | static ChildIteratorType child_end(NodeRef N) { return N->Operands.end(); } |
| 150 | }; |
| 151 | |
| 152 | } // end namespace llvm |
| 153 | |
| 154 | // For each instruction identified as materializable across the suspend point, |
| 155 | // and its associated DAG of other rematerializable instructions, |
| 156 | // recreate the DAG of instructions after the suspend point. |
| 157 | static void rewriteMaterializableInstructions( |
| 158 | const SmallMapVector<Instruction *, std::unique_ptr<RematGraph>, 8> |
| 159 | &AllRemats) { |
| 160 | // This has to be done in 2 phases |
| 161 | // Do the remats and record the required defs to be replaced in the |
| 162 | // original use instructions |
| 163 | // Once all the remats are complete, replace the uses in the final |
| 164 | // instructions with the new defs |
| 165 | typedef struct { |
| 166 | Instruction *Use; |
| 167 | Instruction *Def; |
| 168 | Instruction *Remat; |
| 169 | } ProcessNode; |
| 170 | |
| 171 | SmallVector<ProcessNode> FinalInstructionsToProcess; |
| 172 | |
| 173 | for (const auto &E : AllRemats) { |
| 174 | Instruction *Use = E.first; |
| 175 | Instruction *CurrentMaterialization = nullptr; |
| 176 | RematGraph *RG = E.second.get(); |
| 177 | ReversePostOrderTraversal<RematGraph *> RPOT(RG); |
| 178 | SmallVector<Instruction *> InstructionsToProcess; |
| 179 | |
| 180 | // If the target use is actually a suspend instruction then we have to |
| 181 | // insert the remats into the end of the predecessor (there should only be |
| 182 | // one). This is so that suspend blocks always have the suspend instruction |
| 183 | // as the first instruction. |
| 184 | BasicBlock::iterator InsertPoint = Use->getParent()->getFirstInsertionPt(); |
| 185 | if (isa<AnyCoroSuspendInst>(Val: Use)) { |
| 186 | BasicBlock *SuspendPredecessorBlock = |
| 187 | Use->getParent()->getSinglePredecessor(); |
| 188 | assert(SuspendPredecessorBlock && "malformed coro suspend instruction" ); |
| 189 | InsertPoint = SuspendPredecessorBlock->getTerminator()->getIterator(); |
| 190 | } |
| 191 | |
| 192 | // Note: skip the first instruction as this is the actual use that we're |
| 193 | // rematerializing everything for. |
| 194 | auto I = RPOT.begin(); |
| 195 | ++I; |
| 196 | for (; I != RPOT.end(); ++I) { |
| 197 | Instruction *D = (*I)->Node; |
| 198 | CurrentMaterialization = D->clone(); |
| 199 | CurrentMaterialization->setName(D->getName()); |
| 200 | CurrentMaterialization->insertBefore(InsertPos: InsertPoint); |
| 201 | InsertPoint = CurrentMaterialization->getIterator(); |
| 202 | |
| 203 | // Replace all uses of Def in the instructions being added as part of this |
| 204 | // rematerialization group |
| 205 | for (auto &I : InstructionsToProcess) |
| 206 | I->replaceUsesOfWith(From: D, To: CurrentMaterialization); |
| 207 | |
| 208 | // Don't replace the final use at this point as this can cause problems |
| 209 | // for other materializations. Instead, for any final use that uses a |
| 210 | // define that's being rematerialized, record the replace values |
| 211 | for (unsigned i = 0, E = Use->getNumOperands(); i != E; ++i) |
| 212 | if (Use->getOperand(i) == D) // Is this operand pointing to oldval? |
| 213 | FinalInstructionsToProcess.push_back( |
| 214 | Elt: {.Use: Use, .Def: D, .Remat: CurrentMaterialization}); |
| 215 | |
| 216 | InstructionsToProcess.push_back(Elt: CurrentMaterialization); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // Finally, replace the uses with the defines that we've just rematerialized |
| 221 | for (auto &R : FinalInstructionsToProcess) { |
| 222 | if (auto *PN = dyn_cast<PHINode>(Val: R.Use)) { |
| 223 | assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming " |
| 224 | "values in the PHINode" ); |
| 225 | PN->replaceAllUsesWith(V: R.Remat); |
| 226 | PN->eraseFromParent(); |
| 227 | continue; |
| 228 | } |
| 229 | R.Use->replaceUsesOfWith(From: R.Def, To: R.Remat); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | /// Default materializable callback |
| 234 | // Check for instructions that we can recreate on resume as opposed to spill |
| 235 | // the result into a coroutine frame. |
| 236 | bool llvm::coro::defaultMaterializable(Instruction &V) { |
| 237 | return (isa<CastInst>(Val: &V) || isa<GetElementPtrInst>(Val: &V) || |
| 238 | isa<BinaryOperator>(Val: &V) || isa<CmpInst>(Val: &V) || isa<SelectInst>(Val: &V)); |
| 239 | } |
| 240 | |
| 241 | bool llvm::coro::isTriviallyMaterializable(Instruction &V) { |
| 242 | return defaultMaterializable(V); |
| 243 | } |
| 244 | |
| 245 | #ifndef NDEBUG |
| 246 | static void dumpRemats( |
| 247 | StringRef Title, |
| 248 | const SmallMapVector<Instruction *, std::unique_ptr<RematGraph>, 8> &RM) { |
| 249 | dbgs() << "------------- " << Title << "--------------\n" ; |
| 250 | for (const auto &E : RM) { |
| 251 | E.second->dump(); |
| 252 | dbgs() << "--\n" ; |
| 253 | } |
| 254 | } |
| 255 | #endif |
| 256 | |
| 257 | void coro::doRematerializations( |
| 258 | Function &F, SuspendCrossingInfo &Checker, |
| 259 | std::function<bool(Instruction &)> IsMaterializable) { |
| 260 | if (F.hasOptNone()) |
| 261 | return; |
| 262 | |
| 263 | coro::SpillInfo Spills; |
| 264 | |
| 265 | // See if there are materializable instructions across suspend points |
| 266 | // We record these as the starting point to also identify materializable |
| 267 | // defs of uses in these operations |
| 268 | for (Instruction &I : instructions(F)) { |
| 269 | if (!IsMaterializable(I)) |
| 270 | continue; |
| 271 | for (User *U : I.users()) |
| 272 | if (Checker.isDefinitionAcrossSuspend(I, U)) |
| 273 | Spills[&I].push_back(Elt: cast<Instruction>(Val: U)); |
| 274 | } |
| 275 | |
| 276 | // Process each of the identified rematerializable instructions |
| 277 | // and add predecessor instructions that can also be rematerialized. |
| 278 | // This is actually a graph of instructions since we could potentially |
| 279 | // have multiple uses of a def in the set of predecessor instructions. |
| 280 | // The approach here is to maintain a graph of instructions for each bottom |
| 281 | // level instruction - where we have a unique set of instructions (nodes) |
| 282 | // and edges between them. We then walk the graph in reverse post-dominator |
| 283 | // order to insert them past the suspend point, but ensure that ordering is |
| 284 | // correct. We also rely on CSE removing duplicate defs for remats of |
| 285 | // different instructions with a def in common (rather than maintaining more |
| 286 | // complex graphs for each suspend point) |
| 287 | |
| 288 | // We can do this by adding new nodes to the list for each suspend |
| 289 | // point. Then using standard GraphTraits to give a reverse post-order |
| 290 | // traversal when we insert the nodes after the suspend |
| 291 | SmallMapVector<Instruction *, std::unique_ptr<RematGraph>, 8> AllRemats; |
| 292 | for (auto &E : Spills) { |
| 293 | for (Instruction *U : E.second) { |
| 294 | // Don't process a user twice (this can happen if the instruction uses |
| 295 | // more than one rematerializable def) |
| 296 | auto [It, Inserted] = AllRemats.try_emplace(Key: U); |
| 297 | if (!Inserted) |
| 298 | continue; |
| 299 | |
| 300 | // Constructor creates the whole RematGraph for the given Use |
| 301 | auto RematUPtr = |
| 302 | std::make_unique<RematGraph>(args&: IsMaterializable, args&: U, args&: Checker); |
| 303 | |
| 304 | LLVM_DEBUG(dbgs() << "***** Next remat group *****\n" ; |
| 305 | ReversePostOrderTraversal<RematGraph *> RPOT(RematUPtr.get()); |
| 306 | for (auto I = RPOT.begin(); I != RPOT.end(); |
| 307 | ++I) { (*I)->Node->dump(); } dbgs() |
| 308 | << "\n" ;); |
| 309 | |
| 310 | It->second = std::move(RematUPtr); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | // Rewrite materializable instructions to be materialized at the use |
| 315 | // point. |
| 316 | LLVM_DEBUG(dumpRemats("Materializations" , AllRemats)); |
| 317 | rewriteMaterializableInstructions(AllRemats); |
| 318 | } |
| 319 | |