| 1 | //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass deletes dead arguments from internal functions. Dead argument |
| 10 | // elimination removes arguments which are directly dead, as well as arguments |
| 11 | // only passed into function calls as dead arguments of other functions. This |
| 12 | // pass also deletes dead return values in a similar way. |
| 13 | // |
| 14 | // This pass is often useful as a cleanup pass to run after aggressive |
| 15 | // interprocedural passes, which add possibly-dead arguments or return values. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "llvm/Transforms/IPO/DeadArgumentElimination.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/ADT/Statistic.h" |
| 22 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 23 | #include "llvm/IR/Argument.h" |
| 24 | #include "llvm/IR/AttributeMask.h" |
| 25 | #include "llvm/IR/Attributes.h" |
| 26 | #include "llvm/IR/BasicBlock.h" |
| 27 | #include "llvm/IR/Constants.h" |
| 28 | #include "llvm/IR/DIBuilder.h" |
| 29 | #include "llvm/IR/DerivedTypes.h" |
| 30 | #include "llvm/IR/Function.h" |
| 31 | #include "llvm/IR/IRBuilder.h" |
| 32 | #include "llvm/IR/InstrTypes.h" |
| 33 | #include "llvm/IR/Instructions.h" |
| 34 | #include "llvm/IR/IntrinsicInst.h" |
| 35 | #include "llvm/IR/Intrinsics.h" |
| 36 | #include "llvm/IR/Module.h" |
| 37 | #include "llvm/IR/NoFolder.h" |
| 38 | #include "llvm/IR/PassManager.h" |
| 39 | #include "llvm/IR/Type.h" |
| 40 | #include "llvm/IR/Use.h" |
| 41 | #include "llvm/IR/User.h" |
| 42 | #include "llvm/IR/Value.h" |
| 43 | #include "llvm/InitializePasses.h" |
| 44 | #include "llvm/Pass.h" |
| 45 | #include "llvm/Support/Casting.h" |
| 46 | #include "llvm/Support/Debug.h" |
| 47 | #include "llvm/Support/raw_ostream.h" |
| 48 | #include "llvm/Transforms/IPO.h" |
| 49 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 50 | #include <cassert> |
| 51 | #include <utility> |
| 52 | #include <vector> |
| 53 | |
| 54 | using namespace llvm; |
| 55 | |
| 56 | #define DEBUG_TYPE "deadargelim" |
| 57 | |
| 58 | STATISTIC(NumArgumentsEliminated, "Number of unread args removed" ); |
| 59 | STATISTIC(NumRetValsEliminated, "Number of unused return values removed" ); |
| 60 | STATISTIC(NumArgumentsReplacedWithPoison, |
| 61 | "Number of unread args replaced with poison" ); |
| 62 | |
| 63 | namespace { |
| 64 | |
| 65 | /// The dead argument elimination pass. |
| 66 | class DAE : public ModulePass { |
| 67 | protected: |
| 68 | // DAH uses this to specify a different ID. |
| 69 | explicit DAE(char &ID) : ModulePass(ID) {} |
| 70 | |
| 71 | public: |
| 72 | static char ID; // Pass identification, replacement for typeid |
| 73 | |
| 74 | DAE() : ModulePass(ID) { |
| 75 | initializeDAEPass(*PassRegistry::getPassRegistry()); |
| 76 | } |
| 77 | |
| 78 | bool runOnModule(Module &M) override { |
| 79 | if (skipModule(M)) |
| 80 | return false; |
| 81 | DeadArgumentEliminationPass DAEP(shouldHackArguments()); |
| 82 | ModuleAnalysisManager DummyMAM; |
| 83 | PreservedAnalyses PA = DAEP.run(M, DummyMAM); |
| 84 | return !PA.areAllPreserved(); |
| 85 | } |
| 86 | |
| 87 | virtual bool shouldHackArguments() const { return false; } |
| 88 | }; |
| 89 | |
| 90 | } // end anonymous namespace |
| 91 | |
| 92 | char DAE::ID = 0; |
| 93 | |
| 94 | INITIALIZE_PASS(DAE, "deadargelim" , "Dead Argument Elimination" , false, false) |
| 95 | |
| 96 | namespace { |
| 97 | |
| 98 | /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes |
| 99 | /// arguments to functions which are external. This is only for use by bugpoint. |
| 100 | struct DAH : public DAE { |
| 101 | static char ID; |
| 102 | |
| 103 | DAH() : DAE(ID) {} |
| 104 | |
| 105 | bool shouldHackArguments() const override { return true; } |
| 106 | }; |
| 107 | |
| 108 | } // end anonymous namespace |
| 109 | |
| 110 | char DAH::ID = 0; |
| 111 | |
| 112 | INITIALIZE_PASS(DAH, "deadarghaX0r" , |
| 113 | "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)" , false, |
| 114 | false) |
| 115 | |
| 116 | /// This pass removes arguments from functions which are not used by the body of |
| 117 | /// the function. |
| 118 | ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } |
| 119 | |
| 120 | ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } |
| 121 | |
| 122 | /// If this is an function that takes a ... list, and if llvm.vastart is never |
| 123 | /// called, the varargs list is dead for the function. |
| 124 | bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) { |
| 125 | assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!" ); |
| 126 | if (F.isDeclaration() || !F.hasLocalLinkage()) |
| 127 | return false; |
| 128 | |
| 129 | // Ensure that the function is only directly called. |
| 130 | if (F.hasAddressTaken()) |
| 131 | return false; |
| 132 | |
| 133 | // Don't touch naked functions. The assembly might be using an argument, or |
| 134 | // otherwise rely on the frame layout in a way that this analysis will not |
| 135 | // see. |
| 136 | if (F.hasFnAttribute(Kind: Attribute::Naked)) { |
| 137 | return false; |
| 138 | } |
| 139 | |
| 140 | // Okay, we know we can transform this function if safe. Scan its body |
| 141 | // looking for calls marked musttail or calls to llvm.vastart. |
| 142 | for (BasicBlock &BB : F) { |
| 143 | for (Instruction &I : BB) { |
| 144 | CallInst *CI = dyn_cast<CallInst>(Val: &I); |
| 145 | if (!CI) |
| 146 | continue; |
| 147 | if (CI->isMustTailCall()) |
| 148 | return false; |
| 149 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: CI)) { |
| 150 | if (II->getIntrinsicID() == Intrinsic::vastart) |
| 151 | return false; |
| 152 | } |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | // If we get here, there are no calls to llvm.vastart in the function body, |
| 157 | // remove the "..." and adjust all the calls. |
| 158 | |
| 159 | // Start by computing a new prototype for the function, which is the same as |
| 160 | // the old function, but doesn't have isVarArg set. |
| 161 | FunctionType *FTy = F.getFunctionType(); |
| 162 | |
| 163 | std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); |
| 164 | FunctionType *NFTy = FunctionType::get(Result: FTy->getReturnType(), Params, isVarArg: false); |
| 165 | unsigned NumArgs = Params.size(); |
| 166 | |
| 167 | // Create the new function body and insert it into the module... |
| 168 | Function *NF = Function::Create(Ty: NFTy, Linkage: F.getLinkage(), AddrSpace: F.getAddressSpace()); |
| 169 | NF->copyAttributesFrom(Src: &F); |
| 170 | NF->setComdat(F.getComdat()); |
| 171 | F.getParent()->getFunctionList().insert(where: F.getIterator(), New: NF); |
| 172 | NF->takeName(V: &F); |
| 173 | |
| 174 | // Loop over all the callers of the function, transforming the call sites |
| 175 | // to pass in a smaller number of arguments into the new function. |
| 176 | // |
| 177 | std::vector<Value *> Args; |
| 178 | for (User *U : llvm::make_early_inc_range(Range: F.users())) { |
| 179 | CallBase *CB = dyn_cast<CallBase>(Val: U); |
| 180 | if (!CB) |
| 181 | continue; |
| 182 | |
| 183 | // Pass all the same arguments. |
| 184 | Args.assign(first: CB->arg_begin(), last: CB->arg_begin() + NumArgs); |
| 185 | |
| 186 | // Drop any attributes that were on the vararg arguments. |
| 187 | AttributeList PAL = CB->getAttributes(); |
| 188 | if (!PAL.isEmpty()) { |
| 189 | SmallVector<AttributeSet, 8> ArgAttrs; |
| 190 | for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) |
| 191 | ArgAttrs.push_back(Elt: PAL.getParamAttrs(ArgNo)); |
| 192 | PAL = AttributeList::get(C&: F.getContext(), FnAttrs: PAL.getFnAttrs(), |
| 193 | RetAttrs: PAL.getRetAttrs(), ArgAttrs); |
| 194 | } |
| 195 | |
| 196 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 197 | CB->getOperandBundlesAsDefs(Defs&: OpBundles); |
| 198 | |
| 199 | CallBase *NewCB = nullptr; |
| 200 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: CB)) { |
| 201 | NewCB = InvokeInst::Create(Func: NF, IfNormal: II->getNormalDest(), IfException: II->getUnwindDest(), |
| 202 | Args, Bundles: OpBundles, NameStr: "" , InsertBefore: CB->getIterator()); |
| 203 | } else { |
| 204 | NewCB = CallInst::Create(Func: NF, Args, Bundles: OpBundles, NameStr: "" , InsertBefore: CB->getIterator()); |
| 205 | cast<CallInst>(Val: NewCB)->setTailCallKind( |
| 206 | cast<CallInst>(Val: CB)->getTailCallKind()); |
| 207 | } |
| 208 | NewCB->setCallingConv(CB->getCallingConv()); |
| 209 | NewCB->setAttributes(PAL); |
| 210 | NewCB->copyMetadata(SrcInst: *CB, WL: {LLVMContext::MD_prof, LLVMContext::MD_dbg}); |
| 211 | |
| 212 | Args.clear(); |
| 213 | |
| 214 | if (!CB->use_empty()) |
| 215 | CB->replaceAllUsesWith(V: NewCB); |
| 216 | |
| 217 | NewCB->takeName(V: CB); |
| 218 | |
| 219 | // Finally, remove the old call from the program, reducing the use-count of |
| 220 | // F. |
| 221 | CB->eraseFromParent(); |
| 222 | } |
| 223 | |
| 224 | // Since we have now created the new function, splice the body of the old |
| 225 | // function right into the new function, leaving the old rotting hulk of the |
| 226 | // function empty. |
| 227 | NF->splice(ToIt: NF->begin(), FromF: &F); |
| 228 | |
| 229 | // Loop over the argument list, transferring uses of the old arguments over to |
| 230 | // the new arguments, also transferring over the names as well. While we're |
| 231 | // at it, remove the dead arguments from the DeadArguments list. |
| 232 | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(), |
| 233 | I2 = NF->arg_begin(); |
| 234 | I != E; ++I, ++I2) { |
| 235 | // Move the name and users over to the new version. |
| 236 | I->replaceAllUsesWith(V: &*I2); |
| 237 | I2->takeName(V: &*I); |
| 238 | } |
| 239 | |
| 240 | // Clone metadata from the old function, including debug info descriptor. |
| 241 | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; |
| 242 | F.getAllMetadata(MDs); |
| 243 | for (auto [KindID, Node] : MDs) |
| 244 | NF->addMetadata(KindID, MD&: *Node); |
| 245 | |
| 246 | // Fix up any BlockAddresses that refer to the function. |
| 247 | F.replaceAllUsesWith(V: NF); |
| 248 | // Delete the bitcast that we just created, so that NF does not |
| 249 | // appear to be address-taken. |
| 250 | NF->removeDeadConstantUsers(); |
| 251 | // Finally, nuke the old function. |
| 252 | F.eraseFromParent(); |
| 253 | return true; |
| 254 | } |
| 255 | |
| 256 | /// Checks if the given function has any arguments that are unused, and changes |
| 257 | /// the caller parameters to be poison instead. |
| 258 | bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) { |
| 259 | // We cannot change the arguments if this TU does not define the function or |
| 260 | // if the linker may choose a function body from another TU, even if the |
| 261 | // nominal linkage indicates that other copies of the function have the same |
| 262 | // semantics. In the below example, the dead load from %p may not have been |
| 263 | // eliminated from the linker-chosen copy of f, so replacing %p with poison |
| 264 | // in callers may introduce undefined behavior. |
| 265 | // |
| 266 | // define linkonce_odr void @f(i32* %p) { |
| 267 | // %v = load i32 %p |
| 268 | // ret void |
| 269 | // } |
| 270 | if (!F.hasExactDefinition()) |
| 271 | return false; |
| 272 | |
| 273 | // Functions with local linkage should already have been handled, except if |
| 274 | // they are fully alive (e.g., called indirectly) and except for the fragile |
| 275 | // (variadic) ones. In these cases, we may still be able to improve their |
| 276 | // statically known call sites. |
| 277 | if ((F.hasLocalLinkage() && !FrozenFunctions.count(x: &F)) && |
| 278 | !F.getFunctionType()->isVarArg()) |
| 279 | return false; |
| 280 | |
| 281 | // Don't touch naked functions. The assembly might be using an argument, or |
| 282 | // otherwise rely on the frame layout in a way that this analysis will not |
| 283 | // see. |
| 284 | if (F.hasFnAttribute(Kind: Attribute::Naked)) |
| 285 | return false; |
| 286 | |
| 287 | if (F.use_empty()) |
| 288 | return false; |
| 289 | |
| 290 | SmallVector<unsigned, 8> UnusedArgs; |
| 291 | bool Changed = false; |
| 292 | |
| 293 | AttributeMask UBImplyingAttributes = |
| 294 | AttributeFuncs::getUBImplyingAttributes(); |
| 295 | for (Argument &Arg : F.args()) { |
| 296 | if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && |
| 297 | !Arg.hasPassPointeeByValueCopyAttr()) { |
| 298 | if (Arg.isUsedByMetadata()) { |
| 299 | Arg.replaceAllUsesWith(V: PoisonValue::get(T: Arg.getType())); |
| 300 | Changed = true; |
| 301 | } |
| 302 | UnusedArgs.push_back(Elt: Arg.getArgNo()); |
| 303 | F.removeParamAttrs(ArgNo: Arg.getArgNo(), Attrs: UBImplyingAttributes); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | if (UnusedArgs.empty()) |
| 308 | return false; |
| 309 | |
| 310 | for (Use &U : F.uses()) { |
| 311 | CallBase *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 312 | if (!CB || !CB->isCallee(U: &U) || |
| 313 | CB->getFunctionType() != F.getFunctionType()) |
| 314 | continue; |
| 315 | |
| 316 | // Now go through all unused args and replace them with poison. |
| 317 | for (unsigned ArgNo : UnusedArgs) { |
| 318 | Value *Arg = CB->getArgOperand(i: ArgNo); |
| 319 | CB->setArgOperand(i: ArgNo, v: PoisonValue::get(T: Arg->getType())); |
| 320 | CB->removeParamAttrs(ArgNo, AttrsToRemove: UBImplyingAttributes); |
| 321 | |
| 322 | ++NumArgumentsReplacedWithPoison; |
| 323 | Changed = true; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | return Changed; |
| 328 | } |
| 329 | |
| 330 | /// Convenience function that returns the number of return values. It returns 0 |
| 331 | /// for void functions and 1 for functions not returning a struct. It returns |
| 332 | /// the number of struct elements for functions returning a struct. |
| 333 | static unsigned numRetVals(const Function *F) { |
| 334 | Type *RetTy = F->getReturnType(); |
| 335 | if (RetTy->isVoidTy()) |
| 336 | return 0; |
| 337 | if (StructType *STy = dyn_cast<StructType>(Val: RetTy)) |
| 338 | return STy->getNumElements(); |
| 339 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: RetTy)) |
| 340 | return ATy->getNumElements(); |
| 341 | return 1; |
| 342 | } |
| 343 | |
| 344 | /// Returns the sub-type a function will return at a given Idx. Should |
| 345 | /// correspond to the result type of an ExtractValue instruction executed with |
| 346 | /// just that one Idx (i.e. only top-level structure is considered). |
| 347 | static Type *getRetComponentType(const Function *F, unsigned Idx) { |
| 348 | Type *RetTy = F->getReturnType(); |
| 349 | assert(!RetTy->isVoidTy() && "void type has no subtype" ); |
| 350 | |
| 351 | if (StructType *STy = dyn_cast<StructType>(Val: RetTy)) |
| 352 | return STy->getElementType(N: Idx); |
| 353 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: RetTy)) |
| 354 | return ATy->getElementType(); |
| 355 | return RetTy; |
| 356 | } |
| 357 | |
| 358 | /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to |
| 359 | /// the MaybeLiveUses argument. Returns the determined liveness of Use. |
| 360 | DeadArgumentEliminationPass::Liveness |
| 361 | DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use, |
| 362 | UseVector &MaybeLiveUses) { |
| 363 | // We're live if our use or its Function is already marked as live. |
| 364 | if (isLive(RA: Use)) |
| 365 | return Live; |
| 366 | |
| 367 | // We're maybe live otherwise, but remember that we must become live if |
| 368 | // Use becomes live. |
| 369 | MaybeLiveUses.push_back(Elt: Use); |
| 370 | return MaybeLive; |
| 371 | } |
| 372 | |
| 373 | /// Looks at a single use of an argument or return value and determines if it |
| 374 | /// should be alive or not. Adds this use to MaybeLiveUses if it causes the |
| 375 | /// used value to become MaybeLive. |
| 376 | /// |
| 377 | /// RetValNum is the return value number to use when this use is used in a |
| 378 | /// return instruction. This is used in the recursion, you should always leave |
| 379 | /// it at 0. |
| 380 | DeadArgumentEliminationPass::Liveness |
| 381 | DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses, |
| 382 | unsigned RetValNum) { |
| 383 | const User *V = U->getUser(); |
| 384 | if (const ReturnInst *RI = dyn_cast<ReturnInst>(Val: V)) { |
| 385 | // The value is returned from a function. It's only live when the |
| 386 | // function's return value is live. We use RetValNum here, for the case |
| 387 | // that U is really a use of an insertvalue instruction that uses the |
| 388 | // original Use. |
| 389 | const Function *F = RI->getParent()->getParent(); |
| 390 | if (RetValNum != -1U) { |
| 391 | RetOrArg Use = createRet(F, Idx: RetValNum); |
| 392 | // We might be live, depending on the liveness of Use. |
| 393 | return markIfNotLive(Use, MaybeLiveUses); |
| 394 | } |
| 395 | |
| 396 | DeadArgumentEliminationPass::Liveness Result = MaybeLive; |
| 397 | for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) { |
| 398 | RetOrArg Use = createRet(F, Idx: Ri); |
| 399 | // We might be live, depending on the liveness of Use. If any |
| 400 | // sub-value is live, then the entire value is considered live. This |
| 401 | // is a conservative choice, and better tracking is possible. |
| 402 | DeadArgumentEliminationPass::Liveness SubResult = |
| 403 | markIfNotLive(Use, MaybeLiveUses); |
| 404 | if (Result != Live) |
| 405 | Result = SubResult; |
| 406 | } |
| 407 | return Result; |
| 408 | } |
| 409 | |
| 410 | if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(Val: V)) { |
| 411 | if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() && |
| 412 | IV->hasIndices()) |
| 413 | // The use we are examining is inserted into an aggregate. Our liveness |
| 414 | // depends on all uses of that aggregate, but if it is used as a return |
| 415 | // value, only index at which we were inserted counts. |
| 416 | RetValNum = *IV->idx_begin(); |
| 417 | |
| 418 | // Note that if we are used as the aggregate operand to the insertvalue, |
| 419 | // we don't change RetValNum, but do survey all our uses. |
| 420 | |
| 421 | Liveness Result = MaybeLive; |
| 422 | for (const Use &UU : IV->uses()) { |
| 423 | Result = surveyUse(U: &UU, MaybeLiveUses, RetValNum); |
| 424 | if (Result == Live) |
| 425 | break; |
| 426 | } |
| 427 | return Result; |
| 428 | } |
| 429 | |
| 430 | if (const auto *CB = dyn_cast<CallBase>(Val: V)) { |
| 431 | const Function *F = CB->getCalledFunction(); |
| 432 | if (F) { |
| 433 | // Used in a direct call. |
| 434 | |
| 435 | // The function argument is live if it is used as a bundle operand. |
| 436 | if (CB->isBundleOperand(U)) |
| 437 | return Live; |
| 438 | |
| 439 | // Find the argument number. We know for sure that this use is an |
| 440 | // argument, since if it was the function argument this would be an |
| 441 | // indirect call and that we know can't be looking at a value of the |
| 442 | // label type (for the invoke instruction). |
| 443 | unsigned ArgNo = CB->getArgOperandNo(U); |
| 444 | |
| 445 | if (ArgNo >= F->getFunctionType()->getNumParams()) |
| 446 | // The value is passed in through a vararg! Must be live. |
| 447 | return Live; |
| 448 | |
| 449 | assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) && |
| 450 | "Argument is not where we expected it" ); |
| 451 | |
| 452 | // Value passed to a normal call. It's only live when the corresponding |
| 453 | // argument to the called function turns out live. |
| 454 | RetOrArg Use = createArg(F, Idx: ArgNo); |
| 455 | return markIfNotLive(Use, MaybeLiveUses); |
| 456 | } |
| 457 | } |
| 458 | // Used in any other way? Value must be live. |
| 459 | return Live; |
| 460 | } |
| 461 | |
| 462 | /// Looks at all the uses of the given value |
| 463 | /// Returns the Liveness deduced from the uses of this value. |
| 464 | /// |
| 465 | /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If |
| 466 | /// the result is Live, MaybeLiveUses might be modified but its content should |
| 467 | /// be ignored (since it might not be complete). |
| 468 | DeadArgumentEliminationPass::Liveness |
| 469 | DeadArgumentEliminationPass::surveyUses(const Value *V, |
| 470 | UseVector &MaybeLiveUses) { |
| 471 | // Assume it's dead (which will only hold if there are no uses at all..). |
| 472 | Liveness Result = MaybeLive; |
| 473 | // Check each use. |
| 474 | for (const Use &U : V->uses()) { |
| 475 | Result = surveyUse(U: &U, MaybeLiveUses); |
| 476 | if (Result == Live) |
| 477 | break; |
| 478 | } |
| 479 | return Result; |
| 480 | } |
| 481 | |
| 482 | /// Performs the initial survey of the specified function, checking out whether |
| 483 | /// it uses any of its incoming arguments or whether any callers use the return |
| 484 | /// value. This fills in the LiveValues set and Uses map. |
| 485 | /// |
| 486 | /// We consider arguments of non-internal functions to be intrinsically alive as |
| 487 | /// well as arguments to functions which have their "address taken". |
| 488 | void DeadArgumentEliminationPass::surveyFunction(const Function &F) { |
| 489 | // Functions with inalloca/preallocated parameters are expecting args in a |
| 490 | // particular register and memory layout. |
| 491 | if (F.getAttributes().hasAttrSomewhere(Kind: Attribute::InAlloca) || |
| 492 | F.getAttributes().hasAttrSomewhere(Kind: Attribute::Preallocated)) { |
| 493 | markFrozen(F); |
| 494 | return; |
| 495 | } |
| 496 | |
| 497 | // Don't touch naked functions. The assembly might be using an argument, or |
| 498 | // otherwise rely on the frame layout in a way that this analysis will not |
| 499 | // see. |
| 500 | if (F.hasFnAttribute(Kind: Attribute::Naked)) { |
| 501 | markFrozen(F); |
| 502 | return; |
| 503 | } |
| 504 | |
| 505 | unsigned RetCount = numRetVals(F: &F); |
| 506 | |
| 507 | // Assume all return values are dead |
| 508 | using RetVals = SmallVector<Liveness, 5>; |
| 509 | |
| 510 | RetVals RetValLiveness(RetCount, MaybeLive); |
| 511 | |
| 512 | using RetUses = SmallVector<UseVector, 5>; |
| 513 | |
| 514 | // These vectors map each return value to the uses that make it MaybeLive, so |
| 515 | // we can add those to the Uses map if the return value really turns out to be |
| 516 | // MaybeLive. Initialized to a list of RetCount empty lists. |
| 517 | RetUses MaybeLiveRetUses(RetCount); |
| 518 | |
| 519 | for (const BasicBlock &BB : F) { |
| 520 | if (BB.getTerminatingMustTailCall()) { |
| 521 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() |
| 522 | << " has musttail calls\n" ); |
| 523 | if (markFnOrRetTyFrozenOnMusttail(F)) |
| 524 | return; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { |
| 529 | markFrozen(F); |
| 530 | return; |
| 531 | } |
| 532 | |
| 533 | LLVM_DEBUG( |
| 534 | dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " |
| 535 | << F.getName() << "\n" ); |
| 536 | // Keep track of the number of live retvals, so we can skip checks once all |
| 537 | // of them turn out to be live. |
| 538 | unsigned NumLiveRetVals = 0; |
| 539 | |
| 540 | // Loop all uses of the function. |
| 541 | for (const Use &U : F.uses()) { |
| 542 | // If the function is PASSED IN as an argument, its address has been |
| 543 | // taken. |
| 544 | const auto *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 545 | if (!CB || !CB->isCallee(U: &U) || |
| 546 | CB->getFunctionType() != F.getFunctionType()) { |
| 547 | markFrozen(F); |
| 548 | return; |
| 549 | } |
| 550 | |
| 551 | if (CB->isMustTailCall()) { |
| 552 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() |
| 553 | << " has musttail callers\n" ); |
| 554 | if (markFnOrRetTyFrozenOnMusttail(F)) |
| 555 | return; |
| 556 | } |
| 557 | |
| 558 | // If we end up here, we are looking at a direct call to our function. |
| 559 | |
| 560 | // Now, check how our return value(s) is/are used in this caller. Don't |
| 561 | // bother checking return values if all of them are live already. |
| 562 | if (NumLiveRetVals == RetCount) |
| 563 | continue; |
| 564 | |
| 565 | // Check all uses of the return value. |
| 566 | for (const Use &UU : CB->uses()) { |
| 567 | if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(Val: UU.getUser())) { |
| 568 | // This use uses a part of our return value, survey the uses of |
| 569 | // that part and store the results for this index only. |
| 570 | unsigned Idx = *Ext->idx_begin(); |
| 571 | if (RetValLiveness[Idx] != Live) { |
| 572 | RetValLiveness[Idx] = surveyUses(V: Ext, MaybeLiveUses&: MaybeLiveRetUses[Idx]); |
| 573 | if (RetValLiveness[Idx] == Live) |
| 574 | NumLiveRetVals++; |
| 575 | } |
| 576 | } else { |
| 577 | // Used by something else than extractvalue. Survey, but assume that the |
| 578 | // result applies to all sub-values. |
| 579 | UseVector MaybeLiveAggregateUses; |
| 580 | if (surveyUse(U: &UU, MaybeLiveUses&: MaybeLiveAggregateUses) == Live) { |
| 581 | NumLiveRetVals = RetCount; |
| 582 | RetValLiveness.assign(NumElts: RetCount, Elt: Live); |
| 583 | break; |
| 584 | } |
| 585 | |
| 586 | for (unsigned Ri = 0; Ri != RetCount; ++Ri) { |
| 587 | if (RetValLiveness[Ri] != Live) |
| 588 | MaybeLiveRetUses[Ri].append(in_start: MaybeLiveAggregateUses.begin(), |
| 589 | in_end: MaybeLiveAggregateUses.end()); |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | // Now we've inspected all callers, record the liveness of our return values. |
| 596 | for (unsigned Ri = 0; Ri != RetCount; ++Ri) |
| 597 | markValue(RA: createRet(F: &F, Idx: Ri), L: RetValLiveness[Ri], MaybeLiveUses: MaybeLiveRetUses[Ri]); |
| 598 | |
| 599 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " |
| 600 | << F.getName() << "\n" ); |
| 601 | |
| 602 | // Now, check all of our arguments. |
| 603 | unsigned ArgI = 0; |
| 604 | UseVector MaybeLiveArgUses; |
| 605 | for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); |
| 606 | AI != E; ++AI, ++ArgI) { |
| 607 | Liveness Result; |
| 608 | if (F.getFunctionType()->isVarArg()) { |
| 609 | // Variadic functions will already have a va_arg function expanded inside |
| 610 | // them, making them potentially very sensitive to ABI changes resulting |
| 611 | // from removing arguments entirely, so don't. For example AArch64 handles |
| 612 | // register and stack HFAs very differently, and this is reflected in the |
| 613 | // IR which has already been generated. |
| 614 | Result = Live; |
| 615 | } else { |
| 616 | // See what the effect of this use is (recording any uses that cause |
| 617 | // MaybeLive in MaybeLiveArgUses). |
| 618 | Result = surveyUses(V: &*AI, MaybeLiveUses&: MaybeLiveArgUses); |
| 619 | } |
| 620 | |
| 621 | // Mark the result. |
| 622 | markValue(RA: createArg(F: &F, Idx: ArgI), L: Result, MaybeLiveUses: MaybeLiveArgUses); |
| 623 | // Clear the vector again for the next iteration. |
| 624 | MaybeLiveArgUses.clear(); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes |
| 629 | /// all uses in MaybeLiveUses and records them in Uses, such that RA will be |
| 630 | /// marked live if any use in MaybeLiveUses gets marked live later on. |
| 631 | void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L, |
| 632 | const UseVector &MaybeLiveUses) { |
| 633 | switch (L) { |
| 634 | case Live: |
| 635 | markLive(RA); |
| 636 | break; |
| 637 | case MaybeLive: |
| 638 | assert(!isLive(RA) && "Use is already live!" ); |
| 639 | for (const auto &MaybeLiveUse : MaybeLiveUses) { |
| 640 | if (isLive(RA: MaybeLiveUse)) { |
| 641 | // A use is live, so this value is live. |
| 642 | markLive(RA); |
| 643 | break; |
| 644 | } |
| 645 | // Note any uses of this value, so this value can be |
| 646 | // marked live whenever one of the uses becomes live. |
| 647 | Uses.emplace(args: MaybeLiveUse, args: RA); |
| 648 | } |
| 649 | break; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | /// Return true if we freeze the whole function. |
| 654 | /// If the calling convention is not swifttailcc or tailcc, the caller and |
| 655 | /// callee of musttail must have exactly the same signature. Otherwise we |
| 656 | /// only needs to guarantee they have the same return type. |
| 657 | bool DeadArgumentEliminationPass::markFnOrRetTyFrozenOnMusttail( |
| 658 | const Function &F) { |
| 659 | if (F.getCallingConv() != CallingConv::SwiftTail || |
| 660 | F.getCallingConv() != CallingConv::Tail) { |
| 661 | markFrozen(F); |
| 662 | return true; |
| 663 | } else { |
| 664 | markRetTyFrozen(F); |
| 665 | return false; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | /// Mark the given Function as alive, meaning that it cannot be changed in any |
| 670 | /// way. Additionally, mark any values that are used as this function's |
| 671 | /// parameters or by its return values (according to Uses) live as well. |
| 672 | void DeadArgumentEliminationPass::markFrozen(const Function &F) { |
| 673 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - frozen fn: " |
| 674 | << F.getName() << "\n" ); |
| 675 | // Mark the function as frozen. |
| 676 | FrozenFunctions.insert(x: &F); |
| 677 | // Mark all arguments as live. |
| 678 | for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI) |
| 679 | propagateLiveness(RA: createArg(F: &F, Idx: ArgI)); |
| 680 | // Mark all return values as live. |
| 681 | for (unsigned Ri = 0, E = numRetVals(F: &F); Ri != E; ++Ri) |
| 682 | propagateLiveness(RA: createRet(F: &F, Idx: Ri)); |
| 683 | } |
| 684 | |
| 685 | void DeadArgumentEliminationPass::markRetTyFrozen(const Function &F) { |
| 686 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - frozen return type fn: " |
| 687 | << F.getName() << "\n" ); |
| 688 | FrozenRetTyFunctions.insert(x: &F); |
| 689 | } |
| 690 | |
| 691 | /// Mark the given return value or argument as live. Additionally, mark any |
| 692 | /// values that are used by this value (according to Uses) live as well. |
| 693 | void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) { |
| 694 | if (isLive(RA)) |
| 695 | return; // Already marked Live. |
| 696 | |
| 697 | LiveValues.insert(x: RA); |
| 698 | |
| 699 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " |
| 700 | << RA.getDescription() << " live\n" ); |
| 701 | propagateLiveness(RA); |
| 702 | } |
| 703 | |
| 704 | bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) { |
| 705 | return FrozenFunctions.count(x: RA.F) || LiveValues.count(x: RA); |
| 706 | } |
| 707 | |
| 708 | /// Given that RA is a live value, propagate it's liveness to any other values |
| 709 | /// it uses (according to Uses). |
| 710 | void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) { |
| 711 | // We don't use upper_bound (or equal_range) here, because our recursive call |
| 712 | // to ourselves is likely to cause the upper_bound (which is the first value |
| 713 | // not belonging to RA) to become erased and the iterator invalidated. |
| 714 | UseMap::iterator Begin = Uses.lower_bound(x: RA); |
| 715 | UseMap::iterator E = Uses.end(); |
| 716 | UseMap::iterator I; |
| 717 | for (I = Begin; I != E && I->first == RA; ++I) |
| 718 | markLive(RA: I->second); |
| 719 | |
| 720 | // Erase RA from the Uses map (from the lower bound to wherever we ended up |
| 721 | // after the loop). |
| 722 | Uses.erase(first: Begin, last: I); |
| 723 | } |
| 724 | |
| 725 | /// Remove any arguments and return values from F that are not in LiveValues. |
| 726 | /// Transform the function and all the callees of the function to not have these |
| 727 | /// arguments and return values. |
| 728 | bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) { |
| 729 | // Don't modify frozen functions |
| 730 | if (FrozenFunctions.count(x: F)) |
| 731 | return false; |
| 732 | |
| 733 | // Start by computing a new prototype for the function, which is the same as |
| 734 | // the old function, but has fewer arguments and a different return type. |
| 735 | FunctionType *FTy = F->getFunctionType(); |
| 736 | std::vector<Type *> Params; |
| 737 | |
| 738 | // Keep track of if we have a live 'returned' argument |
| 739 | bool HasLiveReturnedArg = false; |
| 740 | |
| 741 | // Set up to build a new list of parameter attributes. |
| 742 | SmallVector<AttributeSet, 8> ArgAttrVec; |
| 743 | const AttributeList &PAL = F->getAttributes(); |
| 744 | OptimizationRemarkEmitter ORE(F); |
| 745 | |
| 746 | // Remember which arguments are still alive. |
| 747 | SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); |
| 748 | // Construct the new parameter list from non-dead arguments. Also construct |
| 749 | // a new set of parameter attributes to correspond. Skip the first parameter |
| 750 | // attribute, since that belongs to the return value. |
| 751 | unsigned ArgI = 0; |
| 752 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; |
| 753 | ++I, ++ArgI) { |
| 754 | RetOrArg Arg = createArg(F, Idx: ArgI); |
| 755 | if (LiveValues.erase(x: Arg)) { |
| 756 | Params.push_back(x: I->getType()); |
| 757 | ArgAlive[ArgI] = true; |
| 758 | ArgAttrVec.push_back(Elt: PAL.getParamAttrs(ArgNo: ArgI)); |
| 759 | HasLiveReturnedArg |= PAL.hasParamAttr(ArgNo: ArgI, Kind: Attribute::Returned); |
| 760 | } else { |
| 761 | ++NumArgumentsEliminated; |
| 762 | |
| 763 | ORE.emit(RemarkBuilder: [&]() { |
| 764 | return OptimizationRemark(DEBUG_TYPE, "ArgumentRemoved" , F) |
| 765 | << "eliminating argument " << ore::NV("ArgName" , I->getName()) |
| 766 | << "(" << ore::NV("ArgIndex" , ArgI) << ")" ; |
| 767 | }); |
| 768 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " |
| 769 | << ArgI << " (" << I->getName() << ") from " |
| 770 | << F->getName() << "\n" ); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | // Find out the new return value. |
| 775 | Type *RetTy = FTy->getReturnType(); |
| 776 | Type *NRetTy = nullptr; |
| 777 | unsigned RetCount = numRetVals(F); |
| 778 | |
| 779 | // -1 means unused, other numbers are the new index |
| 780 | SmallVector<int, 5> NewRetIdxs(RetCount, -1); |
| 781 | std::vector<Type *> RetTypes; |
| 782 | |
| 783 | // If there is a function with a live 'returned' argument but a dead return |
| 784 | // value, then there are two possible actions: |
| 785 | // 1) Eliminate the return value and take off the 'returned' attribute on the |
| 786 | // argument. |
| 787 | // 2) Retain the 'returned' attribute and treat the return value (but not the |
| 788 | // entire function) as live so that it is not eliminated. |
| 789 | // |
| 790 | // It's not clear in the general case which option is more profitable because, |
| 791 | // even in the absence of explicit uses of the return value, code generation |
| 792 | // is free to use the 'returned' attribute to do things like eliding |
| 793 | // save/restores of registers across calls. Whether this happens is target and |
| 794 | // ABI-specific as well as depending on the amount of register pressure, so |
| 795 | // there's no good way for an IR-level pass to figure this out. |
| 796 | // |
| 797 | // Fortunately, the only places where 'returned' is currently generated by |
| 798 | // the FE are places where 'returned' is basically free and almost always a |
| 799 | // performance win, so the second option can just be used always for now. |
| 800 | // |
| 801 | // This should be revisited if 'returned' is ever applied more liberally. |
| 802 | if (RetTy->isVoidTy() || HasLiveReturnedArg || |
| 803 | FrozenRetTyFunctions.count(x: F)) { |
| 804 | NRetTy = RetTy; |
| 805 | } else { |
| 806 | // Look at each of the original return values individually. |
| 807 | for (unsigned Ri = 0; Ri != RetCount; ++Ri) { |
| 808 | RetOrArg Ret = createRet(F, Idx: Ri); |
| 809 | if (LiveValues.erase(x: Ret)) { |
| 810 | RetTypes.push_back(x: getRetComponentType(F, Idx: Ri)); |
| 811 | NewRetIdxs[Ri] = RetTypes.size() - 1; |
| 812 | } else { |
| 813 | ++NumRetValsEliminated; |
| 814 | |
| 815 | ORE.emit(RemarkBuilder: [&]() { |
| 816 | return OptimizationRemark(DEBUG_TYPE, "ReturnValueRemoved" , F) |
| 817 | << "removing return value " << std::to_string(val: Ri); |
| 818 | }); |
| 819 | LLVM_DEBUG( |
| 820 | dbgs() << "DeadArgumentEliminationPass - Removing return value " |
| 821 | << Ri << " from " << F->getName() << "\n" ); |
| 822 | } |
| 823 | } |
| 824 | if (RetTypes.size() > 1) { |
| 825 | // More than one return type? Reduce it down to size. |
| 826 | if (StructType *STy = dyn_cast<StructType>(Val: RetTy)) { |
| 827 | // Make the new struct packed if we used to return a packed struct |
| 828 | // already. |
| 829 | NRetTy = StructType::get(Context&: STy->getContext(), Elements: RetTypes, isPacked: STy->isPacked()); |
| 830 | } else { |
| 831 | assert(isa<ArrayType>(RetTy) && "unexpected multi-value return" ); |
| 832 | NRetTy = ArrayType::get(ElementType: RetTypes[0], NumElements: RetTypes.size()); |
| 833 | } |
| 834 | } else if (RetTypes.size() == 1) |
| 835 | // One return type? Just a simple value then, but only if we didn't use to |
| 836 | // return a struct with that simple value before. |
| 837 | NRetTy = RetTypes.front(); |
| 838 | else if (RetTypes.empty()) |
| 839 | // No return types? Make it void, but only if we didn't use to return {}. |
| 840 | NRetTy = Type::getVoidTy(C&: F->getContext()); |
| 841 | } |
| 842 | |
| 843 | assert(NRetTy && "No new return type found?" ); |
| 844 | |
| 845 | // The existing function return attributes. |
| 846 | AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs()); |
| 847 | |
| 848 | // Remove any incompatible attributes, but only if we removed all return |
| 849 | // values. Otherwise, ensure that we don't have any conflicting attributes |
| 850 | // here. Currently, this should not be possible, but special handling might be |
| 851 | // required when new return value attributes are added. |
| 852 | if (NRetTy->isVoidTy()) |
| 853 | RAttrs.remove(AM: AttributeFuncs::typeIncompatible(Ty: NRetTy, AS: PAL.getRetAttrs())); |
| 854 | else |
| 855 | assert(!RAttrs.overlaps( |
| 856 | AttributeFuncs::typeIncompatible(NRetTy, PAL.getRetAttrs())) && |
| 857 | "Return attributes no longer compatible?" ); |
| 858 | |
| 859 | AttributeSet RetAttrs = AttributeSet::get(C&: F->getContext(), B: RAttrs); |
| 860 | |
| 861 | // Strip allocsize attributes. They might refer to the deleted arguments. |
| 862 | AttributeSet FnAttrs = |
| 863 | PAL.getFnAttrs().removeAttribute(C&: F->getContext(), Kind: Attribute::AllocSize); |
| 864 | |
| 865 | // Reconstruct the AttributesList based on the vector we constructed. |
| 866 | assert(ArgAttrVec.size() == Params.size()); |
| 867 | AttributeList NewPAL = |
| 868 | AttributeList::get(C&: F->getContext(), FnAttrs, RetAttrs, ArgAttrs: ArgAttrVec); |
| 869 | |
| 870 | // Create the new function type based on the recomputed parameters. |
| 871 | FunctionType *NFTy = FunctionType::get(Result: NRetTy, Params, isVarArg: FTy->isVarArg()); |
| 872 | |
| 873 | // No change? |
| 874 | if (NFTy == FTy) |
| 875 | return false; |
| 876 | |
| 877 | // Create the new function body and insert it into the module... |
| 878 | Function *NF = Function::Create(Ty: NFTy, Linkage: F->getLinkage(), AddrSpace: F->getAddressSpace()); |
| 879 | NF->copyAttributesFrom(Src: F); |
| 880 | NF->setComdat(F->getComdat()); |
| 881 | NF->setAttributes(NewPAL); |
| 882 | // Insert the new function before the old function, so we won't be processing |
| 883 | // it again. |
| 884 | F->getParent()->getFunctionList().insert(where: F->getIterator(), New: NF); |
| 885 | NF->takeName(V: F); |
| 886 | |
| 887 | // Loop over all the callers of the function, transforming the call sites to |
| 888 | // pass in a smaller number of arguments into the new function. |
| 889 | std::vector<Value *> Args; |
| 890 | while (!F->use_empty()) { |
| 891 | CallBase &CB = cast<CallBase>(Val&: *F->user_back()); |
| 892 | |
| 893 | ArgAttrVec.clear(); |
| 894 | const AttributeList &CallPAL = CB.getAttributes(); |
| 895 | |
| 896 | // Adjust the call return attributes in case the function was changed to |
| 897 | // return void. |
| 898 | AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs()); |
| 899 | RAttrs.remove( |
| 900 | AM: AttributeFuncs::typeIncompatible(Ty: NRetTy, AS: CallPAL.getRetAttrs())); |
| 901 | AttributeSet RetAttrs = AttributeSet::get(C&: F->getContext(), B: RAttrs); |
| 902 | |
| 903 | // Declare these outside of the loops, so we can reuse them for the second |
| 904 | // loop, which loops the varargs. |
| 905 | auto *I = CB.arg_begin(); |
| 906 | unsigned Pi = 0; |
| 907 | // Loop over those operands, corresponding to the normal arguments to the |
| 908 | // original function, and add those that are still alive. |
| 909 | for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi) |
| 910 | if (ArgAlive[Pi]) { |
| 911 | Args.push_back(x: *I); |
| 912 | // Get original parameter attributes, but skip return attributes. |
| 913 | AttributeSet Attrs = CallPAL.getParamAttrs(ArgNo: Pi); |
| 914 | if (NRetTy != RetTy && Attrs.hasAttribute(Kind: Attribute::Returned)) { |
| 915 | // If the return type has changed, then get rid of 'returned' on the |
| 916 | // call site. The alternative is to make all 'returned' attributes on |
| 917 | // call sites keep the return value alive just like 'returned' |
| 918 | // attributes on function declaration, but it's less clearly a win and |
| 919 | // this is not an expected case anyway |
| 920 | ArgAttrVec.push_back(Elt: AttributeSet::get( |
| 921 | C&: F->getContext(), B: AttrBuilder(F->getContext(), Attrs) |
| 922 | .removeAttribute(Val: Attribute::Returned))); |
| 923 | } else { |
| 924 | // Otherwise, use the original attributes. |
| 925 | ArgAttrVec.push_back(Elt: Attrs); |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | // Push any varargs arguments on the list. Don't forget their attributes. |
| 930 | for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) { |
| 931 | Args.push_back(x: *I); |
| 932 | ArgAttrVec.push_back(Elt: CallPAL.getParamAttrs(ArgNo: Pi)); |
| 933 | } |
| 934 | |
| 935 | // Reconstruct the AttributesList based on the vector we constructed. |
| 936 | assert(ArgAttrVec.size() == Args.size()); |
| 937 | |
| 938 | // Again, be sure to remove any allocsize attributes, since their indices |
| 939 | // may now be incorrect. |
| 940 | AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute( |
| 941 | C&: F->getContext(), Kind: Attribute::AllocSize); |
| 942 | |
| 943 | AttributeList NewCallPAL = |
| 944 | AttributeList::get(C&: F->getContext(), FnAttrs, RetAttrs, ArgAttrs: ArgAttrVec); |
| 945 | |
| 946 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 947 | CB.getOperandBundlesAsDefs(Defs&: OpBundles); |
| 948 | |
| 949 | CallBase *NewCB = nullptr; |
| 950 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &CB)) { |
| 951 | NewCB = InvokeInst::Create(Func: NF, IfNormal: II->getNormalDest(), IfException: II->getUnwindDest(), |
| 952 | Args, Bundles: OpBundles, NameStr: "" , InsertBefore: CB.getParent()); |
| 953 | } else { |
| 954 | NewCB = CallInst::Create(Ty: NFTy, Func: NF, Args, Bundles: OpBundles, NameStr: "" , InsertBefore: CB.getIterator()); |
| 955 | cast<CallInst>(Val: NewCB)->setTailCallKind( |
| 956 | cast<CallInst>(Val: &CB)->getTailCallKind()); |
| 957 | } |
| 958 | NewCB->setCallingConv(CB.getCallingConv()); |
| 959 | NewCB->setAttributes(NewCallPAL); |
| 960 | NewCB->copyMetadata(SrcInst: CB, WL: {LLVMContext::MD_prof, LLVMContext::MD_dbg}); |
| 961 | Args.clear(); |
| 962 | ArgAttrVec.clear(); |
| 963 | |
| 964 | if (!CB.use_empty() || CB.isUsedByMetadata()) { |
| 965 | if (NewCB->getType() == CB.getType()) { |
| 966 | // Return type not changed? Just replace users then. |
| 967 | CB.replaceAllUsesWith(V: NewCB); |
| 968 | NewCB->takeName(V: &CB); |
| 969 | } else if (NewCB->getType()->isVoidTy()) { |
| 970 | // If the return value is dead, replace any uses of it with poison |
| 971 | // (any non-debug value uses will get removed later on). |
| 972 | CB.replaceAllUsesWith(V: PoisonValue::get(T: CB.getType())); |
| 973 | } else { |
| 974 | assert((RetTy->isStructTy() || RetTy->isArrayTy()) && |
| 975 | "Return type changed, but not into a void. The old return type" |
| 976 | " must have been a struct or an array!" ); |
| 977 | Instruction *InsertPt = &CB; |
| 978 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &CB)) { |
| 979 | BasicBlock *NewEdge = |
| 980 | SplitEdge(From: NewCB->getParent(), To: II->getNormalDest()); |
| 981 | InsertPt = &*NewEdge->getFirstInsertionPt(); |
| 982 | } |
| 983 | |
| 984 | // We used to return a struct or array. Instead of doing smart stuff |
| 985 | // with all the uses, we will just rebuild it using extract/insertvalue |
| 986 | // chaining and let instcombine clean that up. |
| 987 | // |
| 988 | // Start out building up our return value from poison |
| 989 | Value *RetVal = PoisonValue::get(T: RetTy); |
| 990 | for (unsigned Ri = 0; Ri != RetCount; ++Ri) |
| 991 | if (NewRetIdxs[Ri] != -1) { |
| 992 | Value *V; |
| 993 | IRBuilder<NoFolder> IRB(InsertPt); |
| 994 | if (RetTypes.size() > 1) |
| 995 | // We are still returning a struct, so extract the value from our |
| 996 | // return value |
| 997 | V = IRB.CreateExtractValue(Agg: NewCB, Idxs: NewRetIdxs[Ri], Name: "newret" ); |
| 998 | else |
| 999 | // We are now returning a single element, so just insert that |
| 1000 | V = NewCB; |
| 1001 | // Insert the value at the old position |
| 1002 | RetVal = IRB.CreateInsertValue(Agg: RetVal, Val: V, Idxs: Ri, Name: "oldret" ); |
| 1003 | } |
| 1004 | // Now, replace all uses of the old call instruction with the return |
| 1005 | // struct we built |
| 1006 | CB.replaceAllUsesWith(V: RetVal); |
| 1007 | NewCB->takeName(V: &CB); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | // Finally, remove the old call from the program, reducing the use-count of |
| 1012 | // F. |
| 1013 | CB.eraseFromParent(); |
| 1014 | } |
| 1015 | |
| 1016 | // Since we have now created the new function, splice the body of the old |
| 1017 | // function right into the new function, leaving the old rotting hulk of the |
| 1018 | // function empty. |
| 1019 | NF->splice(ToIt: NF->begin(), FromF: F); |
| 1020 | |
| 1021 | // Loop over the argument list, transferring uses of the old arguments over to |
| 1022 | // the new arguments, also transferring over the names as well. |
| 1023 | ArgI = 0; |
| 1024 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), |
| 1025 | I2 = NF->arg_begin(); |
| 1026 | I != E; ++I, ++ArgI) |
| 1027 | if (ArgAlive[ArgI]) { |
| 1028 | // If this is a live argument, move the name and users over to the new |
| 1029 | // version. |
| 1030 | I->replaceAllUsesWith(V: &*I2); |
| 1031 | I2->takeName(V: &*I); |
| 1032 | ++I2; |
| 1033 | } else { |
| 1034 | // If this argument is dead, replace any uses of it with poison |
| 1035 | // (any non-debug value uses will get removed later on). |
| 1036 | I->replaceAllUsesWith(V: PoisonValue::get(T: I->getType())); |
| 1037 | } |
| 1038 | |
| 1039 | // If we change the return value of the function we must rewrite any return |
| 1040 | // instructions. Check this now. |
| 1041 | if (F->getReturnType() != NF->getReturnType()) |
| 1042 | for (BasicBlock &BB : *NF) |
| 1043 | if (ReturnInst *RI = dyn_cast<ReturnInst>(Val: BB.getTerminator())) { |
| 1044 | IRBuilder<NoFolder> IRB(RI); |
| 1045 | Value *RetVal = nullptr; |
| 1046 | |
| 1047 | if (!NFTy->getReturnType()->isVoidTy()) { |
| 1048 | assert(RetTy->isStructTy() || RetTy->isArrayTy()); |
| 1049 | // The original return value was a struct or array, insert |
| 1050 | // extractvalue/insertvalue chains to extract only the values we need |
| 1051 | // to return and insert them into our new result. |
| 1052 | // This does generate messy code, but we'll let it to instcombine to |
| 1053 | // clean that up. |
| 1054 | Value *OldRet = RI->getOperand(i_nocapture: 0); |
| 1055 | // Start out building up our return value from poison |
| 1056 | RetVal = PoisonValue::get(T: NRetTy); |
| 1057 | for (unsigned RetI = 0; RetI != RetCount; ++RetI) |
| 1058 | if (NewRetIdxs[RetI] != -1) { |
| 1059 | Value *EV = IRB.CreateExtractValue(Agg: OldRet, Idxs: RetI, Name: "oldret" ); |
| 1060 | |
| 1061 | if (RetTypes.size() > 1) { |
| 1062 | // We're still returning a struct, so reinsert the value into |
| 1063 | // our new return value at the new index |
| 1064 | |
| 1065 | RetVal = IRB.CreateInsertValue(Agg: RetVal, Val: EV, Idxs: NewRetIdxs[RetI], |
| 1066 | Name: "newret" ); |
| 1067 | } else { |
| 1068 | // We are now only returning a simple value, so just return the |
| 1069 | // extracted value. |
| 1070 | RetVal = EV; |
| 1071 | } |
| 1072 | } |
| 1073 | } |
| 1074 | // Replace the return instruction with one returning the new return |
| 1075 | // value (possibly 0 if we became void). |
| 1076 | auto *NewRet = |
| 1077 | ReturnInst::Create(C&: F->getContext(), retVal: RetVal, InsertBefore: RI->getIterator()); |
| 1078 | NewRet->setDebugLoc(RI->getDebugLoc()); |
| 1079 | RI->eraseFromParent(); |
| 1080 | } |
| 1081 | |
| 1082 | // Clone metadata from the old function, including debug info descriptor. |
| 1083 | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; |
| 1084 | F->getAllMetadata(MDs); |
| 1085 | for (auto [KindID, Node] : MDs) |
| 1086 | NF->addMetadata(KindID, MD&: *Node); |
| 1087 | |
| 1088 | // If either the return value(s) or argument(s) are removed, then probably the |
| 1089 | // function does not follow standard calling conventions anymore. Hence, add |
| 1090 | // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe |
| 1091 | // to call this function or try to interpret the return value. |
| 1092 | if (NFTy != FTy && NF->getSubprogram()) { |
| 1093 | DISubprogram *SP = NF->getSubprogram(); |
| 1094 | auto Temp = SP->getType()->cloneWithCC(CC: llvm::dwarf::DW_CC_nocall); |
| 1095 | SP->replaceType(Ty: MDNode::replaceWithPermanent(N: std::move(Temp))); |
| 1096 | } |
| 1097 | |
| 1098 | // Now that the old function is dead, delete it. |
| 1099 | F->eraseFromParent(); |
| 1100 | |
| 1101 | return true; |
| 1102 | } |
| 1103 | |
| 1104 | PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, |
| 1105 | ModuleAnalysisManager &) { |
| 1106 | bool Changed = false; |
| 1107 | |
| 1108 | // First pass: Do a simple check to see if any functions can have their "..." |
| 1109 | // removed. We can do this if they never call va_start. This loop cannot be |
| 1110 | // fused with the next loop, because deleting a function invalidates |
| 1111 | // information computed while surveying other functions. |
| 1112 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n" ); |
| 1113 | for (Function &F : llvm::make_early_inc_range(Range&: M)) |
| 1114 | if (F.getFunctionType()->isVarArg()) |
| 1115 | Changed |= deleteDeadVarargs(F); |
| 1116 | |
| 1117 | // Second phase: Loop through the module, determining which arguments are |
| 1118 | // live. We assume all arguments are dead unless proven otherwise (allowing us |
| 1119 | // to determine that dead arguments passed into recursive functions are dead). |
| 1120 | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n" ); |
| 1121 | for (auto &F : M) |
| 1122 | surveyFunction(F); |
| 1123 | |
| 1124 | // Now, remove all dead arguments and return values from each function in |
| 1125 | // turn. We use make_early_inc_range here because functions will probably get |
| 1126 | // removed (i.e. replaced by new ones). |
| 1127 | for (Function &F : llvm::make_early_inc_range(Range&: M)) |
| 1128 | Changed |= removeDeadStuffFromFunction(F: &F); |
| 1129 | |
| 1130 | // Finally, look for any unused parameters in functions with non-local |
| 1131 | // linkage and replace the passed in parameters with poison. |
| 1132 | for (auto &F : M) |
| 1133 | Changed |= removeDeadArgumentsFromCallers(F); |
| 1134 | |
| 1135 | if (!Changed) |
| 1136 | return PreservedAnalyses::all(); |
| 1137 | return PreservedAnalyses::none(); |
| 1138 | } |
| 1139 | |