| 1 | //===- Inliner.cpp - Code common to all inliners --------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the mechanics required to implement inlining without |
| 10 | // missing any calls and updating the call graph. The decisions of which calls |
| 11 | // are profitable to inline are implemented elsewhere. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/IPO/Inliner.h" |
| 16 | #include "llvm/ADT/PriorityWorklist.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/ADT/ScopeExit.h" |
| 19 | #include "llvm/ADT/SetVector.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/ADT/StringExtras.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/Analysis/AssumptionCache.h" |
| 26 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 27 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 28 | #include "llvm/Analysis/CGSCCPassManager.h" |
| 29 | #include "llvm/Analysis/EphemeralValuesCache.h" |
| 30 | #include "llvm/Analysis/InlineAdvisor.h" |
| 31 | #include "llvm/Analysis/InlineCost.h" |
| 32 | #include "llvm/Analysis/LazyCallGraph.h" |
| 33 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 34 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 35 | #include "llvm/Analysis/ReplayInlineAdvisor.h" |
| 36 | #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" |
| 37 | #include "llvm/IR/Attributes.h" |
| 38 | #include "llvm/IR/BasicBlock.h" |
| 39 | #include "llvm/IR/DebugLoc.h" |
| 40 | #include "llvm/IR/DerivedTypes.h" |
| 41 | #include "llvm/IR/DiagnosticInfo.h" |
| 42 | #include "llvm/IR/Function.h" |
| 43 | #include "llvm/IR/InstIterator.h" |
| 44 | #include "llvm/IR/Instruction.h" |
| 45 | #include "llvm/IR/Instructions.h" |
| 46 | #include "llvm/IR/IntrinsicInst.h" |
| 47 | #include "llvm/IR/Metadata.h" |
| 48 | #include "llvm/IR/Module.h" |
| 49 | #include "llvm/IR/PassManager.h" |
| 50 | #include "llvm/IR/Value.h" |
| 51 | #include "llvm/Pass.h" |
| 52 | #include "llvm/Support/Casting.h" |
| 53 | #include "llvm/Support/CommandLine.h" |
| 54 | #include "llvm/Support/Debug.h" |
| 55 | #include "llvm/Support/raw_ostream.h" |
| 56 | #include "llvm/Transforms/Utils/CallPromotionUtils.h" |
| 57 | #include "llvm/Transforms/Utils/Cloning.h" |
| 58 | #include "llvm/Transforms/Utils/Local.h" |
| 59 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 60 | #include <algorithm> |
| 61 | #include <cassert> |
| 62 | #include <utility> |
| 63 | |
| 64 | using namespace llvm; |
| 65 | |
| 66 | #define DEBUG_TYPE "inline" |
| 67 | |
| 68 | STATISTIC(NumInlined, "Number of functions inlined" ); |
| 69 | STATISTIC(NumDeleted, "Number of functions deleted because all callers found" ); |
| 70 | |
| 71 | static cl::opt<int> IntraSCCCostMultiplier( |
| 72 | "intra-scc-cost-multiplier" , cl::init(Val: 2), cl::Hidden, |
| 73 | cl::desc( |
| 74 | "Cost multiplier to multiply onto inlined call sites where the " |
| 75 | "new call was previously an intra-SCC call (not relevant when the " |
| 76 | "original call was already intra-SCC). This can accumulate over " |
| 77 | "multiple inlinings (e.g. if a call site already had a cost " |
| 78 | "multiplier and one of its inlined calls was also subject to " |
| 79 | "this, the inlined call would have the original multiplier " |
| 80 | "multiplied by intra-scc-cost-multiplier). This is to prevent tons of " |
| 81 | "inlining through a child SCC which can cause terrible compile times" )); |
| 82 | |
| 83 | /// A flag for test, so we can print the content of the advisor when running it |
| 84 | /// as part of the default (e.g. -O3) pipeline. |
| 85 | static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing" , |
| 86 | cl::init(Val: false), cl::Hidden); |
| 87 | |
| 88 | /// Allows printing the contents of the advisor after each SCC inliner pass. |
| 89 | static cl::opt<bool> |
| 90 | EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing" , |
| 91 | cl::init(Val: false), cl::Hidden); |
| 92 | |
| 93 | |
| 94 | static cl::opt<std::string> CGSCCInlineReplayFile( |
| 95 | "cgscc-inline-replay" , cl::init(Val: "" ), cl::value_desc("filename" ), |
| 96 | cl::desc( |
| 97 | "Optimization remarks file containing inline remarks to be replayed " |
| 98 | "by cgscc inlining." ), |
| 99 | cl::Hidden); |
| 100 | |
| 101 | static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope( |
| 102 | "cgscc-inline-replay-scope" , |
| 103 | cl::init(Val: ReplayInlinerSettings::Scope::Function), |
| 104 | cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function" , |
| 105 | "Replay on functions that have remarks associated " |
| 106 | "with them (default)" ), |
| 107 | clEnumValN(ReplayInlinerSettings::Scope::Module, "Module" , |
| 108 | "Replay on the entire module" )), |
| 109 | cl::desc("Whether inline replay should be applied to the entire " |
| 110 | "Module or just the Functions (default) that are present as " |
| 111 | "callers in remarks during cgscc inlining." ), |
| 112 | cl::Hidden); |
| 113 | |
| 114 | static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback( |
| 115 | "cgscc-inline-replay-fallback" , |
| 116 | cl::init(Val: ReplayInlinerSettings::Fallback::Original), |
| 117 | cl::values( |
| 118 | clEnumValN( |
| 119 | ReplayInlinerSettings::Fallback::Original, "Original" , |
| 120 | "All decisions not in replay send to original advisor (default)" ), |
| 121 | clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, |
| 122 | "AlwaysInline" , "All decisions not in replay are inlined" ), |
| 123 | clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline" , |
| 124 | "All decisions not in replay are not inlined" )), |
| 125 | cl::desc( |
| 126 | "How cgscc inline replay treats sites that don't come from the replay. " |
| 127 | "Original: defers to original advisor, AlwaysInline: inline all sites " |
| 128 | "not in replay, NeverInline: inline no sites not in replay" ), |
| 129 | cl::Hidden); |
| 130 | |
| 131 | static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat( |
| 132 | "cgscc-inline-replay-format" , |
| 133 | cl::init(Val: CallSiteFormat::Format::LineColumnDiscriminator), |
| 134 | cl::values( |
| 135 | clEnumValN(CallSiteFormat::Format::Line, "Line" , "<Line Number>" ), |
| 136 | clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn" , |
| 137 | "<Line Number>:<Column Number>" ), |
| 138 | clEnumValN(CallSiteFormat::Format::LineDiscriminator, |
| 139 | "LineDiscriminator" , "<Line Number>.<Discriminator>" ), |
| 140 | clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, |
| 141 | "LineColumnDiscriminator" , |
| 142 | "<Line Number>:<Column Number>.<Discriminator> (default)" )), |
| 143 | cl::desc("How cgscc inline replay file is formatted" ), cl::Hidden); |
| 144 | |
| 145 | /// Return true if the specified inline history ID |
| 146 | /// indicates an inline history that includes the specified function. |
| 147 | static bool inlineHistoryIncludes( |
| 148 | Function *F, int InlineHistoryID, |
| 149 | const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { |
| 150 | while (InlineHistoryID != -1) { |
| 151 | assert(unsigned(InlineHistoryID) < InlineHistory.size() && |
| 152 | "Invalid inline history ID" ); |
| 153 | if (InlineHistory[InlineHistoryID].first == F) |
| 154 | return true; |
| 155 | InlineHistoryID = InlineHistory[InlineHistoryID].second; |
| 156 | } |
| 157 | return false; |
| 158 | } |
| 159 | |
| 160 | InlineAdvisor & |
| 161 | InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, |
| 162 | FunctionAnalysisManager &FAM, Module &M) { |
| 163 | if (OwnedAdvisor) |
| 164 | return *OwnedAdvisor; |
| 165 | |
| 166 | auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(IR&: M); |
| 167 | if (!IAA) { |
| 168 | // It should still be possible to run the inliner as a stand-alone SCC pass, |
| 169 | // for test scenarios. In that case, we default to the |
| 170 | // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass |
| 171 | // runs. It also uses just the default InlineParams. |
| 172 | // In this case, we need to use the provided FAM, which is valid for the |
| 173 | // duration of the inliner pass, and thus the lifetime of the owned advisor. |
| 174 | // The one we would get from the MAM can be invalidated as a result of the |
| 175 | // inliner's activity. |
| 176 | OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>( |
| 177 | args&: M, args&: FAM, args: getInlineParams(), |
| 178 | args: InlineContext{.LTOPhase: LTOPhase, .Pass: InlinePass::CGSCCInliner}); |
| 179 | |
| 180 | if (!CGSCCInlineReplayFile.empty()) |
| 181 | OwnedAdvisor = getReplayInlineAdvisor( |
| 182 | M, FAM, Context&: M.getContext(), OriginalAdvisor: std::move(OwnedAdvisor), |
| 183 | ReplaySettings: ReplayInlinerSettings{.ReplayFile: CGSCCInlineReplayFile, |
| 184 | .ReplayScope: CGSCCInlineReplayScope, |
| 185 | .ReplayFallback: CGSCCInlineReplayFallback, |
| 186 | .ReplayFormat: {.OutputFormat: CGSCCInlineReplayFormat}}, |
| 187 | /*EmitRemarks=*/true, |
| 188 | IC: InlineContext{.LTOPhase: LTOPhase, .Pass: InlinePass::ReplayCGSCCInliner}); |
| 189 | |
| 190 | return *OwnedAdvisor; |
| 191 | } |
| 192 | assert(IAA->getAdvisor() && |
| 193 | "Expected a present InlineAdvisorAnalysis also have an " |
| 194 | "InlineAdvisor initialized" ); |
| 195 | return *IAA->getAdvisor(); |
| 196 | } |
| 197 | |
| 198 | void makeFunctionBodyUnreachable(Function &F) { |
| 199 | F.dropAllReferences(); |
| 200 | for (BasicBlock &BB : make_early_inc_range(Range&: F)) |
| 201 | BB.eraseFromParent(); |
| 202 | BasicBlock *BB = BasicBlock::Create(Context&: F.getContext(), Name: "" , Parent: &F); |
| 203 | new UnreachableInst(F.getContext(), BB); |
| 204 | } |
| 205 | |
| 206 | PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, |
| 207 | CGSCCAnalysisManager &AM, LazyCallGraph &CG, |
| 208 | CGSCCUpdateResult &UR) { |
| 209 | const auto &MAMProxy = |
| 210 | AM.getResult<ModuleAnalysisManagerCGSCCProxy>(IR&: InitialC, ExtraArgs&: CG); |
| 211 | bool Changed = false; |
| 212 | |
| 213 | assert(InitialC.size() > 0 && "Cannot handle an empty SCC!" ); |
| 214 | Module &M = *InitialC.begin()->getFunction().getParent(); |
| 215 | ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: M); |
| 216 | |
| 217 | FunctionAnalysisManager &FAM = |
| 218 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(IR&: InitialC, ExtraArgs&: CG) |
| 219 | .getManager(); |
| 220 | |
| 221 | InlineAdvisor &Advisor = getAdvisor(MAM: MAMProxy, FAM, M); |
| 222 | Advisor.onPassEntry(SCC: &InitialC); |
| 223 | |
| 224 | // We use a single common worklist for calls across the entire SCC. We |
| 225 | // process these in-order and append new calls introduced during inlining to |
| 226 | // the end. The PriorityInlineOrder is optional here, in which the smaller |
| 227 | // callee would have a higher priority to inline. |
| 228 | // |
| 229 | // Note that this particular order of processing is actually critical to |
| 230 | // avoid very bad behaviors. Consider *highly connected* call graphs where |
| 231 | // each function contains a small amount of code and a couple of calls to |
| 232 | // other functions. Because the LLVM inliner is fundamentally a bottom-up |
| 233 | // inliner, it can handle gracefully the fact that these all appear to be |
| 234 | // reasonable inlining candidates as it will flatten things until they become |
| 235 | // too big to inline, and then move on and flatten another batch. |
| 236 | // |
| 237 | // However, when processing call edges *within* an SCC we cannot rely on this |
| 238 | // bottom-up behavior. As a consequence, with heavily connected *SCCs* of |
| 239 | // functions we can end up incrementally inlining N calls into each of |
| 240 | // N functions because each incremental inlining decision looks good and we |
| 241 | // don't have a topological ordering to prevent explosions. |
| 242 | // |
| 243 | // To compensate for this, we don't process transitive edges made immediate |
| 244 | // by inlining until we've done one pass of inlining across the entire SCC. |
| 245 | // Large, highly connected SCCs still lead to some amount of code bloat in |
| 246 | // this model, but it is uniformly spread across all the functions in the SCC |
| 247 | // and eventually they all become too large to inline, rather than |
| 248 | // incrementally maknig a single function grow in a super linear fashion. |
| 249 | SmallVector<std::pair<CallBase *, int>, 16> Calls; |
| 250 | |
| 251 | // Populate the initial list of calls in this SCC. |
| 252 | for (auto &N : InitialC) { |
| 253 | auto &ORE = |
| 254 | FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: N.getFunction()); |
| 255 | // We want to generally process call sites top-down in order for |
| 256 | // simplifications stemming from replacing the call with the returned value |
| 257 | // after inlining to be visible to subsequent inlining decisions. |
| 258 | // FIXME: Using instructions sequence is a really bad way to do this. |
| 259 | // Instead we should do an actual RPO walk of the function body. |
| 260 | for (Instruction &I : instructions(F&: N.getFunction())) |
| 261 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
| 262 | if (Function *Callee = CB->getCalledFunction()) { |
| 263 | if (!Callee->isDeclaration()) |
| 264 | Calls.push_back(Elt: {CB, -1}); |
| 265 | else if (!isa<IntrinsicInst>(Val: I)) { |
| 266 | using namespace ore; |
| 267 | setInlineRemark(CB&: *CB, Message: "unavailable definition" ); |
| 268 | ORE.emit(RemarkBuilder: [&]() { |
| 269 | return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition" , &I) |
| 270 | << NV("Callee" , Callee) << " will not be inlined into " |
| 271 | << NV("Caller" , CB->getCaller()) |
| 272 | << " because its definition is unavailable" |
| 273 | << setIsVerbose(); |
| 274 | }); |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | // Capture updatable variable for the current SCC. |
| 280 | auto *C = &InitialC; |
| 281 | |
| 282 | auto AdvisorOnExit = make_scope_exit(F: [&] { Advisor.onPassExit(SCC: C); }); |
| 283 | |
| 284 | if (Calls.empty()) |
| 285 | return PreservedAnalyses::all(); |
| 286 | |
| 287 | // When inlining a callee produces new call sites, we want to keep track of |
| 288 | // the fact that they were inlined from the callee. This allows us to avoid |
| 289 | // infinite inlining in some obscure cases. To represent this, we use an |
| 290 | // index into the InlineHistory vector. |
| 291 | SmallVector<std::pair<Function *, int>, 16> InlineHistory; |
| 292 | |
| 293 | // Track a set vector of inlined callees so that we can augment the caller |
| 294 | // with all of their edges in the call graph before pruning out the ones that |
| 295 | // got simplified away. |
| 296 | SmallSetVector<Function *, 4> InlinedCallees; |
| 297 | |
| 298 | // Track the dead functions to delete once finished with inlining calls. We |
| 299 | // defer deleting these to make it easier to handle the call graph updates. |
| 300 | SmallVector<Function *, 4> DeadFunctions; |
| 301 | |
| 302 | // Track potentially dead non-local functions with comdats to see if they can |
| 303 | // be deleted as a batch after inlining. |
| 304 | SmallVector<Function *, 4> DeadFunctionsInComdats; |
| 305 | |
| 306 | // Loop forward over all of the calls. Note that we cannot cache the size as |
| 307 | // inlining can introduce new calls that need to be processed. |
| 308 | for (int I = 0; I < (int)Calls.size(); ++I) { |
| 309 | // We expect the calls to typically be batched with sequences of calls that |
| 310 | // have the same caller, so we first set up some shared infrastructure for |
| 311 | // this caller. We also do any pruning we can at this layer on the caller |
| 312 | // alone. |
| 313 | Function &F = *Calls[I].first->getCaller(); |
| 314 | LazyCallGraph::Node &N = *CG.lookup(F); |
| 315 | if (CG.lookupSCC(N) != C) |
| 316 | continue; |
| 317 | |
| 318 | LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" |
| 319 | << " Function size: " << F.getInstructionCount() |
| 320 | << "\n" ); |
| 321 | |
| 322 | auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| 323 | return FAM.getResult<AssumptionAnalysis>(IR&: F); |
| 324 | }; |
| 325 | |
| 326 | // Now process as many calls as we have within this caller in the sequence. |
| 327 | // We bail out as soon as the caller has to change so we can update the |
| 328 | // call graph and prepare the context of that new caller. |
| 329 | bool DidInline = false; |
| 330 | for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) { |
| 331 | auto &P = Calls[I]; |
| 332 | CallBase *CB = P.first; |
| 333 | const int InlineHistoryID = P.second; |
| 334 | Function &Callee = *CB->getCalledFunction(); |
| 335 | |
| 336 | if (InlineHistoryID != -1 && |
| 337 | inlineHistoryIncludes(F: &Callee, InlineHistoryID, InlineHistory)) { |
| 338 | LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName() |
| 339 | << " -> " << Callee.getName() << "\n" ); |
| 340 | setInlineRemark(CB&: *CB, Message: "recursive" ); |
| 341 | // Set noinline so that we don't forget this decision across CGSCC |
| 342 | // iterations. |
| 343 | CB->setIsNoInline(); |
| 344 | continue; |
| 345 | } |
| 346 | |
| 347 | // Check if this inlining may repeat breaking an SCC apart that has |
| 348 | // already been split once before. In that case, inlining here may |
| 349 | // trigger infinite inlining, much like is prevented within the inliner |
| 350 | // itself by the InlineHistory above, but spread across CGSCC iterations |
| 351 | // and thus hidden from the full inline history. |
| 352 | LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(N&: *CG.lookup(F: Callee)); |
| 353 | if (CalleeSCC == C && UR.InlinedInternalEdges.count(V: {&N, C})) { |
| 354 | LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " |
| 355 | "previously split out of this SCC by inlining: " |
| 356 | << F.getName() << " -> " << Callee.getName() << "\n" ); |
| 357 | setInlineRemark(CB&: *CB, Message: "recursive SCC split" ); |
| 358 | continue; |
| 359 | } |
| 360 | |
| 361 | std::unique_ptr<InlineAdvice> Advice = |
| 362 | Advisor.getAdvice(CB&: *CB, MandatoryOnly: OnlyMandatory); |
| 363 | |
| 364 | // Check whether we want to inline this callsite. |
| 365 | if (!Advice) |
| 366 | continue; |
| 367 | |
| 368 | if (!Advice->isInliningRecommended()) { |
| 369 | Advice->recordUnattemptedInlining(); |
| 370 | continue; |
| 371 | } |
| 372 | |
| 373 | int CBCostMult = |
| 374 | getStringFnAttrAsInt( |
| 375 | CB&: *CB, AttrKind: InlineConstants::FunctionInlineCostMultiplierAttributeName) |
| 376 | .value_or(u: 1); |
| 377 | |
| 378 | // Setup the data structure used to plumb customization into the |
| 379 | // `InlineFunction` routine. |
| 380 | InlineFunctionInfo IFI( |
| 381 | GetAssumptionCache, PSI, |
| 382 | &FAM.getResult<BlockFrequencyAnalysis>(IR&: *(CB->getCaller())), |
| 383 | &FAM.getResult<BlockFrequencyAnalysis>(IR&: Callee)); |
| 384 | |
| 385 | InlineResult IR = InlineFunction( |
| 386 | CB&: *CB, IFI, /*MergeAttributes=*/true, |
| 387 | CalleeAAR: &FAM.getResult<AAManager>(IR&: *CB->getCaller()), InsertLifetime: true, ForwardVarArgsTo: nullptr, |
| 388 | ORE: &FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *CB->getCaller())); |
| 389 | if (!IR.isSuccess()) { |
| 390 | Advice->recordUnsuccessfulInlining(Result: IR); |
| 391 | continue; |
| 392 | } |
| 393 | // TODO: Shouldn't we be invalidating all analyses on F here? |
| 394 | // The caller was modified, so invalidate Ephemeral Values. |
| 395 | FAM.getResult<EphemeralValuesAnalysis>(IR&: F).clear(); |
| 396 | |
| 397 | DidInline = true; |
| 398 | InlinedCallees.insert(X: &Callee); |
| 399 | ++NumInlined; |
| 400 | |
| 401 | LLVM_DEBUG(dbgs() << " Size after inlining: " |
| 402 | << F.getInstructionCount() << "\n" ); |
| 403 | |
| 404 | // Add any new callsites to defined functions to the worklist. |
| 405 | if (!IFI.InlinedCallSites.empty()) { |
| 406 | int NewHistoryID = InlineHistory.size(); |
| 407 | InlineHistory.push_back(Elt: {&Callee, InlineHistoryID}); |
| 408 | |
| 409 | for (CallBase *ICB : reverse(C&: IFI.InlinedCallSites)) { |
| 410 | Function *NewCallee = ICB->getCalledFunction(); |
| 411 | assert(!(NewCallee && NewCallee->isIntrinsic()) && |
| 412 | "Intrinsic calls should not be tracked." ); |
| 413 | if (!NewCallee) { |
| 414 | // Try to promote an indirect (virtual) call without waiting for |
| 415 | // the post-inline cleanup and the next DevirtSCCRepeatedPass |
| 416 | // iteration because the next iteration may not happen and we may |
| 417 | // miss inlining it. |
| 418 | if (tryPromoteCall(CB&: *ICB)) |
| 419 | NewCallee = ICB->getCalledFunction(); |
| 420 | } |
| 421 | if (NewCallee) { |
| 422 | if (!NewCallee->isDeclaration()) { |
| 423 | Calls.push_back(Elt: {ICB, NewHistoryID}); |
| 424 | // Continually inlining through an SCC can result in huge compile |
| 425 | // times and bloated code since we arbitrarily stop at some point |
| 426 | // when the inliner decides it's not profitable to inline anymore. |
| 427 | // We attempt to mitigate this by making these calls exponentially |
| 428 | // more expensive. |
| 429 | // This doesn't apply to calls in the same SCC since if we do |
| 430 | // inline through the SCC the function will end up being |
| 431 | // self-recursive which the inliner bails out on, and inlining |
| 432 | // within an SCC is necessary for performance. |
| 433 | if (CalleeSCC != C && |
| 434 | CalleeSCC == CG.lookupSCC(N&: CG.get(F&: *NewCallee))) { |
| 435 | Attribute NewCBCostMult = Attribute::get( |
| 436 | Context&: M.getContext(), |
| 437 | Kind: InlineConstants::FunctionInlineCostMultiplierAttributeName, |
| 438 | Val: itostr(X: CBCostMult * IntraSCCCostMultiplier)); |
| 439 | ICB->addFnAttr(Attr: NewCBCostMult); |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | // For local functions or discardable functions without comdats, check |
| 447 | // whether this makes the callee trivially dead. In that case, we can drop |
| 448 | // the body of the function eagerly which may reduce the number of callers |
| 449 | // of other functions to one, changing inline cost thresholds. Non-local |
| 450 | // discardable functions with comdats are checked later on. |
| 451 | bool CalleeWasDeleted = false; |
| 452 | if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() && |
| 453 | !CG.isLibFunction(F&: Callee)) { |
| 454 | if (Callee.hasLocalLinkage() || !Callee.hasComdat()) { |
| 455 | Calls.erase( |
| 456 | CS: std::remove_if(first: Calls.begin() + I + 1, last: Calls.end(), |
| 457 | pred: [&](const std::pair<CallBase *, int> &Call) { |
| 458 | return Call.first->getCaller() == &Callee; |
| 459 | }), |
| 460 | CE: Calls.end()); |
| 461 | |
| 462 | // Clear the body and queue the function itself for call graph |
| 463 | // updating when we finish inlining. |
| 464 | makeFunctionBodyUnreachable(F&: Callee); |
| 465 | assert(!is_contained(DeadFunctions, &Callee) && |
| 466 | "Cannot put cause a function to become dead twice!" ); |
| 467 | DeadFunctions.push_back(Elt: &Callee); |
| 468 | CalleeWasDeleted = true; |
| 469 | } else { |
| 470 | DeadFunctionsInComdats.push_back(Elt: &Callee); |
| 471 | } |
| 472 | } |
| 473 | if (CalleeWasDeleted) |
| 474 | Advice->recordInliningWithCalleeDeleted(); |
| 475 | else |
| 476 | Advice->recordInlining(); |
| 477 | } |
| 478 | |
| 479 | // Back the call index up by one to put us in a good position to go around |
| 480 | // the outer loop. |
| 481 | --I; |
| 482 | |
| 483 | if (!DidInline) |
| 484 | continue; |
| 485 | Changed = true; |
| 486 | |
| 487 | // At this point, since we have made changes we have at least removed |
| 488 | // a call instruction. However, in the process we do some incremental |
| 489 | // simplification of the surrounding code. This simplification can |
| 490 | // essentially do all of the same things as a function pass and we can |
| 491 | // re-use the exact same logic for updating the call graph to reflect the |
| 492 | // change. |
| 493 | |
| 494 | // Inside the update, we also update the FunctionAnalysisManager in the |
| 495 | // proxy for this particular SCC. We do this as the SCC may have changed and |
| 496 | // as we're going to mutate this particular function we want to make sure |
| 497 | // the proxy is in place to forward any invalidation events. |
| 498 | LazyCallGraph::SCC *OldC = C; |
| 499 | C = &updateCGAndAnalysisManagerForCGSCCPass(G&: CG, C&: *C, N, AM, UR, FAM); |
| 500 | LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n" ); |
| 501 | |
| 502 | // If this causes an SCC to split apart into multiple smaller SCCs, there |
| 503 | // is a subtle risk we need to prepare for. Other transformations may |
| 504 | // expose an "infinite inlining" opportunity later, and because of the SCC |
| 505 | // mutation, we will revisit this function and potentially re-inline. If we |
| 506 | // do, and that re-inlining also has the potentially to mutate the SCC |
| 507 | // structure, the infinite inlining problem can manifest through infinite |
| 508 | // SCC splits and merges. To avoid this, we capture the originating caller |
| 509 | // node and the SCC containing the call edge. This is a slight over |
| 510 | // approximation of the possible inlining decisions that must be avoided, |
| 511 | // but is relatively efficient to store. We use C != OldC to know when |
| 512 | // a new SCC is generated and the original SCC may be generated via merge |
| 513 | // in later iterations. |
| 514 | // |
| 515 | // It is also possible that even if no new SCC is generated |
| 516 | // (i.e., C == OldC), the original SCC could be split and then merged |
| 517 | // into the same one as itself. and the original SCC will be added into |
| 518 | // UR.CWorklist again, we want to catch such cases too. |
| 519 | // |
| 520 | // FIXME: This seems like a very heavyweight way of retaining the inline |
| 521 | // history, we should look for a more efficient way of tracking it. |
| 522 | if ((C != OldC || UR.CWorklist.count(key: OldC)) && |
| 523 | llvm::any_of(Range&: InlinedCallees, P: [&](Function *Callee) { |
| 524 | return CG.lookupSCC(N&: *CG.lookup(F: *Callee)) == OldC; |
| 525 | })) { |
| 526 | LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " |
| 527 | "retaining this to avoid infinite inlining.\n" ); |
| 528 | UR.InlinedInternalEdges.insert(V: {&N, OldC}); |
| 529 | } |
| 530 | InlinedCallees.clear(); |
| 531 | |
| 532 | // Invalidate analyses for this function now so that we don't have to |
| 533 | // invalidate analyses for all functions in this SCC later. |
| 534 | FAM.invalidate(IR&: F, PA: PreservedAnalyses::none()); |
| 535 | } |
| 536 | |
| 537 | // We must ensure that we only delete functions with comdats if every function |
| 538 | // in the comdat is going to be deleted. |
| 539 | if (!DeadFunctionsInComdats.empty()) { |
| 540 | filterDeadComdatFunctions(DeadComdatFunctions&: DeadFunctionsInComdats); |
| 541 | for (auto *Callee : DeadFunctionsInComdats) |
| 542 | makeFunctionBodyUnreachable(F&: *Callee); |
| 543 | DeadFunctions.append(RHS: DeadFunctionsInComdats); |
| 544 | } |
| 545 | |
| 546 | // Now that we've finished inlining all of the calls across this SCC, delete |
| 547 | // all of the trivially dead functions, updating the call graph and the CGSCC |
| 548 | // pass manager in the process. |
| 549 | // |
| 550 | // Note that this walks a pointer set which has non-deterministic order but |
| 551 | // that is OK as all we do is delete things and add pointers to unordered |
| 552 | // sets. |
| 553 | for (Function *DeadF : DeadFunctions) { |
| 554 | CG.markDeadFunction(F&: *DeadF); |
| 555 | // Get the necessary information out of the call graph and nuke the |
| 556 | // function there. Also, clear out any cached analyses. |
| 557 | auto &DeadC = *CG.lookupSCC(N&: *CG.lookup(F: *DeadF)); |
| 558 | FAM.clear(IR&: *DeadF, Name: DeadF->getName()); |
| 559 | AM.clear(IR&: DeadC, Name: DeadC.getName()); |
| 560 | |
| 561 | // Mark the relevant parts of the call graph as invalid so we don't visit |
| 562 | // them. |
| 563 | UR.InvalidatedSCCs.insert(Ptr: &DeadC); |
| 564 | |
| 565 | UR.DeadFunctions.push_back(Elt: DeadF); |
| 566 | |
| 567 | ++NumDeleted; |
| 568 | } |
| 569 | |
| 570 | if (!Changed) |
| 571 | return PreservedAnalyses::all(); |
| 572 | |
| 573 | PreservedAnalyses PA; |
| 574 | // Even if we change the IR, we update the core CGSCC data structures and so |
| 575 | // can preserve the proxy to the function analysis manager. |
| 576 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| 577 | // We have already invalidated all analyses on modified functions. |
| 578 | PA.preserveSet<AllAnalysesOn<Function>>(); |
| 579 | return PA; |
| 580 | } |
| 581 | |
| 582 | ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, |
| 583 | bool MandatoryFirst, |
| 584 | InlineContext IC, |
| 585 | InliningAdvisorMode Mode, |
| 586 | unsigned MaxDevirtIterations) |
| 587 | : Params(Params), IC(IC), Mode(Mode), |
| 588 | MaxDevirtIterations(MaxDevirtIterations) { |
| 589 | // Run the inliner first. The theory is that we are walking bottom-up and so |
| 590 | // the callees have already been fully optimized, and we want to inline them |
| 591 | // into the callers so that our optimizations can reflect that. |
| 592 | // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO |
| 593 | // because it makes profile annotation in the backend inaccurate. |
| 594 | if (MandatoryFirst) { |
| 595 | PM.addPass(Pass: InlinerPass(/*OnlyMandatory*/ true)); |
| 596 | if (EnablePostSCCAdvisorPrinting) |
| 597 | PM.addPass(Pass: InlineAdvisorAnalysisPrinterPass(dbgs())); |
| 598 | } |
| 599 | PM.addPass(Pass: InlinerPass()); |
| 600 | if (EnablePostSCCAdvisorPrinting) |
| 601 | PM.addPass(Pass: InlineAdvisorAnalysisPrinterPass(dbgs())); |
| 602 | } |
| 603 | |
| 604 | PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, |
| 605 | ModuleAnalysisManager &MAM) { |
| 606 | auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(IR&: M); |
| 607 | if (!IAA.tryCreate(Params, Mode, |
| 608 | ReplaySettings: {.ReplayFile: CGSCCInlineReplayFile, |
| 609 | .ReplayScope: CGSCCInlineReplayScope, |
| 610 | .ReplayFallback: CGSCCInlineReplayFallback, |
| 611 | .ReplayFormat: {.OutputFormat: CGSCCInlineReplayFormat}}, |
| 612 | IC)) { |
| 613 | M.getContext().emitError( |
| 614 | ErrorStr: "Could not setup Inlining Advisor for the requested " |
| 615 | "mode and/or options" ); |
| 616 | return PreservedAnalyses::all(); |
| 617 | } |
| 618 | |
| 619 | // We wrap the CGSCC pipeline in a devirtualization repeater. This will try |
| 620 | // to detect when we devirtualize indirect calls and iterate the SCC passes |
| 621 | // in that case to try and catch knock-on inlining or function attrs |
| 622 | // opportunities. Then we add it to the module pipeline by walking the SCCs |
| 623 | // in postorder (or bottom-up). |
| 624 | // If MaxDevirtIterations is 0, we just don't use the devirtualization |
| 625 | // wrapper. |
| 626 | if (MaxDevirtIterations == 0) |
| 627 | MPM.addPass(Pass: createModuleToPostOrderCGSCCPassAdaptor(Pass: std::move(PM))); |
| 628 | else |
| 629 | MPM.addPass(Pass: createModuleToPostOrderCGSCCPassAdaptor( |
| 630 | Pass: createDevirtSCCRepeatedPass(Pass: std::move(PM), MaxIterations: MaxDevirtIterations))); |
| 631 | |
| 632 | MPM.addPass(Pass: std::move(AfterCGMPM)); |
| 633 | MPM.run(IR&: M, AM&: MAM); |
| 634 | |
| 635 | // Discard the InlineAdvisor, a subsequent inlining session should construct |
| 636 | // its own. |
| 637 | auto PA = PreservedAnalyses::all(); |
| 638 | if (!KeepAdvisorForPrinting) |
| 639 | PA.abandon<InlineAdvisorAnalysis>(); |
| 640 | return PA; |
| 641 | } |
| 642 | |
| 643 | void InlinerPass::printPipeline( |
| 644 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 645 | static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline( |
| 646 | OS, MapClassName2PassName); |
| 647 | if (OnlyMandatory) |
| 648 | OS << "<only-mandatory>" ; |
| 649 | } |
| 650 | |
| 651 | void ModuleInlinerWrapperPass::printPipeline( |
| 652 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 653 | // Print some info about passes added to the wrapper. This is however |
| 654 | // incomplete as InlineAdvisorAnalysis part isn't included (which also depends |
| 655 | // on Params and Mode). |
| 656 | if (!MPM.isEmpty()) { |
| 657 | MPM.printPipeline(OS, MapClassName2PassName); |
| 658 | OS << ','; |
| 659 | } |
| 660 | OS << "cgscc(" ; |
| 661 | if (MaxDevirtIterations != 0) |
| 662 | OS << "devirt<" << MaxDevirtIterations << ">(" ; |
| 663 | PM.printPipeline(OS, MapClassName2PassName); |
| 664 | if (MaxDevirtIterations != 0) |
| 665 | OS << ')'; |
| 666 | OS << ')'; |
| 667 | } |
| 668 | |