| 1 | //===-- SCCP.cpp ----------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements Interprocedural Sparse Conditional Constant Propagation. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Transforms/IPO/SCCP.h" |
| 14 | #include "llvm/ADT/SetVector.h" |
| 15 | #include "llvm/Analysis/AssumptionCache.h" |
| 16 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 17 | #include "llvm/Analysis/PostDominators.h" |
| 18 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 19 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 20 | #include "llvm/Analysis/ValueLattice.h" |
| 21 | #include "llvm/Analysis/ValueLatticeUtils.h" |
| 22 | #include "llvm/Analysis/ValueTracking.h" |
| 23 | #include "llvm/IR/AttributeMask.h" |
| 24 | #include "llvm/IR/Constants.h" |
| 25 | #include "llvm/IR/DIBuilder.h" |
| 26 | #include "llvm/IR/IntrinsicInst.h" |
| 27 | #include "llvm/Support/CommandLine.h" |
| 28 | #include "llvm/Support/ModRef.h" |
| 29 | #include "llvm/Transforms/IPO.h" |
| 30 | #include "llvm/Transforms/IPO/FunctionSpecialization.h" |
| 31 | #include "llvm/Transforms/Scalar/SCCP.h" |
| 32 | #include "llvm/Transforms/Utils/Local.h" |
| 33 | #include "llvm/Transforms/Utils/SCCPSolver.h" |
| 34 | |
| 35 | using namespace llvm; |
| 36 | |
| 37 | #define DEBUG_TYPE "sccp" |
| 38 | |
| 39 | STATISTIC(NumInstRemoved, "Number of instructions removed" ); |
| 40 | STATISTIC(NumArgsElimed ,"Number of arguments constant propagated" ); |
| 41 | STATISTIC(NumGlobalConst, "Number of globals found to be constant" ); |
| 42 | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable" ); |
| 43 | STATISTIC(NumInstReplaced, |
| 44 | "Number of instructions replaced with (simpler) instruction" ); |
| 45 | |
| 46 | static cl::opt<unsigned> FuncSpecMaxIters( |
| 47 | "funcspec-max-iters" , cl::init(Val: 10), cl::Hidden, cl::desc( |
| 48 | "The maximum number of iterations function specialization is run" )); |
| 49 | |
| 50 | static void findReturnsToZap(Function &F, |
| 51 | SmallVector<ReturnInst *, 8> &ReturnsToZap, |
| 52 | SCCPSolver &Solver) { |
| 53 | // We can only do this if we know that nothing else can call the function. |
| 54 | if (!Solver.isArgumentTrackedFunction(F: &F)) |
| 55 | return; |
| 56 | |
| 57 | if (Solver.mustPreserveReturn(F: &F)) { |
| 58 | LLVM_DEBUG( |
| 59 | dbgs() |
| 60 | << "Can't zap returns of the function : " << F.getName() |
| 61 | << " due to present musttail or \"clang.arc.attachedcall\" call of " |
| 62 | "it\n" ); |
| 63 | return; |
| 64 | } |
| 65 | |
| 66 | assert( |
| 67 | all_of(F.users(), |
| 68 | [&Solver](User *U) { |
| 69 | if (isa<Instruction>(U) && |
| 70 | !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) |
| 71 | return true; |
| 72 | // Non-callsite uses are not impacted by zapping. Also, constant |
| 73 | // uses (like blockaddresses) could stuck around, without being |
| 74 | // used in the underlying IR, meaning we do not have lattice |
| 75 | // values for them. |
| 76 | if (!isa<CallBase>(U)) |
| 77 | return true; |
| 78 | if (U->getType()->isStructTy()) { |
| 79 | return none_of(Solver.getStructLatticeValueFor(U), |
| 80 | SCCPSolver::isOverdefined); |
| 81 | } |
| 82 | |
| 83 | // We don't consider assume-like intrinsics to be actual address |
| 84 | // captures. |
| 85 | if (auto *II = dyn_cast<IntrinsicInst>(U)) { |
| 86 | if (II->isAssumeLikeIntrinsic()) |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); |
| 91 | }) && |
| 92 | "We can only zap functions where all live users have a concrete value" ); |
| 93 | |
| 94 | for (BasicBlock &BB : F) { |
| 95 | if (CallInst *CI = BB.getTerminatingMustTailCall()) { |
| 96 | LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " |
| 97 | << "musttail call : " << *CI << "\n" ); |
| 98 | (void)CI; |
| 99 | return; |
| 100 | } |
| 101 | |
| 102 | if (auto *RI = dyn_cast<ReturnInst>(Val: BB.getTerminator())) |
| 103 | if (!isa<UndefValue>(Val: RI->getOperand(i_nocapture: 0))) |
| 104 | ReturnsToZap.push_back(Elt: RI); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | static bool runIPSCCP( |
| 109 | Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM, |
| 110 | std::function<const TargetLibraryInfo &(Function &)> GetTLI, |
| 111 | std::function<TargetTransformInfo &(Function &)> GetTTI, |
| 112 | std::function<AssumptionCache &(Function &)> GetAC, |
| 113 | std::function<DominatorTree &(Function &)> GetDT, |
| 114 | std::function<BlockFrequencyInfo &(Function &)> GetBFI, |
| 115 | bool IsFuncSpecEnabled) { |
| 116 | SCCPSolver Solver(DL, GetTLI, M.getContext()); |
| 117 | FunctionSpecializer Specializer(Solver, M, FAM, GetBFI, GetTLI, GetTTI, |
| 118 | GetAC); |
| 119 | |
| 120 | // Loop over all functions, marking arguments to those with their addresses |
| 121 | // taken or that are external as overdefined. |
| 122 | for (Function &F : M) { |
| 123 | if (F.isDeclaration()) |
| 124 | continue; |
| 125 | |
| 126 | DominatorTree &DT = GetDT(F); |
| 127 | AssumptionCache &AC = GetAC(F); |
| 128 | Solver.addPredicateInfo(F, DT, AC); |
| 129 | |
| 130 | // Determine if we can track the function's return values. If so, add the |
| 131 | // function to the solver's set of return-tracked functions. |
| 132 | if (canTrackReturnsInterprocedurally(F: &F)) |
| 133 | Solver.addTrackedFunction(F: &F); |
| 134 | |
| 135 | // Determine if we can track the function's arguments. If so, add the |
| 136 | // function to the solver's set of argument-tracked functions. |
| 137 | if (canTrackArgumentsInterprocedurally(F: &F)) { |
| 138 | Solver.addArgumentTrackedFunction(F: &F); |
| 139 | continue; |
| 140 | } |
| 141 | |
| 142 | // Assume the function is called. |
| 143 | Solver.markBlockExecutable(BB: &F.front()); |
| 144 | |
| 145 | for (Argument &AI : F.args()) |
| 146 | Solver.trackValueOfArgument(V: &AI); |
| 147 | } |
| 148 | |
| 149 | // Determine if we can track any of the module's global variables. If so, add |
| 150 | // the global variables we can track to the solver's set of tracked global |
| 151 | // variables. |
| 152 | for (GlobalVariable &G : M.globals()) { |
| 153 | G.removeDeadConstantUsers(); |
| 154 | if (canTrackGlobalVariableInterprocedurally(GV: &G)) |
| 155 | Solver.trackValueOfGlobalVariable(GV: &G); |
| 156 | } |
| 157 | |
| 158 | // Solve for constants. |
| 159 | Solver.solveWhileResolvedUndefsIn(M); |
| 160 | |
| 161 | if (IsFuncSpecEnabled) { |
| 162 | unsigned Iters = 0; |
| 163 | while (Iters++ < FuncSpecMaxIters && Specializer.run()); |
| 164 | } |
| 165 | |
| 166 | // Iterate over all of the instructions in the module, replacing them with |
| 167 | // constants if we have found them to be of constant values. |
| 168 | bool MadeChanges = false; |
| 169 | for (Function &F : M) { |
| 170 | if (F.isDeclaration()) |
| 171 | continue; |
| 172 | |
| 173 | SmallVector<BasicBlock *, 512> BlocksToErase; |
| 174 | |
| 175 | if (Solver.isBlockExecutable(BB: &F.front())) { |
| 176 | bool ReplacedPointerArg = false; |
| 177 | for (Argument &Arg : F.args()) { |
| 178 | if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(V: &Arg)) { |
| 179 | ReplacedPointerArg |= Arg.getType()->isPointerTy(); |
| 180 | ++NumArgsElimed; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | // If we replaced an argument, we may now also access a global (currently |
| 185 | // classified as "other" memory). Update memory attribute to reflect this. |
| 186 | if (ReplacedPointerArg) { |
| 187 | auto UpdateAttrs = [&](AttributeList AL) { |
| 188 | MemoryEffects ME = AL.getMemoryEffects(); |
| 189 | if (ME == MemoryEffects::unknown()) |
| 190 | return AL; |
| 191 | |
| 192 | ModRefInfo ArgMemMR = ME.getModRef(Loc: IRMemLocation::ArgMem); |
| 193 | ME |= MemoryEffects(IRMemLocation::ErrnoMem, ArgMemMR); |
| 194 | ME |= MemoryEffects(IRMemLocation::Other, ArgMemMR); |
| 195 | |
| 196 | return AL.addFnAttribute( |
| 197 | C&: F.getContext(), |
| 198 | Attr: Attribute::getWithMemoryEffects(Context&: F.getContext(), ME)); |
| 199 | }; |
| 200 | |
| 201 | F.setAttributes(UpdateAttrs(F.getAttributes())); |
| 202 | for (User *U : F.users()) { |
| 203 | auto *CB = dyn_cast<CallBase>(Val: U); |
| 204 | if (!CB || CB->getCalledFunction() != &F) |
| 205 | continue; |
| 206 | |
| 207 | CB->setAttributes(UpdateAttrs(CB->getAttributes())); |
| 208 | } |
| 209 | } |
| 210 | MadeChanges |= ReplacedPointerArg; |
| 211 | } |
| 212 | |
| 213 | SmallPtrSet<Value *, 32> InsertedValues; |
| 214 | for (BasicBlock &BB : F) { |
| 215 | if (!Solver.isBlockExecutable(BB: &BB)) { |
| 216 | LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); |
| 217 | ++NumDeadBlocks; |
| 218 | |
| 219 | MadeChanges = true; |
| 220 | |
| 221 | if (&BB != &F.front()) |
| 222 | BlocksToErase.push_back(Elt: &BB); |
| 223 | continue; |
| 224 | } |
| 225 | |
| 226 | MadeChanges |= Solver.simplifyInstsInBlock( |
| 227 | BB, InsertedValues, InstRemovedStat&: NumInstRemoved, InstReplacedStat&: NumInstReplaced); |
| 228 | } |
| 229 | |
| 230 | DominatorTree *DT = FAM->getCachedResult<DominatorTreeAnalysis>(IR&: F); |
| 231 | PostDominatorTree *PDT = FAM->getCachedResult<PostDominatorTreeAnalysis>(IR&: F); |
| 232 | DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 233 | // Change dead blocks to unreachable. We do it after replacing constants |
| 234 | // in all executable blocks, because changeToUnreachable may remove PHI |
| 235 | // nodes in executable blocks we found values for. The function's entry |
| 236 | // block is not part of BlocksToErase, so we have to handle it separately. |
| 237 | for (BasicBlock *BB : BlocksToErase) { |
| 238 | NumInstRemoved += changeToUnreachable(I: &*BB->getFirstNonPHIOrDbg(), |
| 239 | /*PreserveLCSSA=*/false, DTU: &DTU); |
| 240 | } |
| 241 | if (!Solver.isBlockExecutable(BB: &F.front())) |
| 242 | NumInstRemoved += changeToUnreachable(I: &*F.front().getFirstNonPHIOrDbg(), |
| 243 | /*PreserveLCSSA=*/false, DTU: &DTU); |
| 244 | |
| 245 | BasicBlock *NewUnreachableBB = nullptr; |
| 246 | for (BasicBlock &BB : F) |
| 247 | MadeChanges |= Solver.removeNonFeasibleEdges(BB: &BB, DTU, NewUnreachableBB); |
| 248 | |
| 249 | for (BasicBlock *DeadBB : BlocksToErase) |
| 250 | if (!DeadBB->hasAddressTaken()) |
| 251 | DTU.deleteBB(DelBB: DeadBB); |
| 252 | |
| 253 | Solver.removeSSACopies(F); |
| 254 | } |
| 255 | |
| 256 | // If we inferred constant or undef return values for a function, we replaced |
| 257 | // all call uses with the inferred value. This means we don't need to bother |
| 258 | // actually returning anything from the function. Replace all return |
| 259 | // instructions with return undef. |
| 260 | // |
| 261 | // Do this in two stages: first identify the functions we should process, then |
| 262 | // actually zap their returns. This is important because we can only do this |
| 263 | // if the address of the function isn't taken. In cases where a return is the |
| 264 | // last use of a function, the order of processing functions would affect |
| 265 | // whether other functions are optimizable. |
| 266 | SmallVector<ReturnInst*, 8> ReturnsToZap; |
| 267 | |
| 268 | Solver.inferReturnAttributes(); |
| 269 | Solver.inferArgAttributes(); |
| 270 | for (const auto &[F, ReturnValue] : Solver.getTrackedRetVals()) { |
| 271 | assert(!F->getReturnType()->isVoidTy() && |
| 272 | "should not track void functions" ); |
| 273 | if (SCCPSolver::isConstant(LV: ReturnValue) || ReturnValue.isUnknownOrUndef()) |
| 274 | findReturnsToZap(F&: *F, ReturnsToZap, Solver); |
| 275 | } |
| 276 | |
| 277 | for (auto *F : Solver.getMRVFunctionsTracked()) { |
| 278 | assert(F->getReturnType()->isStructTy() && |
| 279 | "The return type should be a struct" ); |
| 280 | StructType *STy = cast<StructType>(Val: F->getReturnType()); |
| 281 | if (Solver.isStructLatticeConstant(F, STy)) |
| 282 | findReturnsToZap(F&: *F, ReturnsToZap, Solver); |
| 283 | } |
| 284 | |
| 285 | // Zap all returns which we've identified as zap to change. |
| 286 | SmallSetVector<Function *, 8> FuncZappedReturn; |
| 287 | for (ReturnInst *RI : ReturnsToZap) { |
| 288 | Function *F = RI->getParent()->getParent(); |
| 289 | RI->setOperand(i_nocapture: 0, Val_nocapture: PoisonValue::get(T: F->getReturnType())); |
| 290 | // Record all functions that are zapped. |
| 291 | FuncZappedReturn.insert(X: F); |
| 292 | } |
| 293 | |
| 294 | // Remove the returned attribute for zapped functions and the |
| 295 | // corresponding call sites. |
| 296 | // Also remove any attributes that convert an undef return value into |
| 297 | // immediate undefined behavior |
| 298 | AttributeMask UBImplyingAttributes = |
| 299 | AttributeFuncs::getUBImplyingAttributes(); |
| 300 | for (Function *F : FuncZappedReturn) { |
| 301 | for (Argument &A : F->args()) |
| 302 | F->removeParamAttr(ArgNo: A.getArgNo(), Kind: Attribute::Returned); |
| 303 | F->removeRetAttrs(Attrs: UBImplyingAttributes); |
| 304 | for (Use &U : F->uses()) { |
| 305 | CallBase *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 306 | if (!CB) { |
| 307 | assert(isa<Constant>(U.getUser()) && |
| 308 | all_of(U.getUser()->users(), [](const User *UserUser) { |
| 309 | return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); |
| 310 | })); |
| 311 | continue; |
| 312 | } |
| 313 | |
| 314 | for (Use &Arg : CB->args()) |
| 315 | CB->removeParamAttr(ArgNo: CB->getArgOperandNo(U: &Arg), Kind: Attribute::Returned); |
| 316 | CB->removeRetAttrs(AttrsToRemove: UBImplyingAttributes); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | // If we inferred constant or undef values for globals variables, we can |
| 321 | // delete the global and any stores that remain to it. |
| 322 | for (const auto &I : make_early_inc_range(Range: Solver.getTrackedGlobals())) { |
| 323 | GlobalVariable *GV = I.first; |
| 324 | if (SCCPSolver::isOverdefined(LV: I.second)) |
| 325 | continue; |
| 326 | LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() |
| 327 | << "' is constant!\n" ); |
| 328 | for (User *U : make_early_inc_range(Range: GV->users())) { |
| 329 | // We can remove LoadInst here, because we already replaced its users |
| 330 | // with a constant. |
| 331 | assert((isa<StoreInst>(U) || isa<LoadInst>(U)) && |
| 332 | "Only Store|Load Instruction can be user of GlobalVariable at " |
| 333 | "reaching here." ); |
| 334 | cast<Instruction>(Val: U)->eraseFromParent(); |
| 335 | } |
| 336 | |
| 337 | // Try to create a debug constant expression for the global variable |
| 338 | // initializer value. |
| 339 | SmallVector<DIGlobalVariableExpression *, 1> GVEs; |
| 340 | GV->getDebugInfo(GVs&: GVEs); |
| 341 | if (GVEs.size() == 1) { |
| 342 | DIBuilder DIB(M); |
| 343 | if (DIExpression *InitExpr = getExpressionForConstant( |
| 344 | DIB, C: *GV->getInitializer(), Ty&: *GV->getValueType())) |
| 345 | GVEs[0]->replaceOperandWith(I: 1, New: InitExpr); |
| 346 | } |
| 347 | |
| 348 | MadeChanges = true; |
| 349 | M.eraseGlobalVariable(GV); |
| 350 | ++NumGlobalConst; |
| 351 | } |
| 352 | |
| 353 | return MadeChanges; |
| 354 | } |
| 355 | |
| 356 | PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) { |
| 357 | const DataLayout &DL = M.getDataLayout(); |
| 358 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 359 | auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & { |
| 360 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 361 | }; |
| 362 | auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { |
| 363 | return FAM.getResult<TargetIRAnalysis>(IR&: F); |
| 364 | }; |
| 365 | auto GetAC = [&FAM](Function &F) -> AssumptionCache & { |
| 366 | return FAM.getResult<AssumptionAnalysis>(IR&: F); |
| 367 | }; |
| 368 | auto GetDT = [&FAM](Function &F) -> DominatorTree & { |
| 369 | return FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 370 | }; |
| 371 | auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { |
| 372 | return FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
| 373 | }; |
| 374 | |
| 375 | |
| 376 | if (!runIPSCCP(M, DL, FAM: &FAM, GetTLI, GetTTI, GetAC, GetDT, GetBFI, |
| 377 | IsFuncSpecEnabled: isFuncSpecEnabled())) |
| 378 | return PreservedAnalyses::all(); |
| 379 | |
| 380 | PreservedAnalyses PA; |
| 381 | PA.preserve<DominatorTreeAnalysis>(); |
| 382 | PA.preserve<PostDominatorTreeAnalysis>(); |
| 383 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); |
| 384 | return PA; |
| 385 | } |
| 386 | |