| 1 | //===- Scalarizer.cpp - Scalarize vector operations -----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass converts vector operations into scalar operations (or, optionally, |
| 10 | // operations on smaller vector widths), in order to expose optimization |
| 11 | // opportunities on the individual scalar operations. |
| 12 | // It is mainly intended for targets that do not have vector units, but it |
| 13 | // may also be useful for revectorizing code to different vector widths. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "llvm/Transforms/Scalar/Scalarizer.h" |
| 18 | #include "llvm/ADT/PostOrderIterator.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/Twine.h" |
| 21 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 22 | #include "llvm/Analysis/VectorUtils.h" |
| 23 | #include "llvm/IR/Argument.h" |
| 24 | #include "llvm/IR/BasicBlock.h" |
| 25 | #include "llvm/IR/Constants.h" |
| 26 | #include "llvm/IR/DataLayout.h" |
| 27 | #include "llvm/IR/DerivedTypes.h" |
| 28 | #include "llvm/IR/Dominators.h" |
| 29 | #include "llvm/IR/Function.h" |
| 30 | #include "llvm/IR/IRBuilder.h" |
| 31 | #include "llvm/IR/InstVisitor.h" |
| 32 | #include "llvm/IR/InstrTypes.h" |
| 33 | #include "llvm/IR/Instruction.h" |
| 34 | #include "llvm/IR/Instructions.h" |
| 35 | #include "llvm/IR/Intrinsics.h" |
| 36 | #include "llvm/IR/LLVMContext.h" |
| 37 | #include "llvm/IR/Module.h" |
| 38 | #include "llvm/IR/Type.h" |
| 39 | #include "llvm/IR/Value.h" |
| 40 | #include "llvm/InitializePasses.h" |
| 41 | #include "llvm/Support/Casting.h" |
| 42 | #include "llvm/Transforms/Utils/Local.h" |
| 43 | #include <cassert> |
| 44 | #include <cstdint> |
| 45 | #include <iterator> |
| 46 | #include <map> |
| 47 | #include <utility> |
| 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "scalarizer" |
| 52 | |
| 53 | namespace { |
| 54 | |
| 55 | BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) { |
| 56 | BasicBlock *BB = Itr->getParent(); |
| 57 | if (isa<PHINode>(Val: Itr)) |
| 58 | Itr = BB->getFirstInsertionPt(); |
| 59 | if (Itr != BB->end()) |
| 60 | Itr = skipDebugIntrinsics(It: Itr); |
| 61 | return Itr; |
| 62 | } |
| 63 | |
| 64 | // Used to store the scattered form of a vector. |
| 65 | using ValueVector = SmallVector<Value *, 8>; |
| 66 | |
| 67 | // Used to map a vector Value and associated type to its scattered form. |
| 68 | // The associated type is only non-null for pointer values that are "scattered" |
| 69 | // when used as pointer operands to load or store. |
| 70 | // |
| 71 | // We use std::map because we want iterators to persist across insertion and |
| 72 | // because the values are relatively large. |
| 73 | using ScatterMap = std::map<std::pair<Value *, Type *>, ValueVector>; |
| 74 | |
| 75 | // Lists Instructions that have been replaced with scalar implementations, |
| 76 | // along with a pointer to their scattered forms. |
| 77 | using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>; |
| 78 | |
| 79 | struct VectorSplit { |
| 80 | // The type of the vector. |
| 81 | FixedVectorType *VecTy = nullptr; |
| 82 | |
| 83 | // The number of elements packed in a fragment (other than the remainder). |
| 84 | unsigned NumPacked = 0; |
| 85 | |
| 86 | // The number of fragments (scalars or smaller vectors) into which the vector |
| 87 | // shall be split. |
| 88 | unsigned NumFragments = 0; |
| 89 | |
| 90 | // The type of each complete fragment. |
| 91 | Type *SplitTy = nullptr; |
| 92 | |
| 93 | // The type of the remainder (last) fragment; null if all fragments are |
| 94 | // complete. |
| 95 | Type *RemainderTy = nullptr; |
| 96 | |
| 97 | Type *getFragmentType(unsigned I) const { |
| 98 | return RemainderTy && I == NumFragments - 1 ? RemainderTy : SplitTy; |
| 99 | } |
| 100 | }; |
| 101 | |
| 102 | // Provides a very limited vector-like interface for lazily accessing one |
| 103 | // component of a scattered vector or vector pointer. |
| 104 | class Scatterer { |
| 105 | public: |
| 106 | Scatterer() = default; |
| 107 | |
| 108 | // Scatter V into Size components. If new instructions are needed, |
| 109 | // insert them before BBI in BB. If Cache is nonnull, use it to cache |
| 110 | // the results. |
| 111 | Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, |
| 112 | const VectorSplit &VS, ValueVector *cachePtr = nullptr); |
| 113 | |
| 114 | // Return component I, creating a new Value for it if necessary. |
| 115 | Value *operator[](unsigned I); |
| 116 | |
| 117 | // Return the number of components. |
| 118 | unsigned size() const { return VS.NumFragments; } |
| 119 | |
| 120 | private: |
| 121 | BasicBlock *BB; |
| 122 | BasicBlock::iterator BBI; |
| 123 | Value *V; |
| 124 | VectorSplit VS; |
| 125 | bool IsPointer; |
| 126 | ValueVector *CachePtr; |
| 127 | ValueVector Tmp; |
| 128 | }; |
| 129 | |
| 130 | // FCmpSplitter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp |
| 131 | // called Name that compares X and Y in the same way as FCI. |
| 132 | struct FCmpSplitter { |
| 133 | FCmpSplitter(FCmpInst &fci) : FCI(fci) {} |
| 134 | |
| 135 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 136 | const Twine &Name) const { |
| 137 | return Builder.CreateFCmp(P: FCI.getPredicate(), LHS: Op0, RHS: Op1, Name); |
| 138 | } |
| 139 | |
| 140 | FCmpInst &FCI; |
| 141 | }; |
| 142 | |
| 143 | // ICmpSplitter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp |
| 144 | // called Name that compares X and Y in the same way as ICI. |
| 145 | struct ICmpSplitter { |
| 146 | ICmpSplitter(ICmpInst &ici) : ICI(ici) {} |
| 147 | |
| 148 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 149 | const Twine &Name) const { |
| 150 | return Builder.CreateICmp(P: ICI.getPredicate(), LHS: Op0, RHS: Op1, Name); |
| 151 | } |
| 152 | |
| 153 | ICmpInst &ICI; |
| 154 | }; |
| 155 | |
| 156 | // UnarySplitter(UO)(Builder, X, Name) uses Builder to create |
| 157 | // a unary operator like UO called Name with operand X. |
| 158 | struct UnarySplitter { |
| 159 | UnarySplitter(UnaryOperator &uo) : UO(uo) {} |
| 160 | |
| 161 | Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { |
| 162 | return Builder.CreateUnOp(Opc: UO.getOpcode(), V: Op, Name); |
| 163 | } |
| 164 | |
| 165 | UnaryOperator &UO; |
| 166 | }; |
| 167 | |
| 168 | // BinarySplitter(BO)(Builder, X, Y, Name) uses Builder to create |
| 169 | // a binary operator like BO called Name with operands X and Y. |
| 170 | struct BinarySplitter { |
| 171 | BinarySplitter(BinaryOperator &bo) : BO(bo) {} |
| 172 | |
| 173 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 174 | const Twine &Name) const { |
| 175 | return Builder.CreateBinOp(Opc: BO.getOpcode(), LHS: Op0, RHS: Op1, Name); |
| 176 | } |
| 177 | |
| 178 | BinaryOperator &BO; |
| 179 | }; |
| 180 | |
| 181 | // Information about a load or store that we're scalarizing. |
| 182 | struct VectorLayout { |
| 183 | VectorLayout() = default; |
| 184 | |
| 185 | // Return the alignment of fragment Frag. |
| 186 | Align getFragmentAlign(unsigned Frag) { |
| 187 | return commonAlignment(A: VecAlign, Offset: Frag * SplitSize); |
| 188 | } |
| 189 | |
| 190 | // The split of the underlying vector type. |
| 191 | VectorSplit VS; |
| 192 | |
| 193 | // The alignment of the vector. |
| 194 | Align VecAlign; |
| 195 | |
| 196 | // The size of each (non-remainder) fragment in bytes. |
| 197 | uint64_t SplitSize = 0; |
| 198 | }; |
| 199 | |
| 200 | static bool isStructOfMatchingFixedVectors(Type *Ty) { |
| 201 | if (!isa<StructType>(Val: Ty)) |
| 202 | return false; |
| 203 | unsigned StructSize = Ty->getNumContainedTypes(); |
| 204 | if (StructSize < 1) |
| 205 | return false; |
| 206 | FixedVectorType *VecTy = dyn_cast<FixedVectorType>(Val: Ty->getContainedType(i: 0)); |
| 207 | if (!VecTy) |
| 208 | return false; |
| 209 | unsigned VecSize = VecTy->getNumElements(); |
| 210 | for (unsigned I = 1; I < StructSize; I++) { |
| 211 | VecTy = dyn_cast<FixedVectorType>(Val: Ty->getContainedType(i: I)); |
| 212 | if (!VecTy || VecSize != VecTy->getNumElements()) |
| 213 | return false; |
| 214 | } |
| 215 | return true; |
| 216 | } |
| 217 | |
| 218 | /// Concatenate the given fragments to a single vector value of the type |
| 219 | /// described in @p VS. |
| 220 | static Value *concatenate(IRBuilder<> &Builder, ArrayRef<Value *> Fragments, |
| 221 | const VectorSplit &VS, Twine Name) { |
| 222 | unsigned NumElements = VS.VecTy->getNumElements(); |
| 223 | SmallVector<int> ExtendMask; |
| 224 | SmallVector<int> InsertMask; |
| 225 | |
| 226 | if (VS.NumPacked > 1) { |
| 227 | // Prepare the shufflevector masks once and re-use them for all |
| 228 | // fragments. |
| 229 | ExtendMask.resize(N: NumElements, NV: -1); |
| 230 | for (unsigned I = 0; I < VS.NumPacked; ++I) |
| 231 | ExtendMask[I] = I; |
| 232 | |
| 233 | InsertMask.resize(N: NumElements); |
| 234 | for (unsigned I = 0; I < NumElements; ++I) |
| 235 | InsertMask[I] = I; |
| 236 | } |
| 237 | |
| 238 | Value *Res = PoisonValue::get(T: VS.VecTy); |
| 239 | for (unsigned I = 0; I < VS.NumFragments; ++I) { |
| 240 | Value *Fragment = Fragments[I]; |
| 241 | |
| 242 | unsigned NumPacked = VS.NumPacked; |
| 243 | if (I == VS.NumFragments - 1 && VS.RemainderTy) { |
| 244 | if (auto *RemVecTy = dyn_cast<FixedVectorType>(Val: VS.RemainderTy)) |
| 245 | NumPacked = RemVecTy->getNumElements(); |
| 246 | else |
| 247 | NumPacked = 1; |
| 248 | } |
| 249 | |
| 250 | if (NumPacked == 1) { |
| 251 | Res = Builder.CreateInsertElement(Vec: Res, NewElt: Fragment, Idx: I * VS.NumPacked, |
| 252 | Name: Name + ".upto" + Twine(I)); |
| 253 | } else { |
| 254 | Fragment = Builder.CreateShuffleVector(V1: Fragment, V2: Fragment, Mask: ExtendMask); |
| 255 | if (I == 0) { |
| 256 | Res = Fragment; |
| 257 | } else { |
| 258 | for (unsigned J = 0; J < NumPacked; ++J) |
| 259 | InsertMask[I * VS.NumPacked + J] = NumElements + J; |
| 260 | Res = Builder.CreateShuffleVector(V1: Res, V2: Fragment, Mask: InsertMask, |
| 261 | Name: Name + ".upto" + Twine(I)); |
| 262 | for (unsigned J = 0; J < NumPacked; ++J) |
| 263 | InsertMask[I * VS.NumPacked + J] = I * VS.NumPacked + J; |
| 264 | } |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | return Res; |
| 269 | } |
| 270 | |
| 271 | class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> { |
| 272 | public: |
| 273 | ScalarizerVisitor(DominatorTree *DT, const TargetTransformInfo *TTI, |
| 274 | ScalarizerPassOptions Options) |
| 275 | : DT(DT), TTI(TTI), |
| 276 | ScalarizeVariableInsertExtract(Options.ScalarizeVariableInsertExtract), |
| 277 | ScalarizeLoadStore(Options.ScalarizeLoadStore), |
| 278 | ScalarizeMinBits(Options.ScalarizeMinBits) {} |
| 279 | |
| 280 | bool visit(Function &F); |
| 281 | |
| 282 | // InstVisitor methods. They return true if the instruction was scalarized, |
| 283 | // false if nothing changed. |
| 284 | bool visitInstruction(Instruction &I) { return false; } |
| 285 | bool visitSelectInst(SelectInst &SI); |
| 286 | bool visitICmpInst(ICmpInst &ICI); |
| 287 | bool visitFCmpInst(FCmpInst &FCI); |
| 288 | bool visitUnaryOperator(UnaryOperator &UO); |
| 289 | bool visitBinaryOperator(BinaryOperator &BO); |
| 290 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI); |
| 291 | bool visitCastInst(CastInst &CI); |
| 292 | bool visitBitCastInst(BitCastInst &BCI); |
| 293 | bool visitInsertElementInst(InsertElementInst &IEI); |
| 294 | bool visitExtractElementInst(ExtractElementInst &EEI); |
| 295 | bool visitExtractValueInst(ExtractValueInst &EVI); |
| 296 | bool visitShuffleVectorInst(ShuffleVectorInst &SVI); |
| 297 | bool visitPHINode(PHINode &PHI); |
| 298 | bool visitLoadInst(LoadInst &LI); |
| 299 | bool visitStoreInst(StoreInst &SI); |
| 300 | bool visitCallInst(CallInst &ICI); |
| 301 | bool visitFreezeInst(FreezeInst &FI); |
| 302 | |
| 303 | private: |
| 304 | Scatterer scatter(Instruction *Point, Value *V, const VectorSplit &VS); |
| 305 | void gather(Instruction *Op, const ValueVector &CV, const VectorSplit &VS); |
| 306 | void replaceUses(Instruction *Op, Value *CV); |
| 307 | bool canTransferMetadata(unsigned Kind); |
| 308 | void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); |
| 309 | std::optional<VectorSplit> getVectorSplit(Type *Ty); |
| 310 | std::optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment, |
| 311 | const DataLayout &DL); |
| 312 | bool finish(); |
| 313 | |
| 314 | template<typename T> bool splitUnary(Instruction &, const T &); |
| 315 | template<typename T> bool splitBinary(Instruction &, const T &); |
| 316 | |
| 317 | bool splitCall(CallInst &CI); |
| 318 | |
| 319 | ScatterMap Scattered; |
| 320 | GatherList Gathered; |
| 321 | bool Scalarized; |
| 322 | |
| 323 | SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs; |
| 324 | |
| 325 | DominatorTree *DT; |
| 326 | const TargetTransformInfo *TTI; |
| 327 | |
| 328 | const bool ; |
| 329 | const bool ScalarizeLoadStore; |
| 330 | const unsigned ScalarizeMinBits; |
| 331 | }; |
| 332 | |
| 333 | class ScalarizerLegacyPass : public FunctionPass { |
| 334 | public: |
| 335 | static char ID; |
| 336 | ScalarizerPassOptions Options; |
| 337 | ScalarizerLegacyPass() : FunctionPass(ID), Options() {} |
| 338 | ScalarizerLegacyPass(const ScalarizerPassOptions &Options); |
| 339 | bool runOnFunction(Function &F) override; |
| 340 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 341 | }; |
| 342 | |
| 343 | } // end anonymous namespace |
| 344 | |
| 345 | ScalarizerLegacyPass::ScalarizerLegacyPass(const ScalarizerPassOptions &Options) |
| 346 | : FunctionPass(ID), Options(Options) {} |
| 347 | |
| 348 | void ScalarizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 349 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 350 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 351 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 352 | } |
| 353 | |
| 354 | char ScalarizerLegacyPass::ID = 0; |
| 355 | INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer" , |
| 356 | "Scalarize vector operations" , false, false) |
| 357 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 358 | INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer" , |
| 359 | "Scalarize vector operations" , false, false) |
| 360 | |
| 361 | Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, |
| 362 | const VectorSplit &VS, ValueVector *cachePtr) |
| 363 | : BB(bb), BBI(bbi), V(v), VS(VS), CachePtr(cachePtr) { |
| 364 | IsPointer = V->getType()->isPointerTy(); |
| 365 | if (!CachePtr) { |
| 366 | Tmp.resize(N: VS.NumFragments, NV: nullptr); |
| 367 | } else { |
| 368 | assert((CachePtr->empty() || VS.NumFragments == CachePtr->size() || |
| 369 | IsPointer) && |
| 370 | "Inconsistent vector sizes" ); |
| 371 | if (VS.NumFragments > CachePtr->size()) |
| 372 | CachePtr->resize(N: VS.NumFragments, NV: nullptr); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | // Return fragment Frag, creating a new Value for it if necessary. |
| 377 | Value *Scatterer::operator[](unsigned Frag) { |
| 378 | ValueVector &CV = CachePtr ? *CachePtr : Tmp; |
| 379 | // Try to reuse a previous value. |
| 380 | if (CV[Frag]) |
| 381 | return CV[Frag]; |
| 382 | IRBuilder<> Builder(BB, BBI); |
| 383 | if (IsPointer) { |
| 384 | if (Frag == 0) |
| 385 | CV[Frag] = V; |
| 386 | else |
| 387 | CV[Frag] = Builder.CreateConstGEP1_32(Ty: VS.SplitTy, Ptr: V, Idx0: Frag, |
| 388 | Name: V->getName() + ".i" + Twine(Frag)); |
| 389 | return CV[Frag]; |
| 390 | } |
| 391 | |
| 392 | Type *FragmentTy = VS.getFragmentType(I: Frag); |
| 393 | |
| 394 | if (auto *VecTy = dyn_cast<FixedVectorType>(Val: FragmentTy)) { |
| 395 | SmallVector<int> Mask; |
| 396 | for (unsigned J = 0; J < VecTy->getNumElements(); ++J) |
| 397 | Mask.push_back(Elt: Frag * VS.NumPacked + J); |
| 398 | CV[Frag] = |
| 399 | Builder.CreateShuffleVector(V1: V, V2: PoisonValue::get(T: V->getType()), Mask, |
| 400 | Name: V->getName() + ".i" + Twine(Frag)); |
| 401 | } else { |
| 402 | // Search through a chain of InsertElementInsts looking for element Frag. |
| 403 | // Record other elements in the cache. The new V is still suitable |
| 404 | // for all uncached indices. |
| 405 | while (true) { |
| 406 | InsertElementInst *Insert = dyn_cast<InsertElementInst>(Val: V); |
| 407 | if (!Insert) |
| 408 | break; |
| 409 | ConstantInt *Idx = dyn_cast<ConstantInt>(Val: Insert->getOperand(i_nocapture: 2)); |
| 410 | if (!Idx) |
| 411 | break; |
| 412 | unsigned J = Idx->getZExtValue(); |
| 413 | V = Insert->getOperand(i_nocapture: 0); |
| 414 | if (Frag * VS.NumPacked == J) { |
| 415 | CV[Frag] = Insert->getOperand(i_nocapture: 1); |
| 416 | return CV[Frag]; |
| 417 | } |
| 418 | |
| 419 | if (VS.NumPacked == 1 && !CV[J]) { |
| 420 | // Only cache the first entry we find for each index we're not actively |
| 421 | // searching for. This prevents us from going too far up the chain and |
| 422 | // caching incorrect entries. |
| 423 | CV[J] = Insert->getOperand(i_nocapture: 1); |
| 424 | } |
| 425 | } |
| 426 | CV[Frag] = Builder.CreateExtractElement(Vec: V, Idx: Frag * VS.NumPacked, |
| 427 | Name: V->getName() + ".i" + Twine(Frag)); |
| 428 | } |
| 429 | |
| 430 | return CV[Frag]; |
| 431 | } |
| 432 | |
| 433 | bool ScalarizerLegacyPass::runOnFunction(Function &F) { |
| 434 | if (skipFunction(F)) |
| 435 | return false; |
| 436 | |
| 437 | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 438 | const TargetTransformInfo *TTI = |
| 439 | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 440 | ScalarizerVisitor Impl(DT, TTI, Options); |
| 441 | return Impl.visit(F); |
| 442 | } |
| 443 | |
| 444 | FunctionPass *llvm::createScalarizerPass(const ScalarizerPassOptions &Options) { |
| 445 | return new ScalarizerLegacyPass(Options); |
| 446 | } |
| 447 | |
| 448 | bool ScalarizerVisitor::visit(Function &F) { |
| 449 | assert(Gathered.empty() && Scattered.empty()); |
| 450 | |
| 451 | Scalarized = false; |
| 452 | |
| 453 | // To ensure we replace gathered components correctly we need to do an ordered |
| 454 | // traversal of the basic blocks in the function. |
| 455 | ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock()); |
| 456 | for (BasicBlock *BB : RPOT) { |
| 457 | for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
| 458 | Instruction *I = &*II; |
| 459 | bool Done = InstVisitor::visit(I); |
| 460 | ++II; |
| 461 | if (Done && I->getType()->isVoidTy()) |
| 462 | I->eraseFromParent(); |
| 463 | } |
| 464 | } |
| 465 | return finish(); |
| 466 | } |
| 467 | |
| 468 | // Return a scattered form of V that can be accessed by Point. V must be a |
| 469 | // vector or a pointer to a vector. |
| 470 | Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V, |
| 471 | const VectorSplit &VS) { |
| 472 | if (Argument *VArg = dyn_cast<Argument>(Val: V)) { |
| 473 | // Put the scattered form of arguments in the entry block, |
| 474 | // so that it can be used everywhere. |
| 475 | Function *F = VArg->getParent(); |
| 476 | BasicBlock *BB = &F->getEntryBlock(); |
| 477 | return Scatterer(BB, BB->begin(), V, VS, &Scattered[{V, VS.SplitTy}]); |
| 478 | } |
| 479 | if (Instruction *VOp = dyn_cast<Instruction>(Val: V)) { |
| 480 | // When scalarizing PHI nodes we might try to examine/rewrite InsertElement |
| 481 | // nodes in predecessors. If those predecessors are unreachable from entry, |
| 482 | // then the IR in those blocks could have unexpected properties resulting in |
| 483 | // infinite loops in Scatterer::operator[]. By simply treating values |
| 484 | // originating from instructions in unreachable blocks as undef we do not |
| 485 | // need to analyse them further. |
| 486 | if (!DT->isReachableFromEntry(A: VOp->getParent())) |
| 487 | return Scatterer(Point->getParent(), Point->getIterator(), |
| 488 | PoisonValue::get(T: V->getType()), VS); |
| 489 | // Put the scattered form of an instruction directly after the |
| 490 | // instruction, skipping over PHI nodes and debug intrinsics. |
| 491 | BasicBlock *BB = VOp->getParent(); |
| 492 | return Scatterer( |
| 493 | BB, skipPastPhiNodesAndDbg(Itr: std::next(x: BasicBlock::iterator(VOp))), V, VS, |
| 494 | &Scattered[{V, VS.SplitTy}]); |
| 495 | } |
| 496 | // In the fallback case, just put the scattered before Point and |
| 497 | // keep the result local to Point. |
| 498 | return Scatterer(Point->getParent(), Point->getIterator(), V, VS); |
| 499 | } |
| 500 | |
| 501 | // Replace Op with the gathered form of the components in CV. Defer the |
| 502 | // deletion of Op and creation of the gathered form to the end of the pass, |
| 503 | // so that we can avoid creating the gathered form if all uses of Op are |
| 504 | // replaced with uses of CV. |
| 505 | void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV, |
| 506 | const VectorSplit &VS) { |
| 507 | transferMetadataAndIRFlags(Op, CV); |
| 508 | |
| 509 | // If we already have a scattered form of Op (created from ExtractElements |
| 510 | // of Op itself), replace them with the new form. |
| 511 | ValueVector &SV = Scattered[{Op, VS.SplitTy}]; |
| 512 | if (!SV.empty()) { |
| 513 | for (unsigned I = 0, E = SV.size(); I != E; ++I) { |
| 514 | Value *V = SV[I]; |
| 515 | if (V == nullptr || SV[I] == CV[I]) |
| 516 | continue; |
| 517 | |
| 518 | Instruction *Old = cast<Instruction>(Val: V); |
| 519 | if (isa<Instruction>(Val: CV[I])) |
| 520 | CV[I]->takeName(V: Old); |
| 521 | Old->replaceAllUsesWith(V: CV[I]); |
| 522 | PotentiallyDeadInstrs.emplace_back(Args&: Old); |
| 523 | } |
| 524 | } |
| 525 | SV = CV; |
| 526 | Gathered.push_back(Elt: GatherList::value_type(Op, &SV)); |
| 527 | } |
| 528 | |
| 529 | // Replace Op with CV and collect Op has a potentially dead instruction. |
| 530 | void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) { |
| 531 | if (CV != Op) { |
| 532 | Op->replaceAllUsesWith(V: CV); |
| 533 | PotentiallyDeadInstrs.emplace_back(Args&: Op); |
| 534 | Scalarized = true; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | // Return true if it is safe to transfer the given metadata tag from |
| 539 | // vector to scalar instructions. |
| 540 | bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { |
| 541 | return (Tag == LLVMContext::MD_tbaa |
| 542 | || Tag == LLVMContext::MD_fpmath |
| 543 | || Tag == LLVMContext::MD_tbaa_struct |
| 544 | || Tag == LLVMContext::MD_invariant_load |
| 545 | || Tag == LLVMContext::MD_alias_scope |
| 546 | || Tag == LLVMContext::MD_noalias |
| 547 | || Tag == LLVMContext::MD_mem_parallel_loop_access |
| 548 | || Tag == LLVMContext::MD_access_group); |
| 549 | } |
| 550 | |
| 551 | // Transfer metadata from Op to the instructions in CV if it is known |
| 552 | // to be safe to do so. |
| 553 | void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, |
| 554 | const ValueVector &CV) { |
| 555 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| 556 | Op->getAllMetadataOtherThanDebugLoc(MDs); |
| 557 | for (Value *V : CV) { |
| 558 | if (Instruction *New = dyn_cast<Instruction>(Val: V)) { |
| 559 | for (const auto &MD : MDs) |
| 560 | if (canTransferMetadata(Tag: MD.first)) |
| 561 | New->setMetadata(KindID: MD.first, Node: MD.second); |
| 562 | New->copyIRFlags(V: Op); |
| 563 | if (Op->getDebugLoc() && !New->getDebugLoc()) |
| 564 | New->setDebugLoc(Op->getDebugLoc()); |
| 565 | } |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | // Determine how Ty is split, if at all. |
| 570 | std::optional<VectorSplit> ScalarizerVisitor::getVectorSplit(Type *Ty) { |
| 571 | VectorSplit Split; |
| 572 | Split.VecTy = dyn_cast<FixedVectorType>(Val: Ty); |
| 573 | if (!Split.VecTy) |
| 574 | return {}; |
| 575 | |
| 576 | unsigned NumElems = Split.VecTy->getNumElements(); |
| 577 | Type *ElemTy = Split.VecTy->getElementType(); |
| 578 | |
| 579 | if (NumElems == 1 || ElemTy->isPointerTy() || |
| 580 | 2 * ElemTy->getScalarSizeInBits() > ScalarizeMinBits) { |
| 581 | Split.NumPacked = 1; |
| 582 | Split.NumFragments = NumElems; |
| 583 | Split.SplitTy = ElemTy; |
| 584 | } else { |
| 585 | Split.NumPacked = ScalarizeMinBits / ElemTy->getScalarSizeInBits(); |
| 586 | if (Split.NumPacked >= NumElems) |
| 587 | return {}; |
| 588 | |
| 589 | Split.NumFragments = divideCeil(Numerator: NumElems, Denominator: Split.NumPacked); |
| 590 | Split.SplitTy = FixedVectorType::get(ElementType: ElemTy, NumElts: Split.NumPacked); |
| 591 | |
| 592 | unsigned RemainderElems = NumElems % Split.NumPacked; |
| 593 | if (RemainderElems > 1) |
| 594 | Split.RemainderTy = FixedVectorType::get(ElementType: ElemTy, NumElts: RemainderElems); |
| 595 | else if (RemainderElems == 1) |
| 596 | Split.RemainderTy = ElemTy; |
| 597 | } |
| 598 | |
| 599 | return Split; |
| 600 | } |
| 601 | |
| 602 | // Try to fill in Layout from Ty, returning true on success. Alignment is |
| 603 | // the alignment of the vector, or std::nullopt if the ABI default should be |
| 604 | // used. |
| 605 | std::optional<VectorLayout> |
| 606 | ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment, |
| 607 | const DataLayout &DL) { |
| 608 | std::optional<VectorSplit> VS = getVectorSplit(Ty); |
| 609 | if (!VS) |
| 610 | return {}; |
| 611 | |
| 612 | VectorLayout Layout; |
| 613 | Layout.VS = *VS; |
| 614 | // Check that we're dealing with full-byte fragments. |
| 615 | if (!DL.typeSizeEqualsStoreSize(Ty: VS->SplitTy) || |
| 616 | (VS->RemainderTy && !DL.typeSizeEqualsStoreSize(Ty: VS->RemainderTy))) |
| 617 | return {}; |
| 618 | Layout.VecAlign = Alignment; |
| 619 | Layout.SplitSize = DL.getTypeStoreSize(Ty: VS->SplitTy); |
| 620 | return Layout; |
| 621 | } |
| 622 | |
| 623 | // Scalarize one-operand instruction I, using Split(Builder, X, Name) |
| 624 | // to create an instruction like I with operand X and name Name. |
| 625 | template<typename Splitter> |
| 626 | bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { |
| 627 | std::optional<VectorSplit> VS = getVectorSplit(Ty: I.getType()); |
| 628 | if (!VS) |
| 629 | return false; |
| 630 | |
| 631 | std::optional<VectorSplit> OpVS; |
| 632 | if (I.getOperand(i: 0)->getType() == I.getType()) { |
| 633 | OpVS = VS; |
| 634 | } else { |
| 635 | OpVS = getVectorSplit(Ty: I.getOperand(i: 0)->getType()); |
| 636 | if (!OpVS || VS->NumPacked != OpVS->NumPacked) |
| 637 | return false; |
| 638 | } |
| 639 | |
| 640 | IRBuilder<> Builder(&I); |
| 641 | Scatterer Op = scatter(Point: &I, V: I.getOperand(i: 0), VS: *OpVS); |
| 642 | assert(Op.size() == VS->NumFragments && "Mismatched unary operation" ); |
| 643 | ValueVector Res; |
| 644 | Res.resize(N: VS->NumFragments); |
| 645 | for (unsigned Frag = 0; Frag < VS->NumFragments; ++Frag) |
| 646 | Res[Frag] = Split(Builder, Op[Frag], I.getName() + ".i" + Twine(Frag)); |
| 647 | gather(Op: &I, CV: Res, VS: *VS); |
| 648 | return true; |
| 649 | } |
| 650 | |
| 651 | // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) |
| 652 | // to create an instruction like I with operands X and Y and name Name. |
| 653 | template<typename Splitter> |
| 654 | bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { |
| 655 | std::optional<VectorSplit> VS = getVectorSplit(Ty: I.getType()); |
| 656 | if (!VS) |
| 657 | return false; |
| 658 | |
| 659 | std::optional<VectorSplit> OpVS; |
| 660 | if (I.getOperand(i: 0)->getType() == I.getType()) { |
| 661 | OpVS = VS; |
| 662 | } else { |
| 663 | OpVS = getVectorSplit(Ty: I.getOperand(i: 0)->getType()); |
| 664 | if (!OpVS || VS->NumPacked != OpVS->NumPacked) |
| 665 | return false; |
| 666 | } |
| 667 | |
| 668 | IRBuilder<> Builder(&I); |
| 669 | Scatterer VOp0 = scatter(Point: &I, V: I.getOperand(i: 0), VS: *OpVS); |
| 670 | Scatterer VOp1 = scatter(Point: &I, V: I.getOperand(i: 1), VS: *OpVS); |
| 671 | assert(VOp0.size() == VS->NumFragments && "Mismatched binary operation" ); |
| 672 | assert(VOp1.size() == VS->NumFragments && "Mismatched binary operation" ); |
| 673 | ValueVector Res; |
| 674 | Res.resize(N: VS->NumFragments); |
| 675 | for (unsigned Frag = 0; Frag < VS->NumFragments; ++Frag) { |
| 676 | Value *Op0 = VOp0[Frag]; |
| 677 | Value *Op1 = VOp1[Frag]; |
| 678 | Res[Frag] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Frag)); |
| 679 | } |
| 680 | gather(Op: &I, CV: Res, VS: *VS); |
| 681 | return true; |
| 682 | } |
| 683 | |
| 684 | /// If a call to a vector typed intrinsic function, split into a scalar call per |
| 685 | /// element if possible for the intrinsic. |
| 686 | bool ScalarizerVisitor::splitCall(CallInst &CI) { |
| 687 | Type *CallType = CI.getType(); |
| 688 | bool AreAllVectorsOfMatchingSize = isStructOfMatchingFixedVectors(Ty: CallType); |
| 689 | std::optional<VectorSplit> VS; |
| 690 | if (AreAllVectorsOfMatchingSize) |
| 691 | VS = getVectorSplit(Ty: CallType->getContainedType(i: 0)); |
| 692 | else |
| 693 | VS = getVectorSplit(Ty: CallType); |
| 694 | if (!VS) |
| 695 | return false; |
| 696 | |
| 697 | Function *F = CI.getCalledFunction(); |
| 698 | if (!F) |
| 699 | return false; |
| 700 | |
| 701 | Intrinsic::ID ID = F->getIntrinsicID(); |
| 702 | |
| 703 | if (ID == Intrinsic::not_intrinsic || !isTriviallyScalarizable(ID, TTI)) |
| 704 | return false; |
| 705 | |
| 706 | // unsigned NumElems = VT->getNumElements(); |
| 707 | unsigned NumArgs = CI.arg_size(); |
| 708 | |
| 709 | ValueVector ScalarOperands(NumArgs); |
| 710 | SmallVector<Scatterer, 8> Scattered(NumArgs); |
| 711 | SmallVector<int> OverloadIdx(NumArgs, -1); |
| 712 | |
| 713 | SmallVector<llvm::Type *, 3> Tys; |
| 714 | // Add return type if intrinsic is overloaded on it. |
| 715 | if (isVectorIntrinsicWithOverloadTypeAtArg(ID, OpdIdx: -1, TTI)) |
| 716 | Tys.push_back(Elt: VS->SplitTy); |
| 717 | |
| 718 | if (AreAllVectorsOfMatchingSize) { |
| 719 | for (unsigned I = 1; I < CallType->getNumContainedTypes(); I++) { |
| 720 | std::optional<VectorSplit> CurrVS = |
| 721 | getVectorSplit(Ty: cast<FixedVectorType>(Val: CallType->getContainedType(i: I))); |
| 722 | // It is possible for VectorSplit.NumPacked >= NumElems. If that happens a |
| 723 | // VectorSplit is not returned and we will bailout of handling this call. |
| 724 | // The secondary bailout case is if NumPacked does not match. This can |
| 725 | // happen if ScalarizeMinBits is not set to the default. This means with |
| 726 | // certain ScalarizeMinBits intrinsics like frexp will only scalarize when |
| 727 | // the struct elements have the same bitness. |
| 728 | if (!CurrVS || CurrVS->NumPacked != VS->NumPacked) |
| 729 | return false; |
| 730 | if (isVectorIntrinsicWithStructReturnOverloadAtField(ID, RetIdx: I, TTI)) |
| 731 | Tys.push_back(Elt: CurrVS->SplitTy); |
| 732 | } |
| 733 | } |
| 734 | // Assumes that any vector type has the same number of elements as the return |
| 735 | // vector type, which is true for all current intrinsics. |
| 736 | for (unsigned I = 0; I != NumArgs; ++I) { |
| 737 | Value *OpI = CI.getOperand(i_nocapture: I); |
| 738 | if ([[maybe_unused]] auto *OpVecTy = |
| 739 | dyn_cast<FixedVectorType>(Val: OpI->getType())) { |
| 740 | assert(OpVecTy->getNumElements() == VS->VecTy->getNumElements()); |
| 741 | std::optional<VectorSplit> OpVS = getVectorSplit(Ty: OpI->getType()); |
| 742 | if (!OpVS || OpVS->NumPacked != VS->NumPacked) { |
| 743 | // The natural split of the operand doesn't match the result. This could |
| 744 | // happen if the vector elements are different and the ScalarizeMinBits |
| 745 | // option is used. |
| 746 | // |
| 747 | // We could in principle handle this case as well, at the cost of |
| 748 | // complicating the scattering machinery to support multiple scattering |
| 749 | // granularities for a single value. |
| 750 | return false; |
| 751 | } |
| 752 | |
| 753 | Scattered[I] = scatter(Point: &CI, V: OpI, VS: *OpVS); |
| 754 | if (isVectorIntrinsicWithOverloadTypeAtArg(ID, OpdIdx: I, TTI)) { |
| 755 | OverloadIdx[I] = Tys.size(); |
| 756 | Tys.push_back(Elt: OpVS->SplitTy); |
| 757 | } |
| 758 | } else { |
| 759 | ScalarOperands[I] = OpI; |
| 760 | if (isVectorIntrinsicWithOverloadTypeAtArg(ID, OpdIdx: I, TTI)) |
| 761 | Tys.push_back(Elt: OpI->getType()); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | ValueVector Res(VS->NumFragments); |
| 766 | ValueVector ScalarCallOps(NumArgs); |
| 767 | |
| 768 | Function *NewIntrin = |
| 769 | Intrinsic::getOrInsertDeclaration(M: F->getParent(), id: ID, Tys); |
| 770 | IRBuilder<> Builder(&CI); |
| 771 | |
| 772 | // Perform actual scalarization, taking care to preserve any scalar operands. |
| 773 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 774 | bool IsRemainder = I == VS->NumFragments - 1 && VS->RemainderTy; |
| 775 | ScalarCallOps.clear(); |
| 776 | |
| 777 | if (IsRemainder) |
| 778 | Tys[0] = VS->RemainderTy; |
| 779 | |
| 780 | for (unsigned J = 0; J != NumArgs; ++J) { |
| 781 | if (isVectorIntrinsicWithScalarOpAtArg(ID, ScalarOpdIdx: J, TTI)) { |
| 782 | ScalarCallOps.push_back(Elt: ScalarOperands[J]); |
| 783 | } else { |
| 784 | ScalarCallOps.push_back(Elt: Scattered[J][I]); |
| 785 | if (IsRemainder && OverloadIdx[J] >= 0) |
| 786 | Tys[OverloadIdx[J]] = Scattered[J][I]->getType(); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (IsRemainder) |
| 791 | NewIntrin = Intrinsic::getOrInsertDeclaration(M: F->getParent(), id: ID, Tys); |
| 792 | |
| 793 | Res[I] = Builder.CreateCall(Callee: NewIntrin, Args: ScalarCallOps, |
| 794 | Name: CI.getName() + ".i" + Twine(I)); |
| 795 | } |
| 796 | |
| 797 | gather(Op: &CI, CV: Res, VS: *VS); |
| 798 | return true; |
| 799 | } |
| 800 | |
| 801 | bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { |
| 802 | std::optional<VectorSplit> VS = getVectorSplit(Ty: SI.getType()); |
| 803 | if (!VS) |
| 804 | return false; |
| 805 | |
| 806 | std::optional<VectorSplit> CondVS; |
| 807 | if (isa<FixedVectorType>(Val: SI.getCondition()->getType())) { |
| 808 | CondVS = getVectorSplit(Ty: SI.getCondition()->getType()); |
| 809 | if (!CondVS || CondVS->NumPacked != VS->NumPacked) { |
| 810 | // This happens when ScalarizeMinBits is used. |
| 811 | return false; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | IRBuilder<> Builder(&SI); |
| 816 | Scatterer VOp1 = scatter(Point: &SI, V: SI.getOperand(i_nocapture: 1), VS: *VS); |
| 817 | Scatterer VOp2 = scatter(Point: &SI, V: SI.getOperand(i_nocapture: 2), VS: *VS); |
| 818 | assert(VOp1.size() == VS->NumFragments && "Mismatched select" ); |
| 819 | assert(VOp2.size() == VS->NumFragments && "Mismatched select" ); |
| 820 | ValueVector Res; |
| 821 | Res.resize(N: VS->NumFragments); |
| 822 | |
| 823 | if (CondVS) { |
| 824 | Scatterer VOp0 = scatter(Point: &SI, V: SI.getOperand(i_nocapture: 0), VS: *CondVS); |
| 825 | assert(VOp0.size() == CondVS->NumFragments && "Mismatched select" ); |
| 826 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 827 | Value *Op0 = VOp0[I]; |
| 828 | Value *Op1 = VOp1[I]; |
| 829 | Value *Op2 = VOp2[I]; |
| 830 | Res[I] = Builder.CreateSelect(C: Op0, True: Op1, False: Op2, |
| 831 | Name: SI.getName() + ".i" + Twine(I)); |
| 832 | } |
| 833 | } else { |
| 834 | Value *Op0 = SI.getOperand(i_nocapture: 0); |
| 835 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 836 | Value *Op1 = VOp1[I]; |
| 837 | Value *Op2 = VOp2[I]; |
| 838 | Res[I] = Builder.CreateSelect(C: Op0, True: Op1, False: Op2, |
| 839 | Name: SI.getName() + ".i" + Twine(I)); |
| 840 | } |
| 841 | } |
| 842 | gather(Op: &SI, CV: Res, VS: *VS); |
| 843 | return true; |
| 844 | } |
| 845 | |
| 846 | bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { |
| 847 | return splitBinary(I&: ICI, Split: ICmpSplitter(ICI)); |
| 848 | } |
| 849 | |
| 850 | bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { |
| 851 | return splitBinary(I&: FCI, Split: FCmpSplitter(FCI)); |
| 852 | } |
| 853 | |
| 854 | bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { |
| 855 | return splitUnary(I&: UO, Split: UnarySplitter(UO)); |
| 856 | } |
| 857 | |
| 858 | bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { |
| 859 | return splitBinary(I&: BO, Split: BinarySplitter(BO)); |
| 860 | } |
| 861 | |
| 862 | bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 863 | std::optional<VectorSplit> VS = getVectorSplit(Ty: GEPI.getType()); |
| 864 | if (!VS) |
| 865 | return false; |
| 866 | |
| 867 | IRBuilder<> Builder(&GEPI); |
| 868 | unsigned NumIndices = GEPI.getNumIndices(); |
| 869 | |
| 870 | // The base pointer and indices might be scalar even if it's a vector GEP. |
| 871 | SmallVector<Value *, 8> ScalarOps{1 + NumIndices}; |
| 872 | SmallVector<Scatterer, 8> ScatterOps{1 + NumIndices}; |
| 873 | |
| 874 | for (unsigned I = 0; I < 1 + NumIndices; ++I) { |
| 875 | if (auto *VecTy = |
| 876 | dyn_cast<FixedVectorType>(Val: GEPI.getOperand(i_nocapture: I)->getType())) { |
| 877 | std::optional<VectorSplit> OpVS = getVectorSplit(Ty: VecTy); |
| 878 | if (!OpVS || OpVS->NumPacked != VS->NumPacked) { |
| 879 | // This can happen when ScalarizeMinBits is used. |
| 880 | return false; |
| 881 | } |
| 882 | ScatterOps[I] = scatter(Point: &GEPI, V: GEPI.getOperand(i_nocapture: I), VS: *OpVS); |
| 883 | } else { |
| 884 | ScalarOps[I] = GEPI.getOperand(i_nocapture: I); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | ValueVector Res; |
| 889 | Res.resize(N: VS->NumFragments); |
| 890 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 891 | SmallVector<Value *, 8> SplitOps; |
| 892 | SplitOps.resize(N: 1 + NumIndices); |
| 893 | for (unsigned J = 0; J < 1 + NumIndices; ++J) { |
| 894 | if (ScalarOps[J]) |
| 895 | SplitOps[J] = ScalarOps[J]; |
| 896 | else |
| 897 | SplitOps[J] = ScatterOps[J][I]; |
| 898 | } |
| 899 | Res[I] = Builder.CreateGEP(Ty: GEPI.getSourceElementType(), Ptr: SplitOps[0], |
| 900 | IdxList: ArrayRef(SplitOps).drop_front(), |
| 901 | Name: GEPI.getName() + ".i" + Twine(I)); |
| 902 | if (GEPI.isInBounds()) |
| 903 | if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Val: Res[I])) |
| 904 | NewGEPI->setIsInBounds(); |
| 905 | } |
| 906 | gather(Op: &GEPI, CV: Res, VS: *VS); |
| 907 | return true; |
| 908 | } |
| 909 | |
| 910 | bool ScalarizerVisitor::visitCastInst(CastInst &CI) { |
| 911 | std::optional<VectorSplit> DestVS = getVectorSplit(Ty: CI.getDestTy()); |
| 912 | if (!DestVS) |
| 913 | return false; |
| 914 | |
| 915 | std::optional<VectorSplit> SrcVS = getVectorSplit(Ty: CI.getSrcTy()); |
| 916 | if (!SrcVS || SrcVS->NumPacked != DestVS->NumPacked) |
| 917 | return false; |
| 918 | |
| 919 | IRBuilder<> Builder(&CI); |
| 920 | Scatterer Op0 = scatter(Point: &CI, V: CI.getOperand(i_nocapture: 0), VS: *SrcVS); |
| 921 | assert(Op0.size() == SrcVS->NumFragments && "Mismatched cast" ); |
| 922 | ValueVector Res; |
| 923 | Res.resize(N: DestVS->NumFragments); |
| 924 | for (unsigned I = 0; I < DestVS->NumFragments; ++I) |
| 925 | Res[I] = |
| 926 | Builder.CreateCast(Op: CI.getOpcode(), V: Op0[I], DestTy: DestVS->getFragmentType(I), |
| 927 | Name: CI.getName() + ".i" + Twine(I)); |
| 928 | gather(Op: &CI, CV: Res, VS: *DestVS); |
| 929 | return true; |
| 930 | } |
| 931 | |
| 932 | bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { |
| 933 | std::optional<VectorSplit> DstVS = getVectorSplit(Ty: BCI.getDestTy()); |
| 934 | std::optional<VectorSplit> SrcVS = getVectorSplit(Ty: BCI.getSrcTy()); |
| 935 | if (!DstVS || !SrcVS || DstVS->RemainderTy || SrcVS->RemainderTy) |
| 936 | return false; |
| 937 | |
| 938 | const bool isPointerTy = DstVS->VecTy->getElementType()->isPointerTy(); |
| 939 | |
| 940 | // Vectors of pointers are always fully scalarized. |
| 941 | assert(!isPointerTy || (DstVS->NumPacked == 1 && SrcVS->NumPacked == 1)); |
| 942 | |
| 943 | IRBuilder<> Builder(&BCI); |
| 944 | Scatterer Op0 = scatter(Point: &BCI, V: BCI.getOperand(i_nocapture: 0), VS: *SrcVS); |
| 945 | ValueVector Res; |
| 946 | Res.resize(N: DstVS->NumFragments); |
| 947 | |
| 948 | unsigned DstSplitBits = DstVS->SplitTy->getPrimitiveSizeInBits(); |
| 949 | unsigned SrcSplitBits = SrcVS->SplitTy->getPrimitiveSizeInBits(); |
| 950 | |
| 951 | if (isPointerTy || DstSplitBits == SrcSplitBits) { |
| 952 | assert(DstVS->NumFragments == SrcVS->NumFragments); |
| 953 | for (unsigned I = 0; I < DstVS->NumFragments; ++I) { |
| 954 | Res[I] = Builder.CreateBitCast(V: Op0[I], DestTy: DstVS->getFragmentType(I), |
| 955 | Name: BCI.getName() + ".i" + Twine(I)); |
| 956 | } |
| 957 | } else if (SrcSplitBits % DstSplitBits == 0) { |
| 958 | // Convert each source fragment to the same-sized destination vector and |
| 959 | // then scatter the result to the destination. |
| 960 | VectorSplit MidVS; |
| 961 | MidVS.NumPacked = DstVS->NumPacked; |
| 962 | MidVS.NumFragments = SrcSplitBits / DstSplitBits; |
| 963 | MidVS.VecTy = FixedVectorType::get(ElementType: DstVS->VecTy->getElementType(), |
| 964 | NumElts: MidVS.NumPacked * MidVS.NumFragments); |
| 965 | MidVS.SplitTy = DstVS->SplitTy; |
| 966 | |
| 967 | unsigned ResI = 0; |
| 968 | for (unsigned I = 0; I < SrcVS->NumFragments; ++I) { |
| 969 | Value *V = Op0[I]; |
| 970 | |
| 971 | // Look through any existing bitcasts before converting to <N x t2>. |
| 972 | // In the best case, the resulting conversion might be a no-op. |
| 973 | Instruction *VI; |
| 974 | while ((VI = dyn_cast<Instruction>(Val: V)) && |
| 975 | VI->getOpcode() == Instruction::BitCast) |
| 976 | V = VI->getOperand(i: 0); |
| 977 | |
| 978 | V = Builder.CreateBitCast(V, DestTy: MidVS.VecTy, Name: V->getName() + ".cast" ); |
| 979 | |
| 980 | Scatterer Mid = scatter(Point: &BCI, V, VS: MidVS); |
| 981 | for (unsigned J = 0; J < MidVS.NumFragments; ++J) |
| 982 | Res[ResI++] = Mid[J]; |
| 983 | } |
| 984 | } else if (DstSplitBits % SrcSplitBits == 0) { |
| 985 | // Gather enough source fragments to make up a destination fragment and |
| 986 | // then convert to the destination type. |
| 987 | VectorSplit MidVS; |
| 988 | MidVS.NumFragments = DstSplitBits / SrcSplitBits; |
| 989 | MidVS.NumPacked = SrcVS->NumPacked; |
| 990 | MidVS.VecTy = FixedVectorType::get(ElementType: SrcVS->VecTy->getElementType(), |
| 991 | NumElts: MidVS.NumPacked * MidVS.NumFragments); |
| 992 | MidVS.SplitTy = SrcVS->SplitTy; |
| 993 | |
| 994 | unsigned SrcI = 0; |
| 995 | SmallVector<Value *, 8> ConcatOps; |
| 996 | ConcatOps.resize(N: MidVS.NumFragments); |
| 997 | for (unsigned I = 0; I < DstVS->NumFragments; ++I) { |
| 998 | for (unsigned J = 0; J < MidVS.NumFragments; ++J) |
| 999 | ConcatOps[J] = Op0[SrcI++]; |
| 1000 | Value *V = concatenate(Builder, Fragments: ConcatOps, VS: MidVS, |
| 1001 | Name: BCI.getName() + ".i" + Twine(I)); |
| 1002 | Res[I] = Builder.CreateBitCast(V, DestTy: DstVS->getFragmentType(I), |
| 1003 | Name: BCI.getName() + ".i" + Twine(I)); |
| 1004 | } |
| 1005 | } else { |
| 1006 | return false; |
| 1007 | } |
| 1008 | |
| 1009 | gather(Op: &BCI, CV: Res, VS: *DstVS); |
| 1010 | return true; |
| 1011 | } |
| 1012 | |
| 1013 | bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) { |
| 1014 | std::optional<VectorSplit> VS = getVectorSplit(Ty: IEI.getType()); |
| 1015 | if (!VS) |
| 1016 | return false; |
| 1017 | |
| 1018 | IRBuilder<> Builder(&IEI); |
| 1019 | Scatterer Op0 = scatter(Point: &IEI, V: IEI.getOperand(i_nocapture: 0), VS: *VS); |
| 1020 | Value *NewElt = IEI.getOperand(i_nocapture: 1); |
| 1021 | Value *InsIdx = IEI.getOperand(i_nocapture: 2); |
| 1022 | |
| 1023 | ValueVector Res; |
| 1024 | Res.resize(N: VS->NumFragments); |
| 1025 | |
| 1026 | if (auto *CI = dyn_cast<ConstantInt>(Val: InsIdx)) { |
| 1027 | unsigned Idx = CI->getZExtValue(); |
| 1028 | unsigned Fragment = Idx / VS->NumPacked; |
| 1029 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 1030 | if (I == Fragment) { |
| 1031 | bool IsPacked = VS->NumPacked > 1; |
| 1032 | if (Fragment == VS->NumFragments - 1 && VS->RemainderTy && |
| 1033 | !VS->RemainderTy->isVectorTy()) |
| 1034 | IsPacked = false; |
| 1035 | if (IsPacked) { |
| 1036 | Res[I] = |
| 1037 | Builder.CreateInsertElement(Vec: Op0[I], NewElt, Idx: Idx % VS->NumPacked); |
| 1038 | } else { |
| 1039 | Res[I] = NewElt; |
| 1040 | } |
| 1041 | } else { |
| 1042 | Res[I] = Op0[I]; |
| 1043 | } |
| 1044 | } |
| 1045 | } else { |
| 1046 | // Never split a variable insertelement that isn't fully scalarized. |
| 1047 | if (!ScalarizeVariableInsertExtract || VS->NumPacked > 1) |
| 1048 | return false; |
| 1049 | |
| 1050 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 1051 | Value *ShouldReplace = |
| 1052 | Builder.CreateICmpEQ(LHS: InsIdx, RHS: ConstantInt::get(Ty: InsIdx->getType(), V: I), |
| 1053 | Name: InsIdx->getName() + ".is." + Twine(I)); |
| 1054 | Value *OldElt = Op0[I]; |
| 1055 | Res[I] = Builder.CreateSelect(C: ShouldReplace, True: NewElt, False: OldElt, |
| 1056 | Name: IEI.getName() + ".i" + Twine(I)); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | gather(Op: &IEI, CV: Res, VS: *VS); |
| 1061 | return true; |
| 1062 | } |
| 1063 | |
| 1064 | bool ScalarizerVisitor::(ExtractValueInst &EVI) { |
| 1065 | Value *Op = EVI.getOperand(i_nocapture: 0); |
| 1066 | Type *OpTy = Op->getType(); |
| 1067 | ValueVector Res; |
| 1068 | if (!isStructOfMatchingFixedVectors(Ty: OpTy)) |
| 1069 | return false; |
| 1070 | if (CallInst *CI = dyn_cast<CallInst>(Val: Op)) { |
| 1071 | Function *F = CI->getCalledFunction(); |
| 1072 | if (!F) |
| 1073 | return false; |
| 1074 | Intrinsic::ID ID = F->getIntrinsicID(); |
| 1075 | if (ID == Intrinsic::not_intrinsic || !isTriviallyScalarizable(ID, TTI)) |
| 1076 | return false; |
| 1077 | // Note: Fall through means Operand is a`CallInst` and it is defined in |
| 1078 | // `isTriviallyScalarizable`. |
| 1079 | } else |
| 1080 | return false; |
| 1081 | Type *VecType = cast<FixedVectorType>(Val: OpTy->getContainedType(i: 0)); |
| 1082 | std::optional<VectorSplit> VS = getVectorSplit(Ty: VecType); |
| 1083 | if (!VS) |
| 1084 | return false; |
| 1085 | for (unsigned I = 1; I < OpTy->getNumContainedTypes(); I++) { |
| 1086 | std::optional<VectorSplit> CurrVS = |
| 1087 | getVectorSplit(Ty: cast<FixedVectorType>(Val: OpTy->getContainedType(i: I))); |
| 1088 | // It is possible for VectorSplit.NumPacked >= NumElems. If that happens a |
| 1089 | // VectorSplit is not returned and we will bailout of handling this call. |
| 1090 | // The secondary bailout case is if NumPacked does not match. This can |
| 1091 | // happen if ScalarizeMinBits is not set to the default. This means with |
| 1092 | // certain ScalarizeMinBits intrinsics like frexp will only scalarize when |
| 1093 | // the struct elements have the same bitness. |
| 1094 | if (!CurrVS || CurrVS->NumPacked != VS->NumPacked) |
| 1095 | return false; |
| 1096 | } |
| 1097 | IRBuilder<> Builder(&EVI); |
| 1098 | Scatterer Op0 = scatter(Point: &EVI, V: Op, VS: *VS); |
| 1099 | assert(!EVI.getIndices().empty() && "Make sure an index exists" ); |
| 1100 | // Note for our use case we only care about the top level index. |
| 1101 | unsigned Index = EVI.getIndices()[0]; |
| 1102 | for (unsigned OpIdx = 0; OpIdx < Op0.size(); ++OpIdx) { |
| 1103 | Value *ResElem = Builder.CreateExtractValue( |
| 1104 | Agg: Op0[OpIdx], Idxs: Index, Name: EVI.getName() + ".elem" + Twine(Index)); |
| 1105 | Res.push_back(Elt: ResElem); |
| 1106 | } |
| 1107 | |
| 1108 | gather(Op: &EVI, CV: Res, VS: *VS); |
| 1109 | return true; |
| 1110 | } |
| 1111 | |
| 1112 | bool ScalarizerVisitor::(ExtractElementInst &EEI) { |
| 1113 | std::optional<VectorSplit> VS = getVectorSplit(Ty: EEI.getOperand(i_nocapture: 0)->getType()); |
| 1114 | if (!VS) |
| 1115 | return false; |
| 1116 | |
| 1117 | IRBuilder<> Builder(&EEI); |
| 1118 | Scatterer Op0 = scatter(Point: &EEI, V: EEI.getOperand(i_nocapture: 0), VS: *VS); |
| 1119 | Value *ExtIdx = EEI.getOperand(i_nocapture: 1); |
| 1120 | |
| 1121 | if (auto *CI = dyn_cast<ConstantInt>(Val: ExtIdx)) { |
| 1122 | unsigned Idx = CI->getZExtValue(); |
| 1123 | unsigned Fragment = Idx / VS->NumPacked; |
| 1124 | Value *Res = Op0[Fragment]; |
| 1125 | bool IsPacked = VS->NumPacked > 1; |
| 1126 | if (Fragment == VS->NumFragments - 1 && VS->RemainderTy && |
| 1127 | !VS->RemainderTy->isVectorTy()) |
| 1128 | IsPacked = false; |
| 1129 | if (IsPacked) |
| 1130 | Res = Builder.CreateExtractElement(Vec: Res, Idx: Idx % VS->NumPacked); |
| 1131 | replaceUses(Op: &EEI, CV: Res); |
| 1132 | return true; |
| 1133 | } |
| 1134 | |
| 1135 | // Never split a variable extractelement that isn't fully scalarized. |
| 1136 | if (!ScalarizeVariableInsertExtract || VS->NumPacked > 1) |
| 1137 | return false; |
| 1138 | |
| 1139 | Value *Res = PoisonValue::get(T: VS->VecTy->getElementType()); |
| 1140 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 1141 | Value * = |
| 1142 | Builder.CreateICmpEQ(LHS: ExtIdx, RHS: ConstantInt::get(Ty: ExtIdx->getType(), V: I), |
| 1143 | Name: ExtIdx->getName() + ".is." + Twine(I)); |
| 1144 | Value *Elt = Op0[I]; |
| 1145 | Res = Builder.CreateSelect(C: ShouldExtract, True: Elt, False: Res, |
| 1146 | Name: EEI.getName() + ".upto" + Twine(I)); |
| 1147 | } |
| 1148 | replaceUses(Op: &EEI, CV: Res); |
| 1149 | return true; |
| 1150 | } |
| 1151 | |
| 1152 | bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { |
| 1153 | std::optional<VectorSplit> VS = getVectorSplit(Ty: SVI.getType()); |
| 1154 | std::optional<VectorSplit> VSOp = |
| 1155 | getVectorSplit(Ty: SVI.getOperand(i_nocapture: 0)->getType()); |
| 1156 | if (!VS || !VSOp || VS->NumPacked > 1 || VSOp->NumPacked > 1) |
| 1157 | return false; |
| 1158 | |
| 1159 | Scatterer Op0 = scatter(Point: &SVI, V: SVI.getOperand(i_nocapture: 0), VS: *VSOp); |
| 1160 | Scatterer Op1 = scatter(Point: &SVI, V: SVI.getOperand(i_nocapture: 1), VS: *VSOp); |
| 1161 | ValueVector Res; |
| 1162 | Res.resize(N: VS->NumFragments); |
| 1163 | |
| 1164 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 1165 | int Selector = SVI.getMaskValue(Elt: I); |
| 1166 | if (Selector < 0) |
| 1167 | Res[I] = PoisonValue::get(T: VS->VecTy->getElementType()); |
| 1168 | else if (unsigned(Selector) < Op0.size()) |
| 1169 | Res[I] = Op0[Selector]; |
| 1170 | else |
| 1171 | Res[I] = Op1[Selector - Op0.size()]; |
| 1172 | } |
| 1173 | gather(Op: &SVI, CV: Res, VS: *VS); |
| 1174 | return true; |
| 1175 | } |
| 1176 | |
| 1177 | bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { |
| 1178 | std::optional<VectorSplit> VS = getVectorSplit(Ty: PHI.getType()); |
| 1179 | if (!VS) |
| 1180 | return false; |
| 1181 | |
| 1182 | IRBuilder<> Builder(&PHI); |
| 1183 | ValueVector Res; |
| 1184 | Res.resize(N: VS->NumFragments); |
| 1185 | |
| 1186 | unsigned NumOps = PHI.getNumOperands(); |
| 1187 | for (unsigned I = 0; I < VS->NumFragments; ++I) { |
| 1188 | Res[I] = Builder.CreatePHI(Ty: VS->getFragmentType(I), NumReservedValues: NumOps, |
| 1189 | Name: PHI.getName() + ".i" + Twine(I)); |
| 1190 | } |
| 1191 | |
| 1192 | for (unsigned I = 0; I < NumOps; ++I) { |
| 1193 | Scatterer Op = scatter(Point: &PHI, V: PHI.getIncomingValue(i: I), VS: *VS); |
| 1194 | BasicBlock *IncomingBlock = PHI.getIncomingBlock(i: I); |
| 1195 | for (unsigned J = 0; J < VS->NumFragments; ++J) |
| 1196 | cast<PHINode>(Val: Res[J])->addIncoming(V: Op[J], BB: IncomingBlock); |
| 1197 | } |
| 1198 | gather(Op: &PHI, CV: Res, VS: *VS); |
| 1199 | return true; |
| 1200 | } |
| 1201 | |
| 1202 | bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { |
| 1203 | if (!ScalarizeLoadStore) |
| 1204 | return false; |
| 1205 | if (!LI.isSimple()) |
| 1206 | return false; |
| 1207 | |
| 1208 | std::optional<VectorLayout> Layout = getVectorLayout( |
| 1209 | Ty: LI.getType(), Alignment: LI.getAlign(), DL: LI.getDataLayout()); |
| 1210 | if (!Layout) |
| 1211 | return false; |
| 1212 | |
| 1213 | IRBuilder<> Builder(&LI); |
| 1214 | Scatterer Ptr = scatter(Point: &LI, V: LI.getPointerOperand(), VS: Layout->VS); |
| 1215 | ValueVector Res; |
| 1216 | Res.resize(N: Layout->VS.NumFragments); |
| 1217 | |
| 1218 | for (unsigned I = 0; I < Layout->VS.NumFragments; ++I) { |
| 1219 | Res[I] = Builder.CreateAlignedLoad(Ty: Layout->VS.getFragmentType(I), Ptr: Ptr[I], |
| 1220 | Align: Align(Layout->getFragmentAlign(Frag: I)), |
| 1221 | Name: LI.getName() + ".i" + Twine(I)); |
| 1222 | } |
| 1223 | gather(Op: &LI, CV: Res, VS: Layout->VS); |
| 1224 | return true; |
| 1225 | } |
| 1226 | |
| 1227 | bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { |
| 1228 | if (!ScalarizeLoadStore) |
| 1229 | return false; |
| 1230 | if (!SI.isSimple()) |
| 1231 | return false; |
| 1232 | |
| 1233 | Value *FullValue = SI.getValueOperand(); |
| 1234 | std::optional<VectorLayout> Layout = getVectorLayout( |
| 1235 | Ty: FullValue->getType(), Alignment: SI.getAlign(), DL: SI.getDataLayout()); |
| 1236 | if (!Layout) |
| 1237 | return false; |
| 1238 | |
| 1239 | IRBuilder<> Builder(&SI); |
| 1240 | Scatterer VPtr = scatter(Point: &SI, V: SI.getPointerOperand(), VS: Layout->VS); |
| 1241 | Scatterer VVal = scatter(Point: &SI, V: FullValue, VS: Layout->VS); |
| 1242 | |
| 1243 | ValueVector Stores; |
| 1244 | Stores.resize(N: Layout->VS.NumFragments); |
| 1245 | for (unsigned I = 0; I < Layout->VS.NumFragments; ++I) { |
| 1246 | Value *Val = VVal[I]; |
| 1247 | Value *Ptr = VPtr[I]; |
| 1248 | Stores[I] = |
| 1249 | Builder.CreateAlignedStore(Val, Ptr, Align: Layout->getFragmentAlign(Frag: I)); |
| 1250 | } |
| 1251 | transferMetadataAndIRFlags(Op: &SI, CV: Stores); |
| 1252 | return true; |
| 1253 | } |
| 1254 | |
| 1255 | bool ScalarizerVisitor::visitCallInst(CallInst &CI) { |
| 1256 | return splitCall(CI); |
| 1257 | } |
| 1258 | |
| 1259 | bool ScalarizerVisitor::visitFreezeInst(FreezeInst &FI) { |
| 1260 | return splitUnary(I&: FI, Split: [](IRBuilder<> &Builder, Value *Op, const Twine &Name) { |
| 1261 | return Builder.CreateFreeze(V: Op, Name); |
| 1262 | }); |
| 1263 | } |
| 1264 | |
| 1265 | // Delete the instructions that we scalarized. If a full vector result |
| 1266 | // is still needed, recreate it using InsertElements. |
| 1267 | bool ScalarizerVisitor::finish() { |
| 1268 | // The presence of data in Gathered or Scattered indicates changes |
| 1269 | // made to the Function. |
| 1270 | if (Gathered.empty() && Scattered.empty() && !Scalarized) |
| 1271 | return false; |
| 1272 | for (const auto &GMI : Gathered) { |
| 1273 | Instruction *Op = GMI.first; |
| 1274 | ValueVector &CV = *GMI.second; |
| 1275 | if (!Op->use_empty()) { |
| 1276 | // The value is still needed, so recreate it using a series of |
| 1277 | // insertelements and/or shufflevectors. |
| 1278 | Value *Res; |
| 1279 | if (auto *Ty = dyn_cast<FixedVectorType>(Val: Op->getType())) { |
| 1280 | BasicBlock *BB = Op->getParent(); |
| 1281 | IRBuilder<> Builder(Op); |
| 1282 | if (isa<PHINode>(Val: Op)) |
| 1283 | Builder.SetInsertPoint(TheBB: BB, IP: BB->getFirstInsertionPt()); |
| 1284 | |
| 1285 | VectorSplit VS = *getVectorSplit(Ty); |
| 1286 | assert(VS.NumFragments == CV.size()); |
| 1287 | |
| 1288 | Res = concatenate(Builder, Fragments: CV, VS, Name: Op->getName()); |
| 1289 | |
| 1290 | Res->takeName(V: Op); |
| 1291 | } else if (auto *Ty = dyn_cast<StructType>(Val: Op->getType())) { |
| 1292 | BasicBlock *BB = Op->getParent(); |
| 1293 | IRBuilder<> Builder(Op); |
| 1294 | if (isa<PHINode>(Val: Op)) |
| 1295 | Builder.SetInsertPoint(TheBB: BB, IP: BB->getFirstInsertionPt()); |
| 1296 | |
| 1297 | // Iterate over each element in the struct |
| 1298 | unsigned NumOfStructElements = Ty->getNumElements(); |
| 1299 | SmallVector<ValueVector, 4> ElemCV(NumOfStructElements); |
| 1300 | for (unsigned I = 0; I < NumOfStructElements; ++I) { |
| 1301 | for (auto *CVelem : CV) { |
| 1302 | Value *Elem = Builder.CreateExtractValue( |
| 1303 | Agg: CVelem, Idxs: I, Name: Op->getName() + ".elem" + Twine(I)); |
| 1304 | ElemCV[I].push_back(Elt: Elem); |
| 1305 | } |
| 1306 | } |
| 1307 | Res = PoisonValue::get(T: Ty); |
| 1308 | for (unsigned I = 0; I < NumOfStructElements; ++I) { |
| 1309 | Type *ElemTy = Ty->getElementType(N: I); |
| 1310 | assert(isa<FixedVectorType>(ElemTy) && |
| 1311 | "Only Structs of all FixedVectorType supported" ); |
| 1312 | VectorSplit VS = *getVectorSplit(Ty: ElemTy); |
| 1313 | assert(VS.NumFragments == CV.size()); |
| 1314 | |
| 1315 | Value *ConcatenatedVector = |
| 1316 | concatenate(Builder, Fragments: ElemCV[I], VS, Name: Op->getName()); |
| 1317 | Res = Builder.CreateInsertValue(Agg: Res, Val: ConcatenatedVector, Idxs: I, |
| 1318 | Name: Op->getName() + ".insert" ); |
| 1319 | } |
| 1320 | } else { |
| 1321 | assert(CV.size() == 1 && Op->getType() == CV[0]->getType()); |
| 1322 | Res = CV[0]; |
| 1323 | if (Op == Res) |
| 1324 | continue; |
| 1325 | } |
| 1326 | Op->replaceAllUsesWith(V: Res); |
| 1327 | } |
| 1328 | PotentiallyDeadInstrs.emplace_back(Args&: Op); |
| 1329 | } |
| 1330 | Gathered.clear(); |
| 1331 | Scattered.clear(); |
| 1332 | Scalarized = false; |
| 1333 | |
| 1334 | RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts&: PotentiallyDeadInstrs); |
| 1335 | |
| 1336 | return true; |
| 1337 | } |
| 1338 | |
| 1339 | PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 1340 | DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1341 | const TargetTransformInfo *TTI = &AM.getResult<TargetIRAnalysis>(IR&: F); |
| 1342 | ScalarizerVisitor Impl(DT, TTI, Options); |
| 1343 | bool Changed = Impl.visit(F); |
| 1344 | PreservedAnalyses PA; |
| 1345 | PA.preserve<DominatorTreeAnalysis>(); |
| 1346 | return Changed ? PA : PreservedAnalyses::all(); |
| 1347 | } |
| 1348 | |