1 | //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // INPUT CFG: The blocks H and B form an irreducible cycle with two headers. |
10 | // |
11 | // Entry |
12 | // / \ |
13 | // v v |
14 | // H ----> B |
15 | // ^ /| |
16 | // `----' | |
17 | // v |
18 | // Exit |
19 | // |
20 | // OUTPUT CFG: Converted to a natural loop with a new header N. |
21 | // |
22 | // Entry |
23 | // | |
24 | // v |
25 | // N <---. |
26 | // / \ \ |
27 | // / \ | |
28 | // v v / |
29 | // H --> B --' |
30 | // | |
31 | // v |
32 | // Exit |
33 | // |
34 | // To convert an irreducible cycle C to a natural loop L: |
35 | // |
36 | // 1. Add a new node N to C. |
37 | // 2. Redirect all external incoming edges through N. |
38 | // 3. Redirect all edges incident on header H through N. |
39 | // |
40 | // This is sufficient to ensure that: |
41 | // |
42 | // a. Every closed path in C also exists in L, with the modification that any |
43 | // path passing through H now passes through N before reaching H. |
44 | // b. Every external path incident on any entry of C is now incident on N and |
45 | // then redirected to the entry. |
46 | // |
47 | // Thus, L is a strongly connected component dominated by N, and hence L is a |
48 | // natural loop with header N. |
49 | // |
50 | // When an irreducible cycle C with header H is transformed into a loop, the |
51 | // following invariants hold: |
52 | // |
53 | // 1. No new subcycles are "discovered" in the set (C-H). The only internal |
54 | // edges that are redirected by the transform are incident on H. Any subcycle |
55 | // S in (C-H), already existed prior to this transform, and is already in the |
56 | // list of children for this cycle C. |
57 | // |
58 | // 2. Subcycles of C are not modified by the transform. For some subcycle S of |
59 | // C, edges incident on the entries of S are either internal to C, or they |
60 | // are now redirected through N, which is outside of S. So the list of |
61 | // entries to S does not change. Since the transform only adds a block |
62 | // outside S, and redirects edges that are not internal to S, the list of |
63 | // blocks in S does not change. |
64 | // |
65 | // 3. Similarly, any natural loop L included in C is not affected, with one |
66 | // exception: L is "destroyed" by the transform iff its header is H. The |
67 | // backedges of such a loop are now redirected to N instead, and hence the |
68 | // body of this loop gets merged into the new loop with header N. |
69 | // |
70 | // The actual transformation is handled by the ControlFlowHub, which redirects |
71 | // specified control flow edges through a set of guard blocks. This also moves |
72 | // every PHINode in an outgoing block to the hub. Since the hub dominates all |
73 | // the outgoing blocks, each such PHINode continues to dominate its uses. Since |
74 | // every header in an SCC has at least two predecessors, every value used in the |
75 | // header (or later) but defined in a predecessor (or earlier) is represented by |
76 | // a PHINode in a header. Hence the above handling of PHINodes is sufficient and |
77 | // no further processing is required to restore SSA. |
78 | // |
79 | // Limitation: The pass cannot handle switch statements and indirect |
80 | // branches. Both must be lowered to plain branches first. |
81 | // |
82 | //===----------------------------------------------------------------------===// |
83 | |
84 | #include "llvm/Transforms/Utils/FixIrreducible.h" |
85 | #include "llvm/Analysis/CycleAnalysis.h" |
86 | #include "llvm/Analysis/DomTreeUpdater.h" |
87 | #include "llvm/Analysis/LoopInfo.h" |
88 | #include "llvm/InitializePasses.h" |
89 | #include "llvm/Pass.h" |
90 | #include "llvm/Transforms/Utils.h" |
91 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
92 | #include "llvm/Transforms/Utils/ControlFlowUtils.h" |
93 | |
94 | #define DEBUG_TYPE "fix-irreducible" |
95 | |
96 | using namespace llvm; |
97 | |
98 | namespace { |
99 | struct FixIrreducible : public FunctionPass { |
100 | static char ID; |
101 | FixIrreducible() : FunctionPass(ID) { |
102 | initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); |
103 | } |
104 | |
105 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
106 | AU.addRequired<DominatorTreeWrapperPass>(); |
107 | AU.addRequired<CycleInfoWrapperPass>(); |
108 | AU.addPreserved<DominatorTreeWrapperPass>(); |
109 | AU.addPreserved<CycleInfoWrapperPass>(); |
110 | AU.addPreserved<LoopInfoWrapperPass>(); |
111 | } |
112 | |
113 | bool runOnFunction(Function &F) override; |
114 | }; |
115 | } // namespace |
116 | |
117 | char FixIrreducible::ID = 0; |
118 | |
119 | FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } |
120 | |
121 | INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible" , |
122 | "Convert irreducible control-flow into natural loops" , |
123 | false /* Only looks at CFG */, false /* Analysis Pass */) |
124 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
125 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
126 | INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible" , |
127 | "Convert irreducible control-flow into natural loops" , |
128 | false /* Only looks at CFG */, false /* Analysis Pass */) |
129 | |
130 | // When a new loop is created, existing children of the parent loop may now be |
131 | // fully inside the new loop. Reconnect these as children of the new loop. |
132 | static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, |
133 | BasicBlock *) { |
134 | auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() |
135 | : LI.getTopLevelLoopsVector(); |
136 | // Any candidate is a child iff its header is owned by the new loop. Move all |
137 | // the children to a new vector. |
138 | auto FirstChild = llvm::partition(Range&: CandidateLoops, P: [&](Loop *L) { |
139 | return NewLoop == L || !NewLoop->contains(BB: L->getHeader()); |
140 | }); |
141 | SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end()); |
142 | CandidateLoops.erase(first: FirstChild, last: CandidateLoops.end()); |
143 | |
144 | for (Loop *Child : ChildLoops) { |
145 | LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() |
146 | << "\n" ); |
147 | // A child loop whose header was the old cycle header gets destroyed since |
148 | // its backedges are removed. |
149 | if (Child->getHeader() == OldHeader) { |
150 | for (auto *BB : Child->blocks()) { |
151 | if (LI.getLoopFor(BB) != Child) |
152 | continue; |
153 | LI.changeLoopFor(BB, L: NewLoop); |
154 | LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() |
155 | << "\n" ); |
156 | } |
157 | std::vector<Loop *> GrandChildLoops; |
158 | std::swap(x&: GrandChildLoops, y&: Child->getSubLoopsVector()); |
159 | for (auto *GrandChildLoop : GrandChildLoops) { |
160 | GrandChildLoop->setParentLoop(nullptr); |
161 | NewLoop->addChildLoop(NewChild: GrandChildLoop); |
162 | } |
163 | LI.destroy(L: Child); |
164 | LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n" ); |
165 | continue; |
166 | } |
167 | |
168 | Child->setParentLoop(nullptr); |
169 | NewLoop->addChildLoop(NewChild: Child); |
170 | LLVM_DEBUG(dbgs() << "added child loop to new loop\n" ); |
171 | } |
172 | } |
173 | |
174 | static void updateLoopInfo(LoopInfo &LI, Cycle &C, |
175 | ArrayRef<BasicBlock *> GuardBlocks) { |
176 | // The parent loop is a natural loop L mapped to the cycle header H as long as |
177 | // H is not also the header of L. In the latter case, L is destroyed and we |
178 | // seek its parent instead. |
179 | BasicBlock * = C.getHeader(); |
180 | Loop *ParentLoop = LI.getLoopFor(BB: CycleHeader); |
181 | if (ParentLoop && ParentLoop->getHeader() == CycleHeader) |
182 | ParentLoop = ParentLoop->getParentLoop(); |
183 | |
184 | // Create a new loop from the now-transformed cycle |
185 | auto *NewLoop = LI.AllocateLoop(); |
186 | if (ParentLoop) { |
187 | ParentLoop->addChildLoop(NewChild: NewLoop); |
188 | } else { |
189 | LI.addTopLevelLoop(New: NewLoop); |
190 | } |
191 | |
192 | // Add the guard blocks to the new loop. The first guard block is |
193 | // the head of all the backedges, and it is the first to be inserted |
194 | // in the loop. This ensures that it is recognized as the |
195 | // header. Since the new loop is already in LoopInfo, the new blocks |
196 | // are also propagated up the chain of parent loops. |
197 | for (auto *G : GuardBlocks) { |
198 | LLVM_DEBUG(dbgs() << "added guard block to loop: " << G->getName() << "\n" ); |
199 | NewLoop->addBasicBlockToLoop(NewBB: G, LI); |
200 | } |
201 | |
202 | for (auto *BB : C.blocks()) { |
203 | NewLoop->addBlockEntry(BB); |
204 | if (LI.getLoopFor(BB) == ParentLoop) { |
205 | LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() |
206 | << "\n" ); |
207 | LI.changeLoopFor(BB, L: NewLoop); |
208 | } else { |
209 | LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n" ); |
210 | } |
211 | } |
212 | LLVM_DEBUG(dbgs() << "header for new loop: " |
213 | << NewLoop->getHeader()->getName() << "\n" ); |
214 | |
215 | reconnectChildLoops(LI, ParentLoop, NewLoop, OldHeader: C.getHeader()); |
216 | |
217 | LLVM_DEBUG(dbgs() << "Verify new loop.\n" ; NewLoop->print(dbgs())); |
218 | NewLoop->verifyLoop(); |
219 | if (ParentLoop) { |
220 | LLVM_DEBUG(dbgs() << "Verify parent loop.\n" ; ParentLoop->print(dbgs())); |
221 | ParentLoop->verifyLoop(); |
222 | } |
223 | } |
224 | |
225 | // Given a set of blocks and headers in an irreducible SCC, convert it into a |
226 | // natural loop. Also insert this new loop at its appropriate place in the |
227 | // hierarchy of loops. |
228 | static bool fixIrreducible(Cycle &C, CycleInfo &CI, DominatorTree &DT, |
229 | LoopInfo *LI) { |
230 | if (C.isReducible()) |
231 | return false; |
232 | LLVM_DEBUG(dbgs() << "Processing cycle:\n" << CI.print(&C) << "\n" ;); |
233 | |
234 | ControlFlowHub CHub; |
235 | SetVector<BasicBlock *> Predecessors; |
236 | |
237 | // Redirect internal edges incident on the header. |
238 | BasicBlock * = C.getHeader(); |
239 | for (BasicBlock *P : predecessors(BB: Header)) { |
240 | if (C.contains(Block: P)) |
241 | Predecessors.insert(X: P); |
242 | } |
243 | |
244 | for (BasicBlock *P : Predecessors) { |
245 | auto *Branch = cast<BranchInst>(Val: P->getTerminator()); |
246 | // Exactly one of the two successors is the header. |
247 | BasicBlock *Succ0 = Branch->getSuccessor(i: 0) == Header ? Header : nullptr; |
248 | BasicBlock *Succ1 = Succ0 ? nullptr : Header; |
249 | if (!Succ0) |
250 | assert(Branch->getSuccessor(1) == Header); |
251 | assert(Succ0 || Succ1); |
252 | CHub.addBranch(BB: P, Succ0, Succ1); |
253 | |
254 | LLVM_DEBUG(dbgs() << "Added internal branch: " << P->getName() << " -> " |
255 | << (Succ0 ? Succ0->getName() : "" ) << " " |
256 | << (Succ1 ? Succ1->getName() : "" ) << "\n" ); |
257 | } |
258 | |
259 | // Redirect external incoming edges. This includes the edges on the header. |
260 | Predecessors.clear(); |
261 | for (BasicBlock *E : C.entries()) { |
262 | for (BasicBlock *P : predecessors(BB: E)) { |
263 | if (!C.contains(Block: P)) |
264 | Predecessors.insert(X: P); |
265 | } |
266 | } |
267 | |
268 | for (BasicBlock *P : Predecessors) { |
269 | auto *Branch = cast<BranchInst>(Val: P->getTerminator()); |
270 | BasicBlock *Succ0 = Branch->getSuccessor(i: 0); |
271 | Succ0 = C.contains(Block: Succ0) ? Succ0 : nullptr; |
272 | BasicBlock *Succ1 = |
273 | Branch->isUnconditional() ? nullptr : Branch->getSuccessor(i: 1); |
274 | Succ1 = Succ1 && C.contains(Block: Succ1) ? Succ1 : nullptr; |
275 | CHub.addBranch(BB: P, Succ0, Succ1); |
276 | |
277 | LLVM_DEBUG(dbgs() << "Added external branch: " << P->getName() << " -> " |
278 | << (Succ0 ? Succ0->getName() : "" ) << " " |
279 | << (Succ1 ? Succ1->getName() : "" ) << "\n" ); |
280 | } |
281 | |
282 | // Redirect all the backedges through a "hub" consisting of a series |
283 | // of guard blocks that manage the flow of control from the |
284 | // predecessors to the headers. |
285 | SmallVector<BasicBlock *> GuardBlocks; |
286 | |
287 | // Minor optimization: The cycle entries are discovered in an order that is |
288 | // the opposite of the order in which these blocks appear as branch targets. |
289 | // This results in a lot of condition inversions in the control flow out of |
290 | // the new ControlFlowHub, which can be mitigated if the orders match. So we |
291 | // reverse the entries when adding them to the hub. |
292 | SetVector<BasicBlock *> Entries; |
293 | Entries.insert(Start: C.entry_rbegin(), End: C.entry_rend()); |
294 | |
295 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
296 | CHub.finalize(DTU: &DTU, GuardBlocks, Prefix: "irr" ); |
297 | #if defined(EXPENSIVE_CHECKS) |
298 | assert(DT.verify(DominatorTree::VerificationLevel::Full)); |
299 | #else |
300 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
301 | #endif |
302 | |
303 | // If we are updating LoopInfo, do that now before modifying the cycle. This |
304 | // ensures that the first guard block is the header of a new natural loop. |
305 | if (LI) |
306 | updateLoopInfo(LI&: *LI, C, GuardBlocks); |
307 | |
308 | for (auto *G : GuardBlocks) { |
309 | LLVM_DEBUG(dbgs() << "added guard block to cycle: " << G->getName() |
310 | << "\n" ); |
311 | CI.addBlockToCycle(Block: G, Cycle: &C); |
312 | } |
313 | C.setSingleEntry(GuardBlocks[0]); |
314 | |
315 | C.verifyCycle(); |
316 | if (Cycle *Parent = C.getParentCycle()) |
317 | Parent->verifyCycle(); |
318 | |
319 | LLVM_DEBUG(dbgs() << "Finished one cycle:\n" ; CI.print(dbgs());); |
320 | return true; |
321 | } |
322 | |
323 | static bool FixIrreducibleImpl(Function &F, CycleInfo &CI, DominatorTree &DT, |
324 | LoopInfo *LI) { |
325 | LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " |
326 | << F.getName() << "\n" ); |
327 | |
328 | assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator." ); |
329 | |
330 | bool Changed = false; |
331 | for (Cycle *TopCycle : CI.toplevel_cycles()) { |
332 | for (Cycle *C : depth_first(G: TopCycle)) { |
333 | Changed |= fixIrreducible(C&: *C, CI, DT, LI); |
334 | } |
335 | } |
336 | |
337 | if (!Changed) |
338 | return false; |
339 | |
340 | #if defined(EXPENSIVE_CHECKS) |
341 | CI.verify(); |
342 | if (LI) { |
343 | LI->verify(DT); |
344 | } |
345 | #endif // EXPENSIVE_CHECKS |
346 | |
347 | return true; |
348 | } |
349 | |
350 | bool FixIrreducible::runOnFunction(Function &F) { |
351 | auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
352 | LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
353 | auto &CI = getAnalysis<CycleInfoWrapperPass>().getResult(); |
354 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
355 | return FixIrreducibleImpl(F, CI, DT, LI); |
356 | } |
357 | |
358 | PreservedAnalyses FixIrreduciblePass::run(Function &F, |
359 | FunctionAnalysisManager &AM) { |
360 | auto *LI = AM.getCachedResult<LoopAnalysis>(IR&: F); |
361 | auto &CI = AM.getResult<CycleAnalysis>(IR&: F); |
362 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
363 | |
364 | if (!FixIrreducibleImpl(F, CI, DT, LI)) |
365 | return PreservedAnalyses::all(); |
366 | |
367 | PreservedAnalyses PA; |
368 | PA.preserve<LoopAnalysis>(); |
369 | PA.preserve<CycleAnalysis>(); |
370 | PA.preserve<DominatorTreeAnalysis>(); |
371 | return PA; |
372 | } |
373 | |