| 1 | //===----------------- LoopRotationUtils.cpp -----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides utilities to convert a loop into a loop with bottom test. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Transforms/Utils/LoopRotationUtils.h" |
| 14 | #include "llvm/ADT/Statistic.h" |
| 15 | #include "llvm/Analysis/AssumptionCache.h" |
| 16 | #include "llvm/Analysis/CodeMetrics.h" |
| 17 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 18 | #include "llvm/Analysis/InstructionSimplify.h" |
| 19 | #include "llvm/Analysis/LoopInfo.h" |
| 20 | #include "llvm/Analysis/MemorySSA.h" |
| 21 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 22 | #include "llvm/Analysis/ScalarEvolution.h" |
| 23 | #include "llvm/Analysis/ValueTracking.h" |
| 24 | #include "llvm/IR/CFG.h" |
| 25 | #include "llvm/IR/DebugInfo.h" |
| 26 | #include "llvm/IR/Dominators.h" |
| 27 | #include "llvm/IR/IntrinsicInst.h" |
| 28 | #include "llvm/IR/MDBuilder.h" |
| 29 | #include "llvm/IR/ProfDataUtils.h" |
| 30 | #include "llvm/Support/CommandLine.h" |
| 31 | #include "llvm/Support/Debug.h" |
| 32 | #include "llvm/Support/raw_ostream.h" |
| 33 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 34 | #include "llvm/Transforms/Utils/Cloning.h" |
| 35 | #include "llvm/Transforms/Utils/Local.h" |
| 36 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 37 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 38 | using namespace llvm; |
| 39 | |
| 40 | #define DEBUG_TYPE "loop-rotate" |
| 41 | |
| 42 | STATISTIC(, |
| 43 | "Number of loops not rotated due to the header size" ); |
| 44 | STATISTIC(NumInstrsHoisted, |
| 45 | "Number of instructions hoisted into loop preheader" ); |
| 46 | STATISTIC(NumInstrsDuplicated, |
| 47 | "Number of instructions cloned into loop preheader" ); |
| 48 | STATISTIC(NumRotated, "Number of loops rotated" ); |
| 49 | |
| 50 | static cl::opt<bool> |
| 51 | MultiRotate("loop-rotate-multi" , cl::init(Val: false), cl::Hidden, |
| 52 | cl::desc("Allow loop rotation multiple times in order to reach " |
| 53 | "a better latch exit" )); |
| 54 | |
| 55 | // Probability that a rotated loop has zero trip count / is never entered. |
| 56 | static constexpr uint32_t ZeroTripCountWeights[] = {1, 127}; |
| 57 | |
| 58 | namespace { |
| 59 | /// A simple loop rotation transformation. |
| 60 | class LoopRotate { |
| 61 | const unsigned ; |
| 62 | LoopInfo *LI; |
| 63 | const TargetTransformInfo *TTI; |
| 64 | AssumptionCache *AC; |
| 65 | DominatorTree *DT; |
| 66 | ScalarEvolution *SE; |
| 67 | MemorySSAUpdater *MSSAU; |
| 68 | const SimplifyQuery &SQ; |
| 69 | bool RotationOnly; |
| 70 | bool IsUtilMode; |
| 71 | bool PrepareForLTO; |
| 72 | |
| 73 | public: |
| 74 | LoopRotate(unsigned , LoopInfo *LI, |
| 75 | const TargetTransformInfo *TTI, AssumptionCache *AC, |
| 76 | DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
| 77 | const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, |
| 78 | bool PrepareForLTO) |
| 79 | : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), |
| 80 | MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), |
| 81 | IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} |
| 82 | bool processLoop(Loop *L); |
| 83 | |
| 84 | private: |
| 85 | bool rotateLoop(Loop *L, bool SimplifiedLatch); |
| 86 | bool simplifyLoopLatch(Loop *L); |
| 87 | }; |
| 88 | } // end anonymous namespace |
| 89 | |
| 90 | /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not |
| 91 | /// previously exist in the map, and the value was inserted. |
| 92 | static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { |
| 93 | bool Inserted = VM.insert(KV: {K, V}).second; |
| 94 | assert(Inserted); |
| 95 | (void)Inserted; |
| 96 | } |
| 97 | /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the |
| 98 | /// old header into the preheader. If there were uses of the values produced by |
| 99 | /// these instruction that were outside of the loop, we have to insert PHI nodes |
| 100 | /// to merge the two values. Do this now. |
| 101 | static void RewriteUsesOfClonedInstructions(BasicBlock *, |
| 102 | BasicBlock *, |
| 103 | ValueToValueMapTy &ValueMap, |
| 104 | ScalarEvolution *SE, |
| 105 | SmallVectorImpl<PHINode*> *InsertedPHIs) { |
| 106 | // Remove PHI node entries that are no longer live. |
| 107 | BasicBlock::iterator I, E = OrigHeader->end(); |
| 108 | for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(Val&: I); ++I) |
| 109 | PN->removeIncomingValue(Idx: PN->getBasicBlockIndex(BB: OrigPreheader)); |
| 110 | |
| 111 | // Now fix up users of the instructions in OrigHeader, inserting PHI nodes |
| 112 | // as necessary. |
| 113 | SSAUpdater SSA(InsertedPHIs); |
| 114 | for (I = OrigHeader->begin(); I != E; ++I) { |
| 115 | Value * = &*I; |
| 116 | |
| 117 | // If there are no uses of the value (e.g. because it returns void), there |
| 118 | // is nothing to rewrite. |
| 119 | if (OrigHeaderVal->use_empty()) |
| 120 | continue; |
| 121 | |
| 122 | Value * = ValueMap.lookup(Val: OrigHeaderVal); |
| 123 | |
| 124 | // The value now exits in two versions: the initial value in the preheader |
| 125 | // and the loop "next" value in the original header. |
| 126 | SSA.Initialize(Ty: OrigHeaderVal->getType(), Name: OrigHeaderVal->getName()); |
| 127 | // Force re-computation of OrigHeaderVal, as some users now need to use the |
| 128 | // new PHI node. |
| 129 | if (SE) |
| 130 | SE->forgetValue(V: OrigHeaderVal); |
| 131 | SSA.AddAvailableValue(BB: OrigHeader, V: OrigHeaderVal); |
| 132 | SSA.AddAvailableValue(BB: OrigPreheader, V: OrigPreHeaderVal); |
| 133 | |
| 134 | // Visit each use of the OrigHeader instruction. |
| 135 | for (Use &U : llvm::make_early_inc_range(Range: OrigHeaderVal->uses())) { |
| 136 | // SSAUpdater can't handle a non-PHI use in the same block as an |
| 137 | // earlier def. We can easily handle those cases manually. |
| 138 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
| 139 | if (!isa<PHINode>(Val: UserInst)) { |
| 140 | BasicBlock *UserBB = UserInst->getParent(); |
| 141 | |
| 142 | // The original users in the OrigHeader are already using the |
| 143 | // original definitions. |
| 144 | if (UserBB == OrigHeader) |
| 145 | continue; |
| 146 | |
| 147 | // Users in the OrigPreHeader need to use the value to which the |
| 148 | // original definitions are mapped. |
| 149 | if (UserBB == OrigPreheader) { |
| 150 | U = OrigPreHeaderVal; |
| 151 | continue; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // Anything else can be handled by SSAUpdater. |
| 156 | SSA.RewriteUse(U); |
| 157 | } |
| 158 | |
| 159 | // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug |
| 160 | // intrinsics. |
| 161 | SmallVector<DbgValueInst *, 1> DbgValues; |
| 162 | SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; |
| 163 | llvm::findDbgValues(DbgValues, V: OrigHeaderVal, DbgVariableRecords: &DbgVariableRecords); |
| 164 | for (auto &DbgValue : DbgValues) { |
| 165 | // The original users in the OrigHeader are already using the original |
| 166 | // definitions. |
| 167 | BasicBlock *UserBB = DbgValue->getParent(); |
| 168 | if (UserBB == OrigHeader) |
| 169 | continue; |
| 170 | |
| 171 | // Users in the OrigPreHeader need to use the value to which the |
| 172 | // original definitions are mapped and anything else can be handled by |
| 173 | // the SSAUpdater. To avoid adding PHINodes, check if the value is |
| 174 | // available in UserBB, if not substitute poison. |
| 175 | Value *NewVal; |
| 176 | if (UserBB == OrigPreheader) |
| 177 | NewVal = OrigPreHeaderVal; |
| 178 | else if (SSA.HasValueForBlock(BB: UserBB)) |
| 179 | NewVal = SSA.GetValueInMiddleOfBlock(BB: UserBB); |
| 180 | else |
| 181 | NewVal = PoisonValue::get(T: OrigHeaderVal->getType()); |
| 182 | DbgValue->replaceVariableLocationOp(OldValue: OrigHeaderVal, NewValue: NewVal); |
| 183 | } |
| 184 | |
| 185 | // RemoveDIs: duplicate implementation for non-instruction debug-info |
| 186 | // storage in DbgVariableRecords. |
| 187 | for (DbgVariableRecord *DVR : DbgVariableRecords) { |
| 188 | // The original users in the OrigHeader are already using the original |
| 189 | // definitions. |
| 190 | BasicBlock *UserBB = DVR->getMarker()->getParent(); |
| 191 | if (UserBB == OrigHeader) |
| 192 | continue; |
| 193 | |
| 194 | // Users in the OrigPreHeader need to use the value to which the |
| 195 | // original definitions are mapped and anything else can be handled by |
| 196 | // the SSAUpdater. To avoid adding PHINodes, check if the value is |
| 197 | // available in UserBB, if not substitute poison. |
| 198 | Value *NewVal; |
| 199 | if (UserBB == OrigPreheader) |
| 200 | NewVal = OrigPreHeaderVal; |
| 201 | else if (SSA.HasValueForBlock(BB: UserBB)) |
| 202 | NewVal = SSA.GetValueInMiddleOfBlock(BB: UserBB); |
| 203 | else |
| 204 | NewVal = PoisonValue::get(T: OrigHeaderVal->getType()); |
| 205 | DVR->replaceVariableLocationOp(OldValue: OrigHeaderVal, NewValue: NewVal); |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | // Assuming both header and latch are exiting, look for a phi which is only |
| 211 | // used outside the loop (via a LCSSA phi) in the exit from the header. |
| 212 | // This means that rotating the loop can remove the phi. |
| 213 | static bool profitableToRotateLoopExitingLatch(Loop *L) { |
| 214 | BasicBlock * = L->getHeader(); |
| 215 | BranchInst *BI = dyn_cast<BranchInst>(Val: Header->getTerminator()); |
| 216 | assert(BI && BI->isConditional() && "need header with conditional exit" ); |
| 217 | BasicBlock * = BI->getSuccessor(i: 0); |
| 218 | if (L->contains(BB: HeaderExit)) |
| 219 | HeaderExit = BI->getSuccessor(i: 1); |
| 220 | |
| 221 | for (auto &Phi : Header->phis()) { |
| 222 | // Look for uses of this phi in the loop/via exits other than the header. |
| 223 | if (llvm::any_of(Range: Phi.users(), P: [HeaderExit](const User *U) { |
| 224 | return cast<Instruction>(Val: U)->getParent() != HeaderExit; |
| 225 | })) |
| 226 | continue; |
| 227 | return true; |
| 228 | } |
| 229 | return false; |
| 230 | } |
| 231 | |
| 232 | // Check that latch exit is deoptimizing (which means - very unlikely to happen) |
| 233 | // and there is another exit from the loop which is non-deoptimizing. |
| 234 | // If we rotate latch to that exit our loop has a better chance of being fully |
| 235 | // canonical. |
| 236 | // |
| 237 | // It can give false positives in some rare cases. |
| 238 | static bool canRotateDeoptimizingLatchExit(Loop *L) { |
| 239 | BasicBlock *Latch = L->getLoopLatch(); |
| 240 | assert(Latch && "need latch" ); |
| 241 | BranchInst *BI = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
| 242 | // Need normal exiting latch. |
| 243 | if (!BI || !BI->isConditional()) |
| 244 | return false; |
| 245 | |
| 246 | BasicBlock *Exit = BI->getSuccessor(i: 1); |
| 247 | if (L->contains(BB: Exit)) |
| 248 | Exit = BI->getSuccessor(i: 0); |
| 249 | |
| 250 | // Latch exit is non-deoptimizing, no need to rotate. |
| 251 | if (!Exit->getPostdominatingDeoptimizeCall()) |
| 252 | return false; |
| 253 | |
| 254 | SmallVector<BasicBlock *, 4> Exits; |
| 255 | L->getUniqueExitBlocks(ExitBlocks&: Exits); |
| 256 | if (!Exits.empty()) { |
| 257 | // There is at least one non-deoptimizing exit. |
| 258 | // |
| 259 | // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, |
| 260 | // as it can conservatively return false for deoptimizing exits with |
| 261 | // complex enough control flow down to deoptimize call. |
| 262 | // |
| 263 | // That means here we can report success for a case where |
| 264 | // all exits are deoptimizing but one of them has complex enough |
| 265 | // control flow (e.g. with loops). |
| 266 | // |
| 267 | // That should be a very rare case and false positives for this function |
| 268 | // have compile-time effect only. |
| 269 | return any_of(Range&: Exits, P: [](const BasicBlock *BB) { |
| 270 | return !BB->getPostdominatingDeoptimizeCall(); |
| 271 | }); |
| 272 | } |
| 273 | return false; |
| 274 | } |
| 275 | |
| 276 | static void updateBranchWeights(BranchInst &, BranchInst &LoopBI, |
| 277 | bool , |
| 278 | bool SuccsSwapped) { |
| 279 | MDNode *WeightMD = getBranchWeightMDNode(I: PreHeaderBI); |
| 280 | if (WeightMD == nullptr) |
| 281 | return; |
| 282 | |
| 283 | // LoopBI should currently be a clone of PreHeaderBI with the same |
| 284 | // metadata. But we double check to make sure we don't have a degenerate case |
| 285 | // where instsimplify changed the instructions. |
| 286 | if (WeightMD != getBranchWeightMDNode(I: LoopBI)) |
| 287 | return; |
| 288 | |
| 289 | SmallVector<uint32_t, 2> Weights; |
| 290 | extractFromBranchWeightMD32(ProfileData: WeightMD, Weights); |
| 291 | if (Weights.size() != 2) |
| 292 | return; |
| 293 | uint32_t OrigLoopExitWeight = Weights[0]; |
| 294 | uint32_t OrigLoopBackedgeWeight = Weights[1]; |
| 295 | |
| 296 | if (SuccsSwapped) |
| 297 | std::swap(a&: OrigLoopExitWeight, b&: OrigLoopBackedgeWeight); |
| 298 | |
| 299 | // Update branch weights. Consider the following edge-counts: |
| 300 | // |
| 301 | // | |-------- | |
| 302 | // V V | V |
| 303 | // Br i1 ... | Br i1 ... |
| 304 | // | | | | | |
| 305 | // x| y| | becomes: | y0| |----- |
| 306 | // V V | | V V | |
| 307 | // Exit Loop | | Loop | |
| 308 | // | | | Br i1 ... | |
| 309 | // ----- | | | | |
| 310 | // x0| x1| y1 | | |
| 311 | // V V ---- |
| 312 | // Exit |
| 313 | // |
| 314 | // The following must hold: |
| 315 | // - x == x0 + x1 # counts to "exit" must stay the same. |
| 316 | // - y0 == x - x0 == x1 # how often loop was entered at all. |
| 317 | // - y1 == y - y0 # How often loop was repeated (after first iter.). |
| 318 | // |
| 319 | // We cannot generally deduce how often we had a zero-trip count loop so we |
| 320 | // have to make a guess for how to distribute x among the new x0 and x1. |
| 321 | |
| 322 | uint32_t ExitWeight0; // aka x0 |
| 323 | uint32_t ExitWeight1; // aka x1 |
| 324 | uint32_t EnterWeight; // aka y0 |
| 325 | uint32_t LoopBackWeight; // aka y1 |
| 326 | if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) { |
| 327 | ExitWeight0 = 0; |
| 328 | if (HasConditionalPreHeader) { |
| 329 | // Here we cannot know how many 0-trip count loops we have, so we guess: |
| 330 | if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) { |
| 331 | // If the loop count is bigger than the exit count then we set |
| 332 | // probabilities as if 0-trip count nearly never happens. |
| 333 | ExitWeight0 = ZeroTripCountWeights[0]; |
| 334 | // Scale up counts if necessary so we can match `ZeroTripCountWeights` |
| 335 | // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio. |
| 336 | while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) { |
| 337 | // ... but don't overflow. |
| 338 | uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1); |
| 339 | if ((OrigLoopBackedgeWeight & HighBit) != 0 || |
| 340 | (OrigLoopExitWeight & HighBit) != 0) |
| 341 | break; |
| 342 | OrigLoopBackedgeWeight <<= 1; |
| 343 | OrigLoopExitWeight <<= 1; |
| 344 | } |
| 345 | } else { |
| 346 | // If there's a higher exit-count than backedge-count then we set |
| 347 | // probabilities as if there are only 0-trip and 1-trip cases. |
| 348 | ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight; |
| 349 | } |
| 350 | } else { |
| 351 | // Theoretically, if the loop body must be executed at least once, the |
| 352 | // backedge count must be not less than exit count. However the branch |
| 353 | // weight collected by sampling-based PGO may be not very accurate due to |
| 354 | // sampling. Therefore this workaround is required here to avoid underflow |
| 355 | // of unsigned in following update of branch weight. |
| 356 | if (OrigLoopExitWeight > OrigLoopBackedgeWeight) |
| 357 | OrigLoopBackedgeWeight = OrigLoopExitWeight; |
| 358 | } |
| 359 | assert(OrigLoopExitWeight >= ExitWeight0 && "Bad branch weight" ); |
| 360 | ExitWeight1 = OrigLoopExitWeight - ExitWeight0; |
| 361 | EnterWeight = ExitWeight1; |
| 362 | assert(OrigLoopBackedgeWeight >= EnterWeight && "Bad branch weight" ); |
| 363 | LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight; |
| 364 | } else if (OrigLoopExitWeight == 0) { |
| 365 | if (OrigLoopBackedgeWeight == 0) { |
| 366 | // degenerate case... keep everything zero... |
| 367 | ExitWeight0 = 0; |
| 368 | ExitWeight1 = 0; |
| 369 | EnterWeight = 0; |
| 370 | LoopBackWeight = 0; |
| 371 | } else { |
| 372 | // Special case "LoopExitWeight == 0" weights which behaves like an |
| 373 | // endless where we don't want loop-enttry (y0) to be the same as |
| 374 | // loop-exit (x1). |
| 375 | ExitWeight0 = 0; |
| 376 | ExitWeight1 = 0; |
| 377 | EnterWeight = 1; |
| 378 | LoopBackWeight = OrigLoopBackedgeWeight; |
| 379 | } |
| 380 | } else { |
| 381 | // loop is never entered. |
| 382 | assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero" ); |
| 383 | ExitWeight0 = 1; |
| 384 | ExitWeight1 = 1; |
| 385 | EnterWeight = 0; |
| 386 | LoopBackWeight = 0; |
| 387 | } |
| 388 | |
| 389 | const uint32_t LoopBIWeights[] = { |
| 390 | SuccsSwapped ? LoopBackWeight : ExitWeight1, |
| 391 | SuccsSwapped ? ExitWeight1 : LoopBackWeight, |
| 392 | }; |
| 393 | setBranchWeights(I&: LoopBI, Weights: LoopBIWeights, /*IsExpected=*/false); |
| 394 | if (HasConditionalPreHeader) { |
| 395 | const uint32_t [] = { |
| 396 | SuccsSwapped ? EnterWeight : ExitWeight0, |
| 397 | SuccsSwapped ? ExitWeight0 : EnterWeight, |
| 398 | }; |
| 399 | setBranchWeights(I&: PreHeaderBI, Weights: PreHeaderBIWeights, /*IsExpected=*/false); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /// Rotate loop LP. Return true if the loop is rotated. |
| 404 | /// |
| 405 | /// \param SimplifiedLatch is true if the latch was just folded into the final |
| 406 | /// loop exit. In this case we may want to rotate even though the new latch is |
| 407 | /// now an exiting branch. This rotation would have happened had the latch not |
| 408 | /// been simplified. However, if SimplifiedLatch is false, then we avoid |
| 409 | /// rotating loops in which the latch exits to avoid excessive or endless |
| 410 | /// rotation. LoopRotate should be repeatable and converge to a canonical |
| 411 | /// form. This property is satisfied because simplifying the loop latch can only |
| 412 | /// happen once across multiple invocations of the LoopRotate pass. |
| 413 | /// |
| 414 | /// If -loop-rotate-multi is enabled we can do multiple rotations in one go |
| 415 | /// so to reach a suitable (non-deoptimizing) exit. |
| 416 | bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { |
| 417 | // If the loop has only one block then there is not much to rotate. |
| 418 | if (L->getBlocks().size() == 1) |
| 419 | return false; |
| 420 | |
| 421 | bool Rotated = false; |
| 422 | do { |
| 423 | BasicBlock * = L->getHeader(); |
| 424 | BasicBlock *OrigLatch = L->getLoopLatch(); |
| 425 | |
| 426 | BranchInst *BI = dyn_cast<BranchInst>(Val: OrigHeader->getTerminator()); |
| 427 | if (!BI || BI->isUnconditional()) |
| 428 | return Rotated; |
| 429 | |
| 430 | // If the loop header is not one of the loop exiting blocks then |
| 431 | // either this loop is already rotated or it is not |
| 432 | // suitable for loop rotation transformations. |
| 433 | if (!L->isLoopExiting(BB: OrigHeader)) |
| 434 | return Rotated; |
| 435 | |
| 436 | // If the loop latch already contains a branch that leaves the loop then the |
| 437 | // loop is already rotated. |
| 438 | if (!OrigLatch) |
| 439 | return Rotated; |
| 440 | |
| 441 | // Rotate if either the loop latch does *not* exit the loop, or if the loop |
| 442 | // latch was just simplified. Or if we think it will be profitable. |
| 443 | if (L->isLoopExiting(BB: OrigLatch) && !SimplifiedLatch && IsUtilMode == false && |
| 444 | !profitableToRotateLoopExitingLatch(L) && |
| 445 | !canRotateDeoptimizingLatchExit(L)) |
| 446 | return Rotated; |
| 447 | |
| 448 | // Check size of original header and reject loop if it is very big or we can't |
| 449 | // duplicate blocks inside it. |
| 450 | { |
| 451 | SmallPtrSet<const Value *, 32> EphValues; |
| 452 | CodeMetrics::collectEphemeralValues(L, AC, EphValues); |
| 453 | |
| 454 | CodeMetrics Metrics; |
| 455 | Metrics.analyzeBasicBlock(BB: OrigHeader, TTI: *TTI, EphValues, PrepareForLTO); |
| 456 | if (Metrics.notDuplicatable) { |
| 457 | LLVM_DEBUG( |
| 458 | dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" |
| 459 | << " instructions: " ; |
| 460 | L->dump()); |
| 461 | return Rotated; |
| 462 | } |
| 463 | if (Metrics.Convergence != ConvergenceKind::None) { |
| 464 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " |
| 465 | "instructions: " ; |
| 466 | L->dump()); |
| 467 | return Rotated; |
| 468 | } |
| 469 | if (!Metrics.NumInsts.isValid()) { |
| 470 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions" |
| 471 | " with invalid cost: " ; |
| 472 | L->dump()); |
| 473 | return Rotated; |
| 474 | } |
| 475 | if (Metrics.NumInsts > MaxHeaderSize) { |
| 476 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " |
| 477 | << Metrics.NumInsts |
| 478 | << " instructions, which is more than the threshold (" |
| 479 | << MaxHeaderSize << " instructions): " ; |
| 480 | L->dump()); |
| 481 | ++NumNotRotatedDueToHeaderSize; |
| 482 | return Rotated; |
| 483 | } |
| 484 | |
| 485 | // When preparing for LTO, avoid rotating loops with calls that could be |
| 486 | // inlined during the LTO stage. |
| 487 | if (PrepareForLTO && Metrics.NumInlineCandidates > 0) |
| 488 | return Rotated; |
| 489 | } |
| 490 | |
| 491 | // Now, this loop is suitable for rotation. |
| 492 | BasicBlock * = L->getLoopPreheader(); |
| 493 | |
| 494 | // If the loop could not be converted to canonical form, it must have an |
| 495 | // indirectbr in it, just give up. |
| 496 | if (!OrigPreheader || !L->hasDedicatedExits()) |
| 497 | return Rotated; |
| 498 | |
| 499 | // Anything ScalarEvolution may know about this loop or the PHI nodes |
| 500 | // in its header will soon be invalidated. We should also invalidate |
| 501 | // all outer loops because insertion and deletion of blocks that happens |
| 502 | // during the rotation may violate invariants related to backedge taken |
| 503 | // infos in them. |
| 504 | if (SE) { |
| 505 | SE->forgetTopmostLoop(L); |
| 506 | // We may hoist some instructions out of loop. In case if they were cached |
| 507 | // as "loop variant" or "loop computable", these caches must be dropped. |
| 508 | // We also may fold basic blocks, so cached block dispositions also need |
| 509 | // to be dropped. |
| 510 | SE->forgetBlockAndLoopDispositions(); |
| 511 | } |
| 512 | |
| 513 | LLVM_DEBUG(dbgs() << "LoopRotation: rotating " ; L->dump()); |
| 514 | if (MSSAU && VerifyMemorySSA) |
| 515 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 516 | |
| 517 | // Find new Loop header. NewHeader is a Header's one and only successor |
| 518 | // that is inside loop. Header's other successor is outside the |
| 519 | // loop. Otherwise loop is not suitable for rotation. |
| 520 | BasicBlock *Exit = BI->getSuccessor(i: 0); |
| 521 | BasicBlock * = BI->getSuccessor(i: 1); |
| 522 | bool BISuccsSwapped = L->contains(BB: Exit); |
| 523 | if (BISuccsSwapped) |
| 524 | std::swap(a&: Exit, b&: NewHeader); |
| 525 | assert(NewHeader && "Unable to determine new loop header" ); |
| 526 | assert(L->contains(NewHeader) && !L->contains(Exit) && |
| 527 | "Unable to determine loop header and exit blocks" ); |
| 528 | |
| 529 | // This code assumes that the new header has exactly one predecessor. |
| 530 | // Remove any single-entry PHI nodes in it. |
| 531 | assert(NewHeader->getSinglePredecessor() && |
| 532 | "New header doesn't have one pred!" ); |
| 533 | FoldSingleEntryPHINodes(BB: NewHeader); |
| 534 | |
| 535 | // Begin by walking OrigHeader and populating ValueMap with an entry for |
| 536 | // each Instruction. |
| 537 | BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); |
| 538 | ValueToValueMapTy ValueMap, ValueMapMSSA; |
| 539 | |
| 540 | // For PHI nodes, the value available in OldPreHeader is just the |
| 541 | // incoming value from OldPreHeader. |
| 542 | for (; PHINode *PN = dyn_cast<PHINode>(Val&: I); ++I) |
| 543 | InsertNewValueIntoMap(VM&: ValueMap, K: PN, |
| 544 | V: PN->getIncomingValueForBlock(BB: OrigPreheader)); |
| 545 | |
| 546 | // For the rest of the instructions, either hoist to the OrigPreheader if |
| 547 | // possible or create a clone in the OldPreHeader if not. |
| 548 | Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); |
| 549 | |
| 550 | // Record all debug records preceding LoopEntryBranch to avoid |
| 551 | // duplication. |
| 552 | using DbgHash = |
| 553 | std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; |
| 554 | auto makeHash = [](const DbgVariableRecord *D) -> DbgHash { |
| 555 | auto VarLocOps = D->location_ops(); |
| 556 | return {{hash_combine_range(R&: VarLocOps), D->getVariable()}, |
| 557 | D->getExpression()}; |
| 558 | }; |
| 559 | |
| 560 | SmallDenseSet<DbgHash, 8> DbgRecords; |
| 561 | // Build DbgVariableRecord hashes for DbgVariableRecords attached to the |
| 562 | // terminator. |
| 563 | for (const DbgVariableRecord &DVR : |
| 564 | filterDbgVars(R: OrigPreheader->getTerminator()->getDbgRecordRange())) |
| 565 | DbgRecords.insert(V: makeHash(&DVR)); |
| 566 | |
| 567 | // Remember the local noalias scope declarations in the header. After the |
| 568 | // rotation, they must be duplicated and the scope must be cloned. This |
| 569 | // avoids unwanted interaction across iterations. |
| 570 | SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; |
| 571 | for (Instruction &I : *OrigHeader) |
| 572 | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(Val: &I)) |
| 573 | NoAliasDeclInstructions.push_back(Elt: Decl); |
| 574 | |
| 575 | Module *M = OrigHeader->getModule(); |
| 576 | |
| 577 | // Track the next DbgRecord to clone. If we have a sequence where an |
| 578 | // instruction is hoisted instead of being cloned: |
| 579 | // DbgRecord blah |
| 580 | // %foo = add i32 0, 0 |
| 581 | // DbgRecord xyzzy |
| 582 | // %bar = call i32 @foobar() |
| 583 | // where %foo is hoisted, then the DbgRecord "blah" will be seen twice, once |
| 584 | // attached to %foo, then when %foo his hoisted it will "fall down" onto the |
| 585 | // function call: |
| 586 | // DbgRecord blah |
| 587 | // DbgRecord xyzzy |
| 588 | // %bar = call i32 @foobar() |
| 589 | // causing it to appear attached to the call too. |
| 590 | // |
| 591 | // To avoid this, cloneDebugInfoFrom takes an optional "start cloning from |
| 592 | // here" position to account for this behaviour. We point it at any |
| 593 | // DbgRecords on the next instruction, here labelled xyzzy, before we hoist |
| 594 | // %foo. Later, we only only clone DbgRecords from that position (xyzzy) |
| 595 | // onwards, which avoids cloning DbgRecord "blah" multiple times. (Stored as |
| 596 | // a range because it gives us a natural way of testing whether |
| 597 | // there were DbgRecords on the next instruction before we hoisted things). |
| 598 | iterator_range<DbgRecord::self_iterator> NextDbgInsts = |
| 599 | (I != E) ? I->getDbgRecordRange() : DbgMarker::getEmptyDbgRecordRange(); |
| 600 | |
| 601 | while (I != E) { |
| 602 | Instruction *Inst = &*I++; |
| 603 | |
| 604 | // If the instruction's operands are invariant and it doesn't read or write |
| 605 | // memory, then it is safe to hoist. Doing this doesn't change the order of |
| 606 | // execution in the preheader, but does prevent the instruction from |
| 607 | // executing in each iteration of the loop. This means it is safe to hoist |
| 608 | // something that might trap, but isn't safe to hoist something that reads |
| 609 | // memory (without proving that the loop doesn't write). |
| 610 | if (L->hasLoopInvariantOperands(I: Inst) && !Inst->mayReadFromMemory() && |
| 611 | !Inst->mayWriteToMemory() && !Inst->isTerminator() && |
| 612 | !isa<AllocaInst>(Val: Inst) && |
| 613 | // It is not safe to hoist the value of these instructions in |
| 614 | // coroutines, as the addresses of otherwise eligible variables (e.g. |
| 615 | // thread-local variables and errno) may change if the coroutine is |
| 616 | // resumed in a different thread.Therefore, we disable this |
| 617 | // optimization for correctness. However, this may block other correct |
| 618 | // optimizations. |
| 619 | // FIXME: This should be reverted once we have a better model for |
| 620 | // memory access in coroutines. |
| 621 | !Inst->getFunction()->isPresplitCoroutine()) { |
| 622 | |
| 623 | if (!NextDbgInsts.empty()) { |
| 624 | auto DbgValueRange = |
| 625 | LoopEntryBranch->cloneDebugInfoFrom(From: Inst, FromHere: NextDbgInsts.begin()); |
| 626 | RemapDbgRecordRange(M, Range: DbgValueRange, VM&: ValueMap, |
| 627 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 628 | // Erase anything we've seen before. |
| 629 | for (DbgVariableRecord &DVR : |
| 630 | make_early_inc_range(Range: filterDbgVars(R: DbgValueRange))) |
| 631 | if (DbgRecords.count(V: makeHash(&DVR))) |
| 632 | DVR.eraseFromParent(); |
| 633 | } |
| 634 | |
| 635 | NextDbgInsts = I->getDbgRecordRange(); |
| 636 | |
| 637 | Inst->moveBefore(InsertPos: LoopEntryBranch->getIterator()); |
| 638 | |
| 639 | ++NumInstrsHoisted; |
| 640 | continue; |
| 641 | } |
| 642 | |
| 643 | // Otherwise, create a duplicate of the instruction. |
| 644 | Instruction *C = Inst->clone(); |
| 645 | if (const DebugLoc &DL = C->getDebugLoc()) |
| 646 | mapAtomInstance(DL, VMap&: ValueMap); |
| 647 | |
| 648 | C->insertBefore(InsertPos: LoopEntryBranch->getIterator()); |
| 649 | |
| 650 | ++NumInstrsDuplicated; |
| 651 | |
| 652 | if (!NextDbgInsts.empty()) { |
| 653 | auto Range = C->cloneDebugInfoFrom(From: Inst, FromHere: NextDbgInsts.begin()); |
| 654 | RemapDbgRecordRange(M, Range, VM&: ValueMap, |
| 655 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 656 | NextDbgInsts = DbgMarker::getEmptyDbgRecordRange(); |
| 657 | // Erase anything we've seen before. |
| 658 | for (DbgVariableRecord &DVR : |
| 659 | make_early_inc_range(Range: filterDbgVars(R: Range))) |
| 660 | if (DbgRecords.count(V: makeHash(&DVR))) |
| 661 | DVR.eraseFromParent(); |
| 662 | } |
| 663 | |
| 664 | // Eagerly remap the operands of the instruction. |
| 665 | RemapInstruction(I: C, VM&: ValueMap, |
| 666 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 667 | |
| 668 | // With the operands remapped, see if the instruction constant folds or is |
| 669 | // otherwise simplifyable. This commonly occurs because the entry from PHI |
| 670 | // nodes allows icmps and other instructions to fold. |
| 671 | Value *V = simplifyInstruction(I: C, Q: SQ); |
| 672 | if (V && LI->replacementPreservesLCSSAForm(From: C, To: V)) { |
| 673 | // If so, then delete the temporary instruction and stick the folded value |
| 674 | // in the map. |
| 675 | InsertNewValueIntoMap(VM&: ValueMap, K: Inst, V); |
| 676 | if (!C->mayHaveSideEffects()) { |
| 677 | C->eraseFromParent(); |
| 678 | C = nullptr; |
| 679 | } |
| 680 | } else { |
| 681 | InsertNewValueIntoMap(VM&: ValueMap, K: Inst, V: C); |
| 682 | } |
| 683 | if (C) { |
| 684 | // Otherwise, stick the new instruction into the new block! |
| 685 | C->setName(Inst->getName()); |
| 686 | |
| 687 | if (auto *II = dyn_cast<AssumeInst>(Val: C)) |
| 688 | AC->registerAssumption(CI: II); |
| 689 | // MemorySSA cares whether the cloned instruction was inserted or not, and |
| 690 | // not whether it can be remapped to a simplified value. |
| 691 | if (MSSAU) |
| 692 | InsertNewValueIntoMap(VM&: ValueMapMSSA, K: Inst, V: C); |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | if (!NoAliasDeclInstructions.empty()) { |
| 697 | // There are noalias scope declarations: |
| 698 | // (general): |
| 699 | // Original: OrigPre { OrigHeader NewHeader ... Latch } |
| 700 | // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } |
| 701 | // |
| 702 | // with D: llvm.experimental.noalias.scope.decl, |
| 703 | // U: !noalias or !alias.scope depending on D |
| 704 | // ... { D U1 U2 } can transform into: |
| 705 | // (0) : ... { D U1 U2 } // no relevant rotation for this part |
| 706 | // (1) : ... D' { U1 U2 D } // D is part of OrigHeader |
| 707 | // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader |
| 708 | // |
| 709 | // We now want to transform: |
| 710 | // (1) -> : ... D' { D U1 U2 D'' } |
| 711 | // (2) -> : ... D' U1' { D U2 D'' U1'' } |
| 712 | // D: original llvm.experimental.noalias.scope.decl |
| 713 | // D', U1': duplicate with replaced scopes |
| 714 | // D'', U1'': different duplicate with replaced scopes |
| 715 | // This ensures a safe fallback to 'may_alias' introduced by the rotate, |
| 716 | // as U1'' and U1' scopes will not be compatible wrt to the local restrict |
| 717 | |
| 718 | // Clone the llvm.experimental.noalias.decl again for the NewHeader. |
| 719 | BasicBlock::iterator = |
| 720 | NewHeader->getFirstNonPHIIt(); |
| 721 | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { |
| 722 | LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" |
| 723 | << *NAD << "\n" ); |
| 724 | Instruction *NewNAD = NAD->clone(); |
| 725 | NewNAD->insertBefore(BB&: *NewHeader, InsertPos: NewHeaderInsertionPoint); |
| 726 | } |
| 727 | |
| 728 | // Scopes must now be duplicated, once for OrigHeader and once for |
| 729 | // OrigPreHeader'. |
| 730 | { |
| 731 | auto &Context = NewHeader->getContext(); |
| 732 | |
| 733 | SmallVector<MDNode *, 8> NoAliasDeclScopes; |
| 734 | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) |
| 735 | NoAliasDeclScopes.push_back(Elt: NAD->getScopeList()); |
| 736 | |
| 737 | LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n" ); |
| 738 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, NewBlocks: {OrigHeader}, Context, |
| 739 | Ext: "h.rot" ); |
| 740 | LLVM_DEBUG(OrigHeader->dump()); |
| 741 | |
| 742 | // Keep the compile time impact low by only adapting the inserted block |
| 743 | // of instructions in the OrigPreHeader. This might result in slightly |
| 744 | // more aliasing between these instructions and those that were already |
| 745 | // present, but it will be much faster when the original PreHeader is |
| 746 | // large. |
| 747 | LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n" ); |
| 748 | auto *FirstDecl = |
| 749 | cast<Instruction>(Val&: ValueMap[*NoAliasDeclInstructions.begin()]); |
| 750 | auto *LastInst = &OrigPreheader->back(); |
| 751 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, IStart: FirstDecl, IEnd: LastInst, |
| 752 | Context, Ext: "pre.rot" ); |
| 753 | LLVM_DEBUG(OrigPreheader->dump()); |
| 754 | |
| 755 | LLVM_DEBUG(dbgs() << " Updated NewHeader:\n" ); |
| 756 | LLVM_DEBUG(NewHeader->dump()); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | // Along with all the other instructions, we just cloned OrigHeader's |
| 761 | // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's |
| 762 | // successors by duplicating their incoming values for OrigHeader. |
| 763 | for (BasicBlock *SuccBB : successors(BB: OrigHeader)) |
| 764 | for (BasicBlock::iterator BI = SuccBB->begin(); |
| 765 | PHINode *PN = dyn_cast<PHINode>(Val&: BI); ++BI) |
| 766 | PN->addIncoming(V: PN->getIncomingValueForBlock(BB: OrigHeader), BB: OrigPreheader); |
| 767 | |
| 768 | // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove |
| 769 | // OrigPreHeader's old terminator (the original branch into the loop), and |
| 770 | // remove the corresponding incoming values from the PHI nodes in OrigHeader. |
| 771 | LoopEntryBranch->eraseFromParent(); |
| 772 | OrigPreheader->flushTerminatorDbgRecords(); |
| 773 | |
| 774 | // Update MemorySSA before the rewrite call below changes the 1:1 |
| 775 | // instruction:cloned_instruction_or_value mapping. |
| 776 | if (MSSAU) { |
| 777 | InsertNewValueIntoMap(VM&: ValueMapMSSA, K: OrigHeader, V: OrigPreheader); |
| 778 | MSSAU->updateForClonedBlockIntoPred(BB: OrigHeader, P1: OrigPreheader, |
| 779 | VM: ValueMapMSSA); |
| 780 | } |
| 781 | |
| 782 | SmallVector<PHINode*, 2> InsertedPHIs; |
| 783 | // If there were any uses of instructions in the duplicated block outside the |
| 784 | // loop, update them, inserting PHI nodes as required |
| 785 | RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE, |
| 786 | InsertedPHIs: &InsertedPHIs); |
| 787 | |
| 788 | // Attach debug records to the new phis if that phi uses a value that |
| 789 | // previously had debug metadata attached. This keeps the debug info |
| 790 | // up-to-date in the loop body. |
| 791 | if (!InsertedPHIs.empty()) |
| 792 | insertDebugValuesForPHIs(BB: OrigHeader, InsertedPHIs); |
| 793 | |
| 794 | // NewHeader is now the header of the loop. |
| 795 | L->moveToHeader(BB: NewHeader); |
| 796 | assert(L->getHeader() == NewHeader && "Latch block is our new header" ); |
| 797 | |
| 798 | // Inform DT about changes to the CFG. |
| 799 | if (DT) { |
| 800 | // The OrigPreheader branches to the NewHeader and Exit now. Then, inform |
| 801 | // the DT about the removed edge to the OrigHeader (that got removed). |
| 802 | SmallVector<DominatorTree::UpdateType, 3> Updates = { |
| 803 | {DominatorTree::Insert, OrigPreheader, Exit}, |
| 804 | {DominatorTree::Insert, OrigPreheader, NewHeader}, |
| 805 | {DominatorTree::Delete, OrigPreheader, OrigHeader}}; |
| 806 | |
| 807 | if (MSSAU) { |
| 808 | MSSAU->applyUpdates(Updates, DT&: *DT, /*UpdateDT=*/UpdateDTFirst: true); |
| 809 | if (VerifyMemorySSA) |
| 810 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 811 | } else { |
| 812 | DT->applyUpdates(Updates); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | // At this point, we've finished our major CFG changes. As part of cloning |
| 817 | // the loop into the preheader we've simplified instructions and the |
| 818 | // duplicated conditional branch may now be branching on a constant. If it is |
| 819 | // branching on a constant and if that constant means that we enter the loop, |
| 820 | // then we fold away the cond branch to an uncond branch. This simplifies the |
| 821 | // loop in cases important for nested loops, and it also means we don't have |
| 822 | // to split as many edges. |
| 823 | BranchInst *PHBI = cast<BranchInst>(Val: OrigPreheader->getTerminator()); |
| 824 | assert(PHBI->isConditional() && "Should be clone of BI condbr!" ); |
| 825 | const Value *Cond = PHBI->getCondition(); |
| 826 | const bool = |
| 827 | !isa<ConstantInt>(Val: Cond) || |
| 828 | PHBI->getSuccessor(i: cast<ConstantInt>(Val: Cond)->isZero()) != NewHeader; |
| 829 | |
| 830 | updateBranchWeights(PreHeaderBI&: *PHBI, LoopBI&: *BI, HasConditionalPreHeader, SuccsSwapped: BISuccsSwapped); |
| 831 | |
| 832 | if (HasConditionalPreHeader) { |
| 833 | // The conditional branch can't be folded, handle the general case. |
| 834 | // Split edges as necessary to preserve LoopSimplify form. |
| 835 | |
| 836 | // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and |
| 837 | // thus is not a preheader anymore. |
| 838 | // Split the edge to form a real preheader. |
| 839 | BasicBlock *NewPH = SplitCriticalEdge( |
| 840 | Src: OrigPreheader, Dst: NewHeader, |
| 841 | Options: CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); |
| 842 | NewPH->setName(NewHeader->getName() + ".lr.ph" ); |
| 843 | |
| 844 | // Preserve canonical loop form, which means that 'Exit' should have only |
| 845 | // one predecessor. Note that Exit could be an exit block for multiple |
| 846 | // nested loops, causing both of the edges to now be critical and need to |
| 847 | // be split. |
| 848 | SmallVector<BasicBlock *, 4> ExitPreds(predecessors(BB: Exit)); |
| 849 | bool SplitLatchEdge = false; |
| 850 | for (BasicBlock *ExitPred : ExitPreds) { |
| 851 | // We only need to split loop exit edges. |
| 852 | Loop *PredLoop = LI->getLoopFor(BB: ExitPred); |
| 853 | if (!PredLoop || PredLoop->contains(BB: Exit) || |
| 854 | isa<IndirectBrInst>(Val: ExitPred->getTerminator())) |
| 855 | continue; |
| 856 | SplitLatchEdge |= L->getLoopLatch() == ExitPred; |
| 857 | BasicBlock *ExitSplit = SplitCriticalEdge( |
| 858 | Src: ExitPred, Dst: Exit, |
| 859 | Options: CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); |
| 860 | ExitSplit->moveBefore(MovePos: Exit); |
| 861 | } |
| 862 | assert(SplitLatchEdge && |
| 863 | "Despite splitting all preds, failed to split latch exit?" ); |
| 864 | (void)SplitLatchEdge; |
| 865 | } else { |
| 866 | // We can fold the conditional branch in the preheader, this makes things |
| 867 | // simpler. The first step is to remove the extra edge to the Exit block. |
| 868 | Exit->removePredecessor(Pred: OrigPreheader, KeepOneInputPHIs: true /*preserve LCSSA*/); |
| 869 | BranchInst *NewBI = BranchInst::Create(IfTrue: NewHeader, InsertBefore: PHBI->getIterator()); |
| 870 | NewBI->setDebugLoc(PHBI->getDebugLoc()); |
| 871 | PHBI->eraseFromParent(); |
| 872 | |
| 873 | // With our CFG finalized, update DomTree if it is available. |
| 874 | if (DT) DT->deleteEdge(From: OrigPreheader, To: Exit); |
| 875 | |
| 876 | // Update MSSA too, if available. |
| 877 | if (MSSAU) |
| 878 | MSSAU->removeEdge(From: OrigPreheader, To: Exit); |
| 879 | } |
| 880 | |
| 881 | assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation" ); |
| 882 | assert(L->getLoopLatch() && "Invalid loop latch after loop rotation" ); |
| 883 | |
| 884 | if (MSSAU && VerifyMemorySSA) |
| 885 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 886 | |
| 887 | // Now that the CFG and DomTree are in a consistent state again, try to merge |
| 888 | // the OrigHeader block into OrigLatch. This will succeed if they are |
| 889 | // connected by an unconditional branch. This is just a cleanup so the |
| 890 | // emitted code isn't too gross in this common case. |
| 891 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| 892 | BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); |
| 893 | bool DidMerge = MergeBlockIntoPredecessor(BB: OrigHeader, DTU: &DTU, LI, MSSAU); |
| 894 | if (DidMerge) |
| 895 | RemoveRedundantDbgInstrs(BB: PredBB); |
| 896 | |
| 897 | if (MSSAU && VerifyMemorySSA) |
| 898 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 899 | |
| 900 | LLVM_DEBUG(dbgs() << "LoopRotation: into " ; L->dump()); |
| 901 | |
| 902 | ++NumRotated; |
| 903 | |
| 904 | Rotated = true; |
| 905 | SimplifiedLatch = false; |
| 906 | |
| 907 | // Check that new latch is a deoptimizing exit and then repeat rotation if possible. |
| 908 | // Deoptimizing latch exit is not a generally typical case, so we just loop over. |
| 909 | // TODO: if it becomes a performance bottleneck extend rotation algorithm |
| 910 | // to handle multiple rotations in one go. |
| 911 | } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); |
| 912 | |
| 913 | |
| 914 | return true; |
| 915 | } |
| 916 | |
| 917 | /// Determine whether the instructions in this range may be safely and cheaply |
| 918 | /// speculated. This is not an important enough situation to develop complex |
| 919 | /// heuristics. We handle a single arithmetic instruction along with any type |
| 920 | /// conversions. |
| 921 | static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, |
| 922 | BasicBlock::iterator End, Loop *L) { |
| 923 | bool seenIncrement = false; |
| 924 | bool MultiExitLoop = false; |
| 925 | |
| 926 | if (!L->getExitingBlock()) |
| 927 | MultiExitLoop = true; |
| 928 | |
| 929 | for (BasicBlock::iterator I = Begin; I != End; ++I) { |
| 930 | |
| 931 | if (!isSafeToSpeculativelyExecute(I: &*I)) |
| 932 | return false; |
| 933 | |
| 934 | switch (I->getOpcode()) { |
| 935 | default: |
| 936 | return false; |
| 937 | case Instruction::GetElementPtr: |
| 938 | // GEPs are cheap if all indices are constant. |
| 939 | if (!cast<GEPOperator>(Val&: I)->hasAllConstantIndices()) |
| 940 | return false; |
| 941 | // fall-thru to increment case |
| 942 | [[fallthrough]]; |
| 943 | case Instruction::Add: |
| 944 | case Instruction::Sub: |
| 945 | case Instruction::And: |
| 946 | case Instruction::Or: |
| 947 | case Instruction::Xor: |
| 948 | case Instruction::Shl: |
| 949 | case Instruction::LShr: |
| 950 | case Instruction::AShr: { |
| 951 | Value *IVOpnd = |
| 952 | !isa<Constant>(Val: I->getOperand(i: 0)) |
| 953 | ? I->getOperand(i: 0) |
| 954 | : !isa<Constant>(Val: I->getOperand(i: 1)) ? I->getOperand(i: 1) : nullptr; |
| 955 | if (!IVOpnd) |
| 956 | return false; |
| 957 | |
| 958 | // If increment operand is used outside of the loop, this speculation |
| 959 | // could cause extra live range interference. |
| 960 | if (MultiExitLoop) { |
| 961 | for (User *UseI : IVOpnd->users()) { |
| 962 | auto *UserInst = cast<Instruction>(Val: UseI); |
| 963 | if (!L->contains(Inst: UserInst)) |
| 964 | return false; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | if (seenIncrement) |
| 969 | return false; |
| 970 | seenIncrement = true; |
| 971 | break; |
| 972 | } |
| 973 | case Instruction::Trunc: |
| 974 | case Instruction::ZExt: |
| 975 | case Instruction::SExt: |
| 976 | // ignore type conversions |
| 977 | break; |
| 978 | } |
| 979 | } |
| 980 | return true; |
| 981 | } |
| 982 | |
| 983 | /// Fold the loop tail into the loop exit by speculating the loop tail |
| 984 | /// instructions. Typically, this is a single post-increment. In the case of a |
| 985 | /// simple 2-block loop, hoisting the increment can be much better than |
| 986 | /// duplicating the entire loop header. In the case of loops with early exits, |
| 987 | /// rotation will not work anyway, but simplifyLoopLatch will put the loop in |
| 988 | /// canonical form so downstream passes can handle it. |
| 989 | /// |
| 990 | /// I don't believe this invalidates SCEV. |
| 991 | bool LoopRotate::simplifyLoopLatch(Loop *L) { |
| 992 | BasicBlock *Latch = L->getLoopLatch(); |
| 993 | if (!Latch || Latch->hasAddressTaken()) |
| 994 | return false; |
| 995 | |
| 996 | BranchInst *Jmp = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
| 997 | if (!Jmp || !Jmp->isUnconditional()) |
| 998 | return false; |
| 999 | |
| 1000 | BasicBlock *LastExit = Latch->getSinglePredecessor(); |
| 1001 | if (!LastExit || !L->isLoopExiting(BB: LastExit)) |
| 1002 | return false; |
| 1003 | |
| 1004 | BranchInst *BI = dyn_cast<BranchInst>(Val: LastExit->getTerminator()); |
| 1005 | if (!BI) |
| 1006 | return false; |
| 1007 | |
| 1008 | if (!shouldSpeculateInstrs(Begin: Latch->begin(), End: Jmp->getIterator(), L)) |
| 1009 | return false; |
| 1010 | |
| 1011 | LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " |
| 1012 | << LastExit->getName() << "\n" ); |
| 1013 | |
| 1014 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| 1015 | MergeBlockIntoPredecessor(BB: Latch, DTU: &DTU, LI, MSSAU, MemDep: nullptr, |
| 1016 | /*PredecessorWithTwoSuccessors=*/true); |
| 1017 | |
| 1018 | if (SE) { |
| 1019 | // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache. |
| 1020 | SE->forgetBlockAndLoopDispositions(); |
| 1021 | } |
| 1022 | |
| 1023 | if (MSSAU && VerifyMemorySSA) |
| 1024 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 1025 | |
| 1026 | return true; |
| 1027 | } |
| 1028 | |
| 1029 | /// Rotate \c L, and return true if any modification was made. |
| 1030 | bool LoopRotate::processLoop(Loop *L) { |
| 1031 | // Save the loop metadata. |
| 1032 | MDNode *LoopMD = L->getLoopID(); |
| 1033 | |
| 1034 | bool SimplifiedLatch = false; |
| 1035 | |
| 1036 | // Simplify the loop latch before attempting to rotate the header |
| 1037 | // upward. Rotation may not be needed if the loop tail can be folded into the |
| 1038 | // loop exit. |
| 1039 | if (!RotationOnly) |
| 1040 | SimplifiedLatch = simplifyLoopLatch(L); |
| 1041 | |
| 1042 | bool MadeChange = rotateLoop(L, SimplifiedLatch); |
| 1043 | assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && |
| 1044 | "Loop latch should be exiting after loop-rotate." ); |
| 1045 | |
| 1046 | // Restore the loop metadata. |
| 1047 | // NB! We presume LoopRotation DOESN'T ADD its own metadata. |
| 1048 | if ((MadeChange || SimplifiedLatch) && LoopMD) |
| 1049 | L->setLoopID(LoopMD); |
| 1050 | |
| 1051 | return MadeChange || SimplifiedLatch; |
| 1052 | } |
| 1053 | |
| 1054 | |
| 1055 | /// The utility to convert a loop into a loop with bottom test. |
| 1056 | bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, |
| 1057 | AssumptionCache *AC, DominatorTree *DT, |
| 1058 | ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
| 1059 | const SimplifyQuery &SQ, bool RotationOnly = true, |
| 1060 | unsigned Threshold = unsigned(-1), |
| 1061 | bool IsUtilMode = true, bool PrepareForLTO) { |
| 1062 | LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, |
| 1063 | IsUtilMode, PrepareForLTO); |
| 1064 | return LR.processLoop(L); |
| 1065 | } |
| 1066 | |