| 1 | //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass performs several transformations to transform natural loops into a |
| 10 | // simpler form, which makes subsequent analyses and transformations simpler and |
| 11 | // more effective. |
| 12 | // |
| 13 | // Loop pre-header insertion guarantees that there is a single, non-critical |
| 14 | // entry edge from outside of the loop to the loop header. This simplifies a |
| 15 | // number of analyses and transformations, such as LICM. |
| 16 | // |
| 17 | // Loop exit-block insertion guarantees that all exit blocks from the loop |
| 18 | // (blocks which are outside of the loop that have predecessors inside of the |
| 19 | // loop) only have predecessors from inside of the loop (and are thus dominated |
| 20 | // by the loop header). This simplifies transformations such as store-sinking |
| 21 | // that are built into LICM. |
| 22 | // |
| 23 | // This pass also guarantees that loops will have exactly one backedge. |
| 24 | // |
| 25 | // Indirectbr instructions introduce several complications. If the loop |
| 26 | // contains or is entered by an indirectbr instruction, it may not be possible |
| 27 | // to transform the loop and make these guarantees. Client code should check |
| 28 | // that these conditions are true before relying on them. |
| 29 | // |
| 30 | // Similar complications arise from callbr instructions, particularly in |
| 31 | // asm-goto where blockaddress expressions are used. |
| 32 | // |
| 33 | // Note that the simplifycfg pass will clean up blocks which are split out but |
| 34 | // end up being unnecessary, so usage of this pass should not pessimize |
| 35 | // generated code. |
| 36 | // |
| 37 | // This pass obviously modifies the CFG, but updates loop information and |
| 38 | // dominator information. |
| 39 | // |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
| 43 | #include "llvm/ADT/SetVector.h" |
| 44 | #include "llvm/ADT/SmallVector.h" |
| 45 | #include "llvm/ADT/Statistic.h" |
| 46 | #include "llvm/Analysis/AliasAnalysis.h" |
| 47 | #include "llvm/Analysis/AssumptionCache.h" |
| 48 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 49 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 50 | #include "llvm/Analysis/GlobalsModRef.h" |
| 51 | #include "llvm/Analysis/InstructionSimplify.h" |
| 52 | #include "llvm/Analysis/LoopInfo.h" |
| 53 | #include "llvm/Analysis/MemorySSA.h" |
| 54 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 55 | #include "llvm/Analysis/ScalarEvolution.h" |
| 56 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| 57 | #include "llvm/IR/CFG.h" |
| 58 | #include "llvm/IR/Constants.h" |
| 59 | #include "llvm/IR/Dominators.h" |
| 60 | #include "llvm/IR/Function.h" |
| 61 | #include "llvm/IR/Instructions.h" |
| 62 | #include "llvm/IR/LLVMContext.h" |
| 63 | #include "llvm/IR/Module.h" |
| 64 | #include "llvm/InitializePasses.h" |
| 65 | #include "llvm/Support/Debug.h" |
| 66 | #include "llvm/Support/raw_ostream.h" |
| 67 | #include "llvm/Transforms/Utils.h" |
| 68 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 69 | #include "llvm/Transforms/Utils/Local.h" |
| 70 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 71 | using namespace llvm; |
| 72 | |
| 73 | #define DEBUG_TYPE "loop-simplify" |
| 74 | |
| 75 | STATISTIC(NumNested , "Number of nested loops split out" ); |
| 76 | |
| 77 | // If the block isn't already, move the new block to right after some 'outside |
| 78 | // block' block. This prevents the preheader from being placed inside the loop |
| 79 | // body, e.g. when the loop hasn't been rotated. |
| 80 | static void placeSplitBlockCarefully(BasicBlock *NewBB, |
| 81 | SmallVectorImpl<BasicBlock *> &SplitPreds, |
| 82 | Loop *L) { |
| 83 | // Check to see if NewBB is already well placed. |
| 84 | Function::iterator BBI = --NewBB->getIterator(); |
| 85 | if (llvm::is_contained(Range&: SplitPreds, Element: &*BBI)) |
| 86 | return; |
| 87 | |
| 88 | // If it isn't already after an outside block, move it after one. This is |
| 89 | // always good as it makes the uncond branch from the outside block into a |
| 90 | // fall-through. |
| 91 | |
| 92 | // Figure out *which* outside block to put this after. Prefer an outside |
| 93 | // block that neighbors a BB actually in the loop. |
| 94 | BasicBlock *FoundBB = nullptr; |
| 95 | for (BasicBlock *Pred : SplitPreds) { |
| 96 | Function::iterator BBI = Pred->getIterator(); |
| 97 | if (++BBI != NewBB->getParent()->end() && L->contains(BB: &*BBI)) { |
| 98 | FoundBB = Pred; |
| 99 | break; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | // If our heuristic for a *good* bb to place this after doesn't find |
| 104 | // anything, just pick something. It's likely better than leaving it within |
| 105 | // the loop. |
| 106 | if (!FoundBB) |
| 107 | FoundBB = SplitPreds[0]; |
| 108 | NewBB->moveAfter(MovePos: FoundBB); |
| 109 | } |
| 110 | |
| 111 | /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a |
| 112 | /// preheader, this method is called to insert one. This method has two phases: |
| 113 | /// preheader insertion and analysis updating. |
| 114 | /// |
| 115 | BasicBlock *llvm::(Loop *L, DominatorTree *DT, |
| 116 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| 117 | bool PreserveLCSSA) { |
| 118 | BasicBlock * = L->getHeader(); |
| 119 | |
| 120 | // Compute the set of predecessors of the loop that are not in the loop. |
| 121 | SmallVector<BasicBlock*, 8> OutsideBlocks; |
| 122 | for (BasicBlock *P : predecessors(BB: Header)) { |
| 123 | if (!L->contains(BB: P)) { // Coming in from outside the loop? |
| 124 | // If the loop is branched to from an indirect terminator, we won't |
| 125 | // be able to fully transform the loop, because it prohibits |
| 126 | // edge splitting. |
| 127 | if (isa<IndirectBrInst>(Val: P->getTerminator())) |
| 128 | return nullptr; |
| 129 | |
| 130 | // Keep track of it. |
| 131 | OutsideBlocks.push_back(Elt: P); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | // Split out the loop pre-header. |
| 136 | BasicBlock *; |
| 137 | PreheaderBB = SplitBlockPredecessors(BB: Header, Preds: OutsideBlocks, Suffix: ".preheader" , DT, |
| 138 | LI, MSSAU, PreserveLCSSA); |
| 139 | if (!PreheaderBB) |
| 140 | return nullptr; |
| 141 | |
| 142 | LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " |
| 143 | << PreheaderBB->getName() << "\n" ); |
| 144 | |
| 145 | // Make sure that NewBB is put someplace intelligent, which doesn't mess up |
| 146 | // code layout too horribly. |
| 147 | placeSplitBlockCarefully(NewBB: PreheaderBB, SplitPreds&: OutsideBlocks, L); |
| 148 | |
| 149 | return PreheaderBB; |
| 150 | } |
| 151 | |
| 152 | /// Add the specified block, and all of its predecessors, to the specified set, |
| 153 | /// if it's not already in there. Stop predecessor traversal when we reach |
| 154 | /// StopBlock. |
| 155 | static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, |
| 156 | SmallPtrSetImpl<BasicBlock *> &Blocks) { |
| 157 | SmallVector<BasicBlock *, 8> Worklist; |
| 158 | Worklist.push_back(Elt: InputBB); |
| 159 | do { |
| 160 | BasicBlock *BB = Worklist.pop_back_val(); |
| 161 | if (Blocks.insert(Ptr: BB).second && BB != StopBlock) |
| 162 | // If BB is not already processed and it is not a stop block then |
| 163 | // insert its predecessor in the work list |
| 164 | append_range(C&: Worklist, R: predecessors(BB)); |
| 165 | } while (!Worklist.empty()); |
| 166 | } |
| 167 | |
| 168 | /// The first part of loop-nestification is to find a PHI node that tells |
| 169 | /// us how to partition the loops. |
| 170 | static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, |
| 171 | AssumptionCache *AC) { |
| 172 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
| 173 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(Val: I); ) { |
| 174 | PHINode *PN = cast<PHINode>(Val&: I); |
| 175 | ++I; |
| 176 | if (Value *V = simplifyInstruction(I: PN, Q: {DL, nullptr, DT, AC})) { |
| 177 | // This is a degenerate PHI already, don't modify it! |
| 178 | PN->replaceAllUsesWith(V); |
| 179 | PN->eraseFromParent(); |
| 180 | continue; |
| 181 | } |
| 182 | |
| 183 | // Scan this PHI node looking for a use of the PHI node by itself. |
| 184 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 185 | if (PN->getIncomingValue(i) == PN && |
| 186 | L->contains(BB: PN->getIncomingBlock(i))) |
| 187 | // We found something tasty to remove. |
| 188 | return PN; |
| 189 | } |
| 190 | return nullptr; |
| 191 | } |
| 192 | |
| 193 | /// If this loop has multiple backedges, try to pull one of them out into |
| 194 | /// a nested loop. |
| 195 | /// |
| 196 | /// This is important for code that looks like |
| 197 | /// this: |
| 198 | /// |
| 199 | /// Loop: |
| 200 | /// ... |
| 201 | /// br cond, Loop, Next |
| 202 | /// ... |
| 203 | /// br cond2, Loop, Out |
| 204 | /// |
| 205 | /// To identify this common case, we look at the PHI nodes in the header of the |
| 206 | /// loop. PHI nodes with unchanging values on one backedge correspond to values |
| 207 | /// that change in the "outer" loop, but not in the "inner" loop. |
| 208 | /// |
| 209 | /// If we are able to separate out a loop, return the new outer loop that was |
| 210 | /// created. |
| 211 | /// |
| 212 | static Loop *separateNestedLoop(Loop *L, BasicBlock *, |
| 213 | DominatorTree *DT, LoopInfo *LI, |
| 214 | ScalarEvolution *SE, bool PreserveLCSSA, |
| 215 | AssumptionCache *AC, MemorySSAUpdater *MSSAU) { |
| 216 | // Don't try to separate loops without a preheader. |
| 217 | if (!Preheader) |
| 218 | return nullptr; |
| 219 | |
| 220 | // Treat the presence of convergent functions conservatively. The |
| 221 | // transformation is invalid if calls to certain convergent |
| 222 | // functions (like an AMDGPU barrier) get included in the resulting |
| 223 | // inner loop. But blocks meant for the inner loop will be |
| 224 | // identified later at a point where it's too late to abort the |
| 225 | // transformation. Also, the convergent attribute is not really |
| 226 | // sufficient to express the semantics of functions that are |
| 227 | // affected by this transformation. So we choose to back off if such |
| 228 | // a function call is present until a better alternative becomes |
| 229 | // available. This is similar to the conservative treatment of |
| 230 | // convergent function calls in GVNHoist and JumpThreading. |
| 231 | for (auto *BB : L->blocks()) { |
| 232 | for (auto &II : *BB) { |
| 233 | if (auto CI = dyn_cast<CallBase>(Val: &II)) { |
| 234 | if (CI->isConvergent()) { |
| 235 | return nullptr; |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // The header is not a landing pad; preheader insertion should ensure this. |
| 242 | BasicBlock * = L->getHeader(); |
| 243 | assert(!Header->isEHPad() && "Can't insert backedge to EH pad" ); |
| 244 | |
| 245 | PHINode *PN = findPHIToPartitionLoops(L, DT, AC); |
| 246 | if (!PN) return nullptr; // No known way to partition. |
| 247 | |
| 248 | // Pull out all predecessors that have varying values in the loop. This |
| 249 | // handles the case when a PHI node has multiple instances of itself as |
| 250 | // arguments. |
| 251 | SmallVector<BasicBlock*, 8> OuterLoopPreds; |
| 252 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 253 | if (PN->getIncomingValue(i) != PN || |
| 254 | !L->contains(BB: PN->getIncomingBlock(i))) { |
| 255 | // We can't split indirect control flow edges. |
| 256 | if (isa<IndirectBrInst>(Val: PN->getIncomingBlock(i)->getTerminator())) |
| 257 | return nullptr; |
| 258 | OuterLoopPreds.push_back(Elt: PN->getIncomingBlock(i)); |
| 259 | } |
| 260 | } |
| 261 | LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n" ); |
| 262 | |
| 263 | // If ScalarEvolution is around and knows anything about values in |
| 264 | // this loop, tell it to forget them, because we're about to |
| 265 | // substantially change it. |
| 266 | if (SE) |
| 267 | SE->forgetLoop(L); |
| 268 | |
| 269 | BasicBlock *NewBB = SplitBlockPredecessors(BB: Header, Preds: OuterLoopPreds, Suffix: ".outer" , |
| 270 | DT, LI, MSSAU, PreserveLCSSA); |
| 271 | |
| 272 | // Make sure that NewBB is put someplace intelligent, which doesn't mess up |
| 273 | // code layout too horribly. |
| 274 | placeSplitBlockCarefully(NewBB, SplitPreds&: OuterLoopPreds, L); |
| 275 | |
| 276 | // Create the new outer loop. |
| 277 | Loop *NewOuter = LI->AllocateLoop(); |
| 278 | |
| 279 | // Change the parent loop to use the outer loop as its child now. |
| 280 | if (Loop *Parent = L->getParentLoop()) |
| 281 | Parent->replaceChildLoopWith(OldChild: L, NewChild: NewOuter); |
| 282 | else |
| 283 | LI->changeTopLevelLoop(OldLoop: L, NewLoop: NewOuter); |
| 284 | |
| 285 | // L is now a subloop of our outer loop. |
| 286 | NewOuter->addChildLoop(NewChild: L); |
| 287 | |
| 288 | for (BasicBlock *BB : L->blocks()) |
| 289 | NewOuter->addBlockEntry(BB); |
| 290 | |
| 291 | // Now reset the header in L, which had been moved by |
| 292 | // SplitBlockPredecessors for the outer loop. |
| 293 | L->moveToHeader(BB: Header); |
| 294 | |
| 295 | // Determine which blocks should stay in L and which should be moved out to |
| 296 | // the Outer loop now. |
| 297 | SmallPtrSet<BasicBlock *, 4> BlocksInL; |
| 298 | for (BasicBlock *P : predecessors(BB: Header)) { |
| 299 | if (DT->dominates(A: Header, B: P)) |
| 300 | addBlockAndPredsToSet(InputBB: P, StopBlock: Header, Blocks&: BlocksInL); |
| 301 | } |
| 302 | |
| 303 | // Scan all of the loop children of L, moving them to OuterLoop if they are |
| 304 | // not part of the inner loop. |
| 305 | const std::vector<Loop*> &SubLoops = L->getSubLoops(); |
| 306 | for (size_t I = 0; I != SubLoops.size(); ) |
| 307 | if (BlocksInL.count(Ptr: SubLoops[I]->getHeader())) |
| 308 | ++I; // Loop remains in L |
| 309 | else |
| 310 | NewOuter->addChildLoop(NewChild: L->removeChildLoop(I: SubLoops.begin() + I)); |
| 311 | |
| 312 | SmallVector<BasicBlock *, 8> OuterLoopBlocks; |
| 313 | OuterLoopBlocks.push_back(Elt: NewBB); |
| 314 | // Now that we know which blocks are in L and which need to be moved to |
| 315 | // OuterLoop, move any blocks that need it. |
| 316 | for (unsigned i = 0; i != L->getBlocks().size(); ++i) { |
| 317 | BasicBlock *BB = L->getBlocks()[i]; |
| 318 | if (!BlocksInL.count(Ptr: BB)) { |
| 319 | // Move this block to the parent, updating the exit blocks sets |
| 320 | L->removeBlockFromLoop(BB); |
| 321 | if ((*LI)[BB] == L) { |
| 322 | LI->changeLoopFor(BB, L: NewOuter); |
| 323 | OuterLoopBlocks.push_back(Elt: BB); |
| 324 | } |
| 325 | --i; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // Split edges to exit blocks from the inner loop, if they emerged in the |
| 330 | // process of separating the outer one. |
| 331 | formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); |
| 332 | |
| 333 | if (PreserveLCSSA) { |
| 334 | // Fix LCSSA form for L. Some values, which previously were only used inside |
| 335 | // L, can now be used in NewOuter loop. We need to insert phi-nodes for them |
| 336 | // in corresponding exit blocks. |
| 337 | // We don't need to form LCSSA recursively, because there cannot be uses |
| 338 | // inside a newly created loop of defs from inner loops as those would |
| 339 | // already be a use of an LCSSA phi node. |
| 340 | formLCSSA(L&: *L, DT: *DT, LI, SE); |
| 341 | |
| 342 | assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && |
| 343 | "LCSSA is broken after separating nested loops!" ); |
| 344 | } |
| 345 | |
| 346 | return NewOuter; |
| 347 | } |
| 348 | |
| 349 | /// This method is called when the specified loop has more than one |
| 350 | /// backedge in it. |
| 351 | /// |
| 352 | /// If this occurs, revector all of these backedges to target a new basic block |
| 353 | /// and have that block branch to the loop header. This ensures that loops |
| 354 | /// have exactly one backedge. |
| 355 | static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *, |
| 356 | DominatorTree *DT, LoopInfo *LI, |
| 357 | MemorySSAUpdater *MSSAU) { |
| 358 | assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!" ); |
| 359 | |
| 360 | // Get information about the loop |
| 361 | BasicBlock * = L->getHeader(); |
| 362 | Function *F = Header->getParent(); |
| 363 | |
| 364 | // Unique backedge insertion currently depends on having a preheader. |
| 365 | if (!Preheader) |
| 366 | return nullptr; |
| 367 | |
| 368 | // The header is not an EH pad; preheader insertion should ensure this. |
| 369 | assert(!Header->isEHPad() && "Can't insert backedge to EH pad" ); |
| 370 | |
| 371 | // Figure out which basic blocks contain back-edges to the loop header. |
| 372 | std::vector<BasicBlock*> BackedgeBlocks; |
| 373 | for (BasicBlock *P : predecessors(BB: Header)) { |
| 374 | // Indirect edges cannot be split, so we must fail if we find one. |
| 375 | if (isa<IndirectBrInst>(Val: P->getTerminator())) |
| 376 | return nullptr; |
| 377 | |
| 378 | if (P != Preheader) BackedgeBlocks.push_back(x: P); |
| 379 | } |
| 380 | |
| 381 | // Create and insert the new backedge block... |
| 382 | BasicBlock *BEBlock = BasicBlock::Create(Context&: Header->getContext(), |
| 383 | Name: Header->getName() + ".backedge" , Parent: F); |
| 384 | BranchInst *BETerminator = BranchInst::Create(IfTrue: Header, InsertBefore: BEBlock); |
| 385 | BETerminator->setDebugLoc(Header->getFirstNonPHIIt()->getDebugLoc()); |
| 386 | |
| 387 | LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " |
| 388 | << BEBlock->getName() << "\n" ); |
| 389 | |
| 390 | // Move the new backedge block to right after the last backedge block. |
| 391 | Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); |
| 392 | F->splice(ToIt: InsertPos, FromF: F, FromIt: BEBlock->getIterator()); |
| 393 | |
| 394 | // Now that the block has been inserted into the function, create PHI nodes in |
| 395 | // the backedge block which correspond to any PHI nodes in the header block. |
| 396 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) { |
| 397 | PHINode *PN = cast<PHINode>(Val&: I); |
| 398 | PHINode *NewPN = PHINode::Create(Ty: PN->getType(), NumReservedValues: BackedgeBlocks.size(), |
| 399 | NameStr: PN->getName()+".be" , InsertBefore: BETerminator->getIterator()); |
| 400 | |
| 401 | // Loop over the PHI node, moving all entries except the one for the |
| 402 | // preheader over to the new PHI node. |
| 403 | unsigned = ~0U; |
| 404 | bool HasUniqueIncomingValue = true; |
| 405 | Value *UniqueValue = nullptr; |
| 406 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 407 | BasicBlock *IBB = PN->getIncomingBlock(i); |
| 408 | Value *IV = PN->getIncomingValue(i); |
| 409 | if (IBB == Preheader) { |
| 410 | PreheaderIdx = i; |
| 411 | } else { |
| 412 | NewPN->addIncoming(V: IV, BB: IBB); |
| 413 | if (HasUniqueIncomingValue) { |
| 414 | if (!UniqueValue) |
| 415 | UniqueValue = IV; |
| 416 | else if (UniqueValue != IV) |
| 417 | HasUniqueIncomingValue = false; |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // Delete all of the incoming values from the old PN except the preheader's |
| 423 | assert(PreheaderIdx != ~0U && "PHI has no preheader entry??" ); |
| 424 | if (PreheaderIdx != 0) { |
| 425 | PN->setIncomingValue(i: 0, V: PN->getIncomingValue(i: PreheaderIdx)); |
| 426 | PN->setIncomingBlock(i: 0, BB: PN->getIncomingBlock(i: PreheaderIdx)); |
| 427 | } |
| 428 | // Nuke all entries except the zero'th. |
| 429 | PN->removeIncomingValueIf(Predicate: [](unsigned Idx) { return Idx != 0; }, |
| 430 | /* DeletePHIIfEmpty */ false); |
| 431 | |
| 432 | // Finally, add the newly constructed PHI node as the entry for the BEBlock. |
| 433 | PN->addIncoming(V: NewPN, BB: BEBlock); |
| 434 | |
| 435 | // As an optimization, if all incoming values in the new PhiNode (which is a |
| 436 | // subset of the incoming values of the old PHI node) have the same value, |
| 437 | // eliminate the PHI Node. |
| 438 | if (HasUniqueIncomingValue) { |
| 439 | NewPN->replaceAllUsesWith(V: UniqueValue); |
| 440 | NewPN->eraseFromParent(); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | // Now that all of the PHI nodes have been inserted and adjusted, modify the |
| 445 | // backedge blocks to jump to the BEBlock instead of the header. |
| 446 | // If one of the backedges has llvm.loop metadata attached, we remove |
| 447 | // it from the backedge and add it to BEBlock. |
| 448 | MDNode *LoopMD = nullptr; |
| 449 | for (BasicBlock *BB : BackedgeBlocks) { |
| 450 | Instruction *TI = BB->getTerminator(); |
| 451 | if (!LoopMD) |
| 452 | LoopMD = TI->getMetadata(KindID: LLVMContext::MD_loop); |
| 453 | TI->setMetadata(KindID: LLVMContext::MD_loop, Node: nullptr); |
| 454 | TI->replaceSuccessorWith(OldBB: Header, NewBB: BEBlock); |
| 455 | } |
| 456 | BEBlock->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: LoopMD); |
| 457 | |
| 458 | //===--- Update all analyses which we must preserve now -----------------===// |
| 459 | |
| 460 | // Update Loop Information - we know that this block is now in the current |
| 461 | // loop and all parent loops. |
| 462 | L->addBasicBlockToLoop(NewBB: BEBlock, LI&: *LI); |
| 463 | |
| 464 | // Update dominator information |
| 465 | DT->splitBlock(NewBB: BEBlock); |
| 466 | |
| 467 | if (MSSAU) |
| 468 | MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(LoopHeader: Header, LoopPreheader: Preheader, |
| 469 | BackedgeBlock: BEBlock); |
| 470 | |
| 471 | return BEBlock; |
| 472 | } |
| 473 | |
| 474 | /// Simplify one loop and queue further loops for simplification. |
| 475 | static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, |
| 476 | DominatorTree *DT, LoopInfo *LI, |
| 477 | ScalarEvolution *SE, AssumptionCache *AC, |
| 478 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
| 479 | bool Changed = false; |
| 480 | if (MSSAU && VerifyMemorySSA) |
| 481 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 482 | |
| 483 | ReprocessLoop: |
| 484 | |
| 485 | // Check to see that no blocks (other than the header) in this loop have |
| 486 | // predecessors that are not in the loop. This is not valid for natural |
| 487 | // loops, but can occur if the blocks are unreachable. Since they are |
| 488 | // unreachable we can just shamelessly delete those CFG edges! |
| 489 | for (BasicBlock *BB : L->blocks()) { |
| 490 | if (BB == L->getHeader()) |
| 491 | continue; |
| 492 | |
| 493 | SmallPtrSet<BasicBlock*, 4> BadPreds; |
| 494 | for (BasicBlock *P : predecessors(BB)) |
| 495 | if (!L->contains(BB: P)) |
| 496 | BadPreds.insert(Ptr: P); |
| 497 | |
| 498 | // Delete each unique out-of-loop (and thus dead) predecessor. |
| 499 | for (BasicBlock *P : BadPreds) { |
| 500 | |
| 501 | LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " |
| 502 | << P->getName() << "\n" ); |
| 503 | |
| 504 | // Zap the dead pred's terminator and replace it with unreachable. |
| 505 | Instruction *TI = P->getTerminator(); |
| 506 | changeToUnreachable(I: TI, PreserveLCSSA, |
| 507 | /*DTU=*/nullptr, MSSAU); |
| 508 | Changed = true; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | if (MSSAU && VerifyMemorySSA) |
| 513 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 514 | |
| 515 | // If there are exiting blocks with branches on undef, resolve the undef in |
| 516 | // the direction which will exit the loop. This will help simplify loop |
| 517 | // trip count computations. |
| 518 | SmallVector<BasicBlock*, 8> ExitingBlocks; |
| 519 | L->getExitingBlocks(ExitingBlocks); |
| 520 | for (BasicBlock *ExitingBlock : ExitingBlocks) |
| 521 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: ExitingBlock->getTerminator())) |
| 522 | if (BI->isConditional()) { |
| 523 | if (UndefValue *Cond = dyn_cast<UndefValue>(Val: BI->getCondition())) { |
| 524 | |
| 525 | LLVM_DEBUG(dbgs() |
| 526 | << "LoopSimplify: Resolving \"br i1 undef\" to exit in " |
| 527 | << ExitingBlock->getName() << "\n" ); |
| 528 | |
| 529 | BI->setCondition(ConstantInt::get(Ty: Cond->getType(), |
| 530 | V: !L->contains(BB: BI->getSuccessor(i: 0)))); |
| 531 | |
| 532 | Changed = true; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | // Does the loop already have a preheader? If so, don't insert one. |
| 537 | BasicBlock * = L->getLoopPreheader(); |
| 538 | if (!Preheader) { |
| 539 | Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); |
| 540 | if (Preheader) |
| 541 | Changed = true; |
| 542 | } |
| 543 | |
| 544 | // Next, check to make sure that all exit nodes of the loop only have |
| 545 | // predecessors that are inside of the loop. This check guarantees that the |
| 546 | // loop preheader/header will dominate the exit blocks. If the exit block has |
| 547 | // predecessors from outside of the loop, split the edge now. |
| 548 | if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) |
| 549 | Changed = true; |
| 550 | |
| 551 | if (MSSAU && VerifyMemorySSA) |
| 552 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 553 | |
| 554 | // If the header has more than two predecessors at this point (from the |
| 555 | // preheader and from multiple backedges), we must adjust the loop. |
| 556 | BasicBlock *LoopLatch = L->getLoopLatch(); |
| 557 | if (!LoopLatch) { |
| 558 | // If this is really a nested loop, rip it out into a child loop. Don't do |
| 559 | // this for loops with a giant number of backedges, just factor them into a |
| 560 | // common backedge instead. |
| 561 | if (L->getNumBackEdges() < 8) { |
| 562 | if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, |
| 563 | PreserveLCSSA, AC, MSSAU)) { |
| 564 | ++NumNested; |
| 565 | // Enqueue the outer loop as it should be processed next in our |
| 566 | // depth-first nest walk. |
| 567 | Worklist.push_back(Elt: OuterL); |
| 568 | |
| 569 | // This is a big restructuring change, reprocess the whole loop. |
| 570 | Changed = true; |
| 571 | // GCC doesn't tail recursion eliminate this. |
| 572 | // FIXME: It isn't clear we can't rely on LLVM to TRE this. |
| 573 | goto ReprocessLoop; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | // If we either couldn't, or didn't want to, identify nesting of the loops, |
| 578 | // insert a new block that all backedges target, then make it jump to the |
| 579 | // loop header. |
| 580 | LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); |
| 581 | if (LoopLatch) |
| 582 | Changed = true; |
| 583 | } |
| 584 | |
| 585 | if (MSSAU && VerifyMemorySSA) |
| 586 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 587 | |
| 588 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
| 589 | |
| 590 | // Scan over the PHI nodes in the loop header. Since they now have only two |
| 591 | // incoming values (the loop is canonicalized), we may have simplified the PHI |
| 592 | // down to 'X = phi [X, Y]', which should be replaced with 'Y'. |
| 593 | PHINode *PN; |
| 594 | for (BasicBlock::iterator I = L->getHeader()->begin(); |
| 595 | (PN = dyn_cast<PHINode>(Val: I++)); ) |
| 596 | if (Value *V = simplifyInstruction(I: PN, Q: {DL, nullptr, DT, AC})) { |
| 597 | if (SE) SE->forgetValue(V: PN); |
| 598 | if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(From: PN, To: V)) { |
| 599 | PN->replaceAllUsesWith(V); |
| 600 | PN->eraseFromParent(); |
| 601 | Changed = true; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | // If this loop has multiple exits and the exits all go to the same |
| 606 | // block, attempt to merge the exits. This helps several passes, such |
| 607 | // as LoopRotation, which do not support loops with multiple exits. |
| 608 | // SimplifyCFG also does this (and this code uses the same utility |
| 609 | // function), however this code is loop-aware, where SimplifyCFG is |
| 610 | // not. That gives it the advantage of being able to hoist |
| 611 | // loop-invariant instructions out of the way to open up more |
| 612 | // opportunities, and the disadvantage of having the responsibility |
| 613 | // to preserve dominator information. |
| 614 | auto HasUniqueExitBlock = [&]() { |
| 615 | BasicBlock *UniqueExit = nullptr; |
| 616 | for (auto *ExitingBB : ExitingBlocks) |
| 617 | for (auto *SuccBB : successors(BB: ExitingBB)) { |
| 618 | if (L->contains(BB: SuccBB)) |
| 619 | continue; |
| 620 | |
| 621 | if (!UniqueExit) |
| 622 | UniqueExit = SuccBB; |
| 623 | else if (UniqueExit != SuccBB) |
| 624 | return false; |
| 625 | } |
| 626 | |
| 627 | return true; |
| 628 | }; |
| 629 | if (HasUniqueExitBlock()) { |
| 630 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| 631 | if (!ExitingBlock->getSinglePredecessor()) continue; |
| 632 | BranchInst *BI = dyn_cast<BranchInst>(Val: ExitingBlock->getTerminator()); |
| 633 | if (!BI || !BI->isConditional()) continue; |
| 634 | CmpInst *CI = dyn_cast<CmpInst>(Val: BI->getCondition()); |
| 635 | if (!CI || CI->getParent() != ExitingBlock) continue; |
| 636 | |
| 637 | // Attempt to hoist out all instructions except for the |
| 638 | // comparison and the branch. |
| 639 | bool AllInvariant = true; |
| 640 | bool AnyInvariant = false; |
| 641 | for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { |
| 642 | Instruction *Inst = &*I++; |
| 643 | if (Inst == CI) |
| 644 | continue; |
| 645 | if (!L->makeLoopInvariant( |
| 646 | I: Inst, Changed&: AnyInvariant, |
| 647 | InsertPt: Preheader ? Preheader->getTerminator() : nullptr, MSSAU, SE)) { |
| 648 | AllInvariant = false; |
| 649 | break; |
| 650 | } |
| 651 | } |
| 652 | if (AnyInvariant) |
| 653 | Changed = true; |
| 654 | if (!AllInvariant) continue; |
| 655 | |
| 656 | // The block has now been cleared of all instructions except for |
| 657 | // a comparison and a conditional branch. SimplifyCFG may be able |
| 658 | // to fold it now. |
| 659 | if (!foldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU)) |
| 660 | continue; |
| 661 | |
| 662 | // Success. The block is now dead, so remove it from the loop, |
| 663 | // update the dominator tree and delete it. |
| 664 | LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " |
| 665 | << ExitingBlock->getName() << "\n" ); |
| 666 | |
| 667 | assert(pred_empty(ExitingBlock)); |
| 668 | Changed = true; |
| 669 | LI->removeBlock(BB: ExitingBlock); |
| 670 | |
| 671 | DomTreeNode *Node = DT->getNode(BB: ExitingBlock); |
| 672 | while (!Node->isLeaf()) { |
| 673 | DomTreeNode *Child = Node->back(); |
| 674 | DT->changeImmediateDominator(N: Child, NewIDom: Node->getIDom()); |
| 675 | } |
| 676 | DT->eraseNode(BB: ExitingBlock); |
| 677 | if (MSSAU) { |
| 678 | SmallSetVector<BasicBlock *, 8> ExitBlockSet; |
| 679 | ExitBlockSet.insert(X: ExitingBlock); |
| 680 | MSSAU->removeBlocks(DeadBlocks: ExitBlockSet); |
| 681 | } |
| 682 | |
| 683 | BI->getSuccessor(i: 0)->removePredecessor( |
| 684 | Pred: ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); |
| 685 | BI->getSuccessor(i: 1)->removePredecessor( |
| 686 | Pred: ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); |
| 687 | ExitingBlock->eraseFromParent(); |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | if (MSSAU && VerifyMemorySSA) |
| 692 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 693 | |
| 694 | return Changed; |
| 695 | } |
| 696 | |
| 697 | bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, |
| 698 | ScalarEvolution *SE, AssumptionCache *AC, |
| 699 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
| 700 | bool Changed = false; |
| 701 | |
| 702 | #ifndef NDEBUG |
| 703 | // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA |
| 704 | // form. |
| 705 | if (PreserveLCSSA) { |
| 706 | assert(DT && "DT not available." ); |
| 707 | assert(LI && "LI not available." ); |
| 708 | assert(L->isRecursivelyLCSSAForm(*DT, *LI) && |
| 709 | "Requested to preserve LCSSA, but it's already broken." ); |
| 710 | } |
| 711 | #endif |
| 712 | |
| 713 | // Worklist maintains our depth-first queue of loops in this nest to process. |
| 714 | SmallVector<Loop *, 4> Worklist; |
| 715 | Worklist.push_back(Elt: L); |
| 716 | |
| 717 | // Walk the worklist from front to back, pushing newly found sub loops onto |
| 718 | // the back. This will let us process loops from back to front in depth-first |
| 719 | // order. We can use this simple process because loops form a tree. |
| 720 | for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { |
| 721 | Loop *L2 = Worklist[Idx]; |
| 722 | Worklist.append(in_start: L2->begin(), in_end: L2->end()); |
| 723 | } |
| 724 | |
| 725 | while (!Worklist.empty()) |
| 726 | Changed |= simplifyOneLoop(L: Worklist.pop_back_val(), Worklist, DT, LI, SE, |
| 727 | AC, MSSAU, PreserveLCSSA); |
| 728 | |
| 729 | // Changing exit conditions for blocks may affect exit counts of this loop and |
| 730 | // any of its parents, so we must invalidate the entire subtree if we've made |
| 731 | // any changes. Do this here rather than in simplifyOneLoop() as the top-most |
| 732 | // loop is going to be the same for all child loops. |
| 733 | if (Changed && SE) |
| 734 | SE->forgetTopmostLoop(L); |
| 735 | |
| 736 | return Changed; |
| 737 | } |
| 738 | |
| 739 | namespace { |
| 740 | struct LoopSimplify : public FunctionPass { |
| 741 | static char ID; // Pass identification, replacement for typeid |
| 742 | LoopSimplify() : FunctionPass(ID) { |
| 743 | initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); |
| 744 | } |
| 745 | |
| 746 | bool runOnFunction(Function &F) override; |
| 747 | |
| 748 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 749 | AU.addRequired<AssumptionCacheTracker>(); |
| 750 | |
| 751 | // We need loop information to identify the loops... |
| 752 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 753 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 754 | |
| 755 | AU.addRequired<LoopInfoWrapperPass>(); |
| 756 | AU.addPreserved<LoopInfoWrapperPass>(); |
| 757 | |
| 758 | AU.addPreserved<BasicAAWrapperPass>(); |
| 759 | AU.addPreserved<AAResultsWrapperPass>(); |
| 760 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 761 | AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| 762 | AU.addPreserved<SCEVAAWrapperPass>(); |
| 763 | AU.addPreservedID(ID&: LCSSAID); |
| 764 | AU.addPreservedID(ID&: BreakCriticalEdgesID); // No critical edges added. |
| 765 | AU.addPreserved<BranchProbabilityInfoWrapperPass>(); |
| 766 | AU.addPreserved<MemorySSAWrapperPass>(); |
| 767 | } |
| 768 | |
| 769 | /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. |
| 770 | void verifyAnalysis() const override; |
| 771 | }; |
| 772 | } |
| 773 | |
| 774 | char LoopSimplify::ID = 0; |
| 775 | INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify" , |
| 776 | "Canonicalize natural loops" , false, false) |
| 777 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 778 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 779 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 780 | INITIALIZE_PASS_END(LoopSimplify, "loop-simplify" , "Canonicalize natural loops" , |
| 781 | false, false) |
| 782 | |
| 783 | // Publicly exposed interface to pass... |
| 784 | char &llvm::LoopSimplifyID = LoopSimplify::ID; |
| 785 | Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } |
| 786 | |
| 787 | /// runOnFunction - Run down all loops in the CFG (recursively, but we could do |
| 788 | /// it in any convenient order) inserting preheaders... |
| 789 | /// |
| 790 | bool LoopSimplify::runOnFunction(Function &F) { |
| 791 | bool Changed = false; |
| 792 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 793 | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 794 | auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); |
| 795 | ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; |
| 796 | AssumptionCache *AC = |
| 797 | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 798 | MemorySSA *MSSA = nullptr; |
| 799 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
| 800 | auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); |
| 801 | if (MSSAAnalysis) { |
| 802 | MSSA = &MSSAAnalysis->getMSSA(); |
| 803 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: MSSA); |
| 804 | } |
| 805 | |
| 806 | bool PreserveLCSSA = mustPreserveAnalysisID(AID&: LCSSAID); |
| 807 | |
| 808 | // Simplify each loop nest in the function. |
| 809 | for (auto *L : *LI) |
| 810 | Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU: MSSAU.get(), PreserveLCSSA); |
| 811 | |
| 812 | #ifndef NDEBUG |
| 813 | if (PreserveLCSSA) { |
| 814 | bool InLCSSA = all_of( |
| 815 | *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); |
| 816 | assert(InLCSSA && "LCSSA is broken after loop-simplify." ); |
| 817 | } |
| 818 | #endif |
| 819 | return Changed; |
| 820 | } |
| 821 | |
| 822 | PreservedAnalyses LoopSimplifyPass::run(Function &F, |
| 823 | FunctionAnalysisManager &AM) { |
| 824 | bool Changed = false; |
| 825 | LoopInfo *LI = &AM.getResult<LoopAnalysis>(IR&: F); |
| 826 | DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 827 | ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(IR&: F); |
| 828 | AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(IR&: F); |
| 829 | auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(IR&: F); |
| 830 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
| 831 | if (MSSAAnalysis) { |
| 832 | auto *MSSA = &MSSAAnalysis->getMSSA(); |
| 833 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: MSSA); |
| 834 | } |
| 835 | |
| 836 | |
| 837 | // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA |
| 838 | // after simplifying the loops. MemorySSA is preserved if it exists. |
| 839 | for (auto *L : *LI) |
| 840 | Changed |= |
| 841 | simplifyLoop(L, DT, LI, SE, AC, MSSAU: MSSAU.get(), /*PreserveLCSSA*/ false); |
| 842 | |
| 843 | if (!Changed) |
| 844 | return PreservedAnalyses::all(); |
| 845 | |
| 846 | PreservedAnalyses PA; |
| 847 | PA.preserve<DominatorTreeAnalysis>(); |
| 848 | PA.preserve<LoopAnalysis>(); |
| 849 | PA.preserve<ScalarEvolutionAnalysis>(); |
| 850 | if (MSSAAnalysis) |
| 851 | PA.preserve<MemorySSAAnalysis>(); |
| 852 | // BPI maps conditional terminators to probabilities, LoopSimplify can insert |
| 853 | // blocks, but it does so only by splitting existing blocks and edges. This |
| 854 | // results in the interesting property that all new terminators inserted are |
| 855 | // unconditional branches which do not appear in BPI. All deletions are |
| 856 | // handled via ValueHandle callbacks w/in BPI. |
| 857 | PA.preserve<BranchProbabilityAnalysis>(); |
| 858 | return PA; |
| 859 | } |
| 860 | |
| 861 | // FIXME: Restore this code when we re-enable verification in verifyAnalysis |
| 862 | // below. |
| 863 | #if 0 |
| 864 | static void verifyLoop(Loop *L) { |
| 865 | // Verify subloops. |
| 866 | for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| 867 | verifyLoop(*I); |
| 868 | |
| 869 | // It used to be possible to just assert L->isLoopSimplifyForm(), however |
| 870 | // with the introduction of indirectbr, there are now cases where it's |
| 871 | // not possible to transform a loop as necessary. We can at least check |
| 872 | // that there is an indirectbr near any time there's trouble. |
| 873 | |
| 874 | // Indirectbr can interfere with preheader and unique backedge insertion. |
| 875 | if (!L->getLoopPreheader() || !L->getLoopLatch()) { |
| 876 | bool HasIndBrPred = false; |
| 877 | for (BasicBlock *Pred : predecessors(L->getHeader())) |
| 878 | if (isa<IndirectBrInst>(Pred->getTerminator())) { |
| 879 | HasIndBrPred = true; |
| 880 | break; |
| 881 | } |
| 882 | assert(HasIndBrPred && |
| 883 | "LoopSimplify has no excuse for missing loop header info!" ); |
| 884 | (void)HasIndBrPred; |
| 885 | } |
| 886 | |
| 887 | // Indirectbr can interfere with exit block canonicalization. |
| 888 | if (!L->hasDedicatedExits()) { |
| 889 | bool HasIndBrExiting = false; |
| 890 | SmallVector<BasicBlock*, 8> ExitingBlocks; |
| 891 | L->getExitingBlocks(ExitingBlocks); |
| 892 | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| 893 | if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { |
| 894 | HasIndBrExiting = true; |
| 895 | break; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | assert(HasIndBrExiting && |
| 900 | "LoopSimplify has no excuse for missing exit block info!" ); |
| 901 | (void)HasIndBrExiting; |
| 902 | } |
| 903 | } |
| 904 | #endif |
| 905 | |
| 906 | void LoopSimplify::verifyAnalysis() const { |
| 907 | // FIXME: This routine is being called mid-way through the loop pass manager |
| 908 | // as loop passes destroy this analysis. That's actually fine, but we have no |
| 909 | // way of expressing that here. Once all of the passes that destroy this are |
| 910 | // hoisted out of the loop pass manager we can add back verification here. |
| 911 | #if 0 |
| 912 | for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) |
| 913 | verifyLoop(*I); |
| 914 | #endif |
| 915 | } |
| 916 | |