| 1 | //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Transforms/Utils/LowerMemIntrinsics.h" |
| 10 | #include "llvm/Analysis/ScalarEvolution.h" |
| 11 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 12 | #include "llvm/IR/IRBuilder.h" |
| 13 | #include "llvm/IR/IntrinsicInst.h" |
| 14 | #include "llvm/IR/MDBuilder.h" |
| 15 | #include "llvm/Support/Debug.h" |
| 16 | #include "llvm/Support/MathExtras.h" |
| 17 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 18 | #include <optional> |
| 19 | |
| 20 | #define DEBUG_TYPE "lower-mem-intrinsics" |
| 21 | |
| 22 | using namespace llvm; |
| 23 | |
| 24 | void llvm::createMemCpyLoopKnownSize( |
| 25 | Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, |
| 26 | ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile, |
| 27 | bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI, |
| 28 | std::optional<uint32_t> AtomicElementSize) { |
| 29 | // No need to expand zero length copies. |
| 30 | if (CopyLen->isZero()) |
| 31 | return; |
| 32 | |
| 33 | BasicBlock *PreLoopBB = InsertBefore->getParent(); |
| 34 | BasicBlock *PostLoopBB = nullptr; |
| 35 | Function *ParentFunc = PreLoopBB->getParent(); |
| 36 | LLVMContext &Ctx = PreLoopBB->getContext(); |
| 37 | const DataLayout &DL = ParentFunc->getDataLayout(); |
| 38 | MDBuilder MDB(Ctx); |
| 39 | MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain(Name: "MemCopyDomain" ); |
| 40 | StringRef Name = "MemCopyAliasScope" ; |
| 41 | MDNode *NewScope = MDB.createAnonymousAliasScope(Domain: NewDomain, Name); |
| 42 | |
| 43 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 44 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 45 | |
| 46 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 47 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType( |
| 48 | Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign, DestAlign: DstAlign, AtomicElementSize); |
| 49 | assert((!AtomicElementSize || !LoopOpType->isVectorTy()) && |
| 50 | "Atomic memcpy lowering is not supported for vector operand type" ); |
| 51 | |
| 52 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 53 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 54 | assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) && |
| 55 | "Atomic memcpy lowering is not supported for selected operand size" ); |
| 56 | |
| 57 | uint64_t LoopEndCount = alignDown(Value: CopyLen->getZExtValue(), Align: LoopOpSize); |
| 58 | |
| 59 | if (LoopEndCount != 0) { |
| 60 | // Split |
| 61 | PostLoopBB = PreLoopBB->splitBasicBlock(I: InsertBefore, BBName: "memcpy-split" ); |
| 62 | BasicBlock *LoopBB = |
| 63 | BasicBlock::Create(Context&: Ctx, Name: "load-store-loop" , Parent: ParentFunc, InsertBefore: PostLoopBB); |
| 64 | PreLoopBB->getTerminator()->setSuccessor(Idx: 0, BB: LoopBB); |
| 65 | |
| 66 | IRBuilder<> PLBuilder(PreLoopBB->getTerminator()); |
| 67 | |
| 68 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 69 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 70 | |
| 71 | IRBuilder<> LoopBuilder(LoopBB); |
| 72 | PHINode *LoopIndex = LoopBuilder.CreatePHI(Ty: TypeOfCopyLen, NumReservedValues: 2, Name: "loop-index" ); |
| 73 | LoopIndex->addIncoming(V: ConstantInt::get(Ty: TypeOfCopyLen, V: 0U), BB: PreLoopBB); |
| 74 | // Loop Body |
| 75 | |
| 76 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 77 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e., |
| 78 | // we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use |
| 79 | // byte offsets computed from the TypeStoreSize. |
| 80 | Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: LoopIndex); |
| 81 | LoadInst *Load = LoopBuilder.CreateAlignedLoad(Ty: LoopOpType, Ptr: SrcGEP, |
| 82 | Align: PartSrcAlign, isVolatile: SrcIsVolatile); |
| 83 | if (!CanOverlap) { |
| 84 | // Set alias scope for loads. |
| 85 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, |
| 86 | Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 87 | } |
| 88 | Value *DstGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: LoopIndex); |
| 89 | StoreInst *Store = LoopBuilder.CreateAlignedStore( |
| 90 | Val: Load, Ptr: DstGEP, Align: PartDstAlign, isVolatile: DstIsVolatile); |
| 91 | if (!CanOverlap) { |
| 92 | // Indicate that stores don't overlap loads. |
| 93 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 94 | } |
| 95 | if (AtomicElementSize) { |
| 96 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 97 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 98 | } |
| 99 | Value *NewIndex = LoopBuilder.CreateAdd( |
| 100 | LHS: LoopIndex, RHS: ConstantInt::get(Ty: TypeOfCopyLen, V: LoopOpSize)); |
| 101 | LoopIndex->addIncoming(V: NewIndex, BB: LoopBB); |
| 102 | |
| 103 | // Create the loop branch condition. |
| 104 | Constant *LoopEndCI = ConstantInt::get(Ty: TypeOfCopyLen, V: LoopEndCount); |
| 105 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: LoopEndCI), |
| 106 | True: LoopBB, False: PostLoopBB); |
| 107 | } |
| 108 | |
| 109 | uint64_t BytesCopied = LoopEndCount; |
| 110 | uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied; |
| 111 | if (RemainingBytes) { |
| 112 | BasicBlock::iterator InsertIt = PostLoopBB ? PostLoopBB->getFirstNonPHIIt() |
| 113 | : InsertBefore->getIterator(); |
| 114 | IRBuilder<> RBuilder(InsertIt->getParent(), InsertIt); |
| 115 | |
| 116 | SmallVector<Type *, 5> RemainingOps; |
| 117 | TTI.getMemcpyLoopResidualLoweringType(OpsOut&: RemainingOps, Context&: Ctx, RemainingBytes, |
| 118 | SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign, DestAlign: DstAlign, |
| 119 | AtomicCpySize: AtomicElementSize); |
| 120 | |
| 121 | for (auto *OpTy : RemainingOps) { |
| 122 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: BytesCopied)); |
| 123 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: BytesCopied)); |
| 124 | |
| 125 | unsigned OperandSize = DL.getTypeStoreSize(Ty: OpTy); |
| 126 | assert( |
| 127 | (!AtomicElementSize || OperandSize % *AtomicElementSize == 0) && |
| 128 | "Atomic memcpy lowering is not supported for selected operand size" ); |
| 129 | |
| 130 | Value *SrcGEP = RBuilder.CreateInBoundsGEP( |
| 131 | Ty: Int8Type, Ptr: SrcAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 132 | LoadInst *Load = |
| 133 | RBuilder.CreateAlignedLoad(Ty: OpTy, Ptr: SrcGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile); |
| 134 | if (!CanOverlap) { |
| 135 | // Set alias scope for loads. |
| 136 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, |
| 137 | Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 138 | } |
| 139 | Value *DstGEP = RBuilder.CreateInBoundsGEP( |
| 140 | Ty: Int8Type, Ptr: DstAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 141 | StoreInst *Store = RBuilder.CreateAlignedStore(Val: Load, Ptr: DstGEP, Align: PartDstAlign, |
| 142 | isVolatile: DstIsVolatile); |
| 143 | if (!CanOverlap) { |
| 144 | // Indicate that stores don't overlap loads. |
| 145 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 146 | } |
| 147 | if (AtomicElementSize) { |
| 148 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 149 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 150 | } |
| 151 | BytesCopied += OperandSize; |
| 152 | } |
| 153 | } |
| 154 | assert(BytesCopied == CopyLen->getZExtValue() && |
| 155 | "Bytes copied should match size in the call!" ); |
| 156 | } |
| 157 | |
| 158 | // \returns \p Len urem \p OpSize, checking for optimization opportunities. |
| 159 | static Value *getRuntimeLoopRemainder(const DataLayout &DL, IRBuilderBase &B, |
| 160 | Value *Len, Value *OpSize, |
| 161 | unsigned OpSizeVal) { |
| 162 | // For powers of 2, we can and by (OpSizeVal - 1) instead of using urem. |
| 163 | if (isPowerOf2_32(Value: OpSizeVal)) |
| 164 | return B.CreateAnd(LHS: Len, RHS: OpSizeVal - 1); |
| 165 | return B.CreateURem(LHS: Len, RHS: OpSize); |
| 166 | } |
| 167 | |
| 168 | // \returns (\p Len udiv \p OpSize) mul \p OpSize, checking for optimization |
| 169 | // opportunities. |
| 170 | // If RTLoopRemainder is provided, it must be the result of |
| 171 | // getRuntimeLoopRemainder() with the same arguments. |
| 172 | static Value *getRuntimeLoopBytes(const DataLayout &DL, IRBuilderBase &B, |
| 173 | Value *Len, Value *OpSize, unsigned OpSizeVal, |
| 174 | Value *RTLoopRemainder = nullptr) { |
| 175 | if (!RTLoopRemainder) |
| 176 | RTLoopRemainder = getRuntimeLoopRemainder(DL, B, Len, OpSize, OpSizeVal); |
| 177 | return B.CreateSub(LHS: Len, RHS: RTLoopRemainder); |
| 178 | } |
| 179 | |
| 180 | void llvm::createMemCpyLoopUnknownSize( |
| 181 | Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen, |
| 182 | Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile, |
| 183 | bool CanOverlap, const TargetTransformInfo &TTI, |
| 184 | std::optional<uint32_t> AtomicElementSize) { |
| 185 | BasicBlock *PreLoopBB = InsertBefore->getParent(); |
| 186 | BasicBlock *PostLoopBB = |
| 187 | PreLoopBB->splitBasicBlock(I: InsertBefore, BBName: "post-loop-memcpy-expansion" ); |
| 188 | |
| 189 | Function *ParentFunc = PreLoopBB->getParent(); |
| 190 | const DataLayout &DL = ParentFunc->getDataLayout(); |
| 191 | LLVMContext &Ctx = PreLoopBB->getContext(); |
| 192 | MDBuilder MDB(Ctx); |
| 193 | MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain(Name: "MemCopyDomain" ); |
| 194 | StringRef Name = "MemCopyAliasScope" ; |
| 195 | MDNode *NewScope = MDB.createAnonymousAliasScope(Domain: NewDomain, Name); |
| 196 | |
| 197 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 198 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 199 | |
| 200 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType( |
| 201 | Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign, DestAlign: DstAlign, AtomicElementSize); |
| 202 | assert((!AtomicElementSize || !LoopOpType->isVectorTy()) && |
| 203 | "Atomic memcpy lowering is not supported for vector operand type" ); |
| 204 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 205 | assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) && |
| 206 | "Atomic memcpy lowering is not supported for selected operand size" ); |
| 207 | |
| 208 | IRBuilder<> PLBuilder(PreLoopBB->getTerminator()); |
| 209 | |
| 210 | // Calculate the loop trip count, and remaining bytes to copy after the loop. |
| 211 | Type *CopyLenType = CopyLen->getType(); |
| 212 | IntegerType *ILengthType = dyn_cast<IntegerType>(Val: CopyLenType); |
| 213 | assert(ILengthType && |
| 214 | "expected size argument to memcpy to be an integer type!" ); |
| 215 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 216 | bool LoopOpIsInt8 = LoopOpType == Int8Type; |
| 217 | ConstantInt *CILoopOpSize = ConstantInt::get(Ty: ILengthType, V: LoopOpSize); |
| 218 | |
| 219 | Value *RuntimeLoopBytes = CopyLen; |
| 220 | Value *RuntimeResidualBytes = nullptr; |
| 221 | if (!LoopOpIsInt8) { |
| 222 | RuntimeResidualBytes = getRuntimeLoopRemainder(DL, B&: PLBuilder, Len: CopyLen, |
| 223 | OpSize: CILoopOpSize, OpSizeVal: LoopOpSize); |
| 224 | RuntimeLoopBytes = getRuntimeLoopBytes(DL, B&: PLBuilder, Len: CopyLen, OpSize: CILoopOpSize, |
| 225 | OpSizeVal: LoopOpSize, RTLoopRemainder: RuntimeResidualBytes); |
| 226 | } |
| 227 | |
| 228 | BasicBlock *LoopBB = |
| 229 | BasicBlock::Create(Context&: Ctx, Name: "loop-memcpy-expansion" , Parent: ParentFunc, InsertBefore: PostLoopBB); |
| 230 | IRBuilder<> LoopBuilder(LoopBB); |
| 231 | |
| 232 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 233 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 234 | |
| 235 | PHINode *LoopIndex = LoopBuilder.CreatePHI(Ty: CopyLenType, NumReservedValues: 2, Name: "loop-index" ); |
| 236 | LoopIndex->addIncoming(V: ConstantInt::get(Ty: CopyLenType, V: 0U), BB: PreLoopBB); |
| 237 | |
| 238 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 239 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e., |
| 240 | // we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use byte |
| 241 | // offsets computed from the TypeStoreSize. |
| 242 | Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: LoopIndex); |
| 243 | LoadInst *Load = LoopBuilder.CreateAlignedLoad(Ty: LoopOpType, Ptr: SrcGEP, |
| 244 | Align: PartSrcAlign, isVolatile: SrcIsVolatile); |
| 245 | if (!CanOverlap) { |
| 246 | // Set alias scope for loads. |
| 247 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 248 | } |
| 249 | Value *DstGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: LoopIndex); |
| 250 | StoreInst *Store = |
| 251 | LoopBuilder.CreateAlignedStore(Val: Load, Ptr: DstGEP, Align: PartDstAlign, isVolatile: DstIsVolatile); |
| 252 | if (!CanOverlap) { |
| 253 | // Indicate that stores don't overlap loads. |
| 254 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 255 | } |
| 256 | if (AtomicElementSize) { |
| 257 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 258 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 259 | } |
| 260 | Value *NewIndex = LoopBuilder.CreateAdd( |
| 261 | LHS: LoopIndex, RHS: ConstantInt::get(Ty: CopyLenType, V: LoopOpSize)); |
| 262 | LoopIndex->addIncoming(V: NewIndex, BB: LoopBB); |
| 263 | |
| 264 | bool RequiresResidual = |
| 265 | !LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize); |
| 266 | if (RequiresResidual) { |
| 267 | Type *ResLoopOpType = AtomicElementSize |
| 268 | ? Type::getIntNTy(C&: Ctx, N: *AtomicElementSize * 8) |
| 269 | : Int8Type; |
| 270 | unsigned ResLoopOpSize = DL.getTypeStoreSize(Ty: ResLoopOpType); |
| 271 | assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) && |
| 272 | "Store size is expected to match type size" ); |
| 273 | |
| 274 | Align ResSrcAlign(commonAlignment(A: PartSrcAlign, Offset: ResLoopOpSize)); |
| 275 | Align ResDstAlign(commonAlignment(A: PartDstAlign, Offset: ResLoopOpSize)); |
| 276 | |
| 277 | // Loop body for the residual copy. |
| 278 | BasicBlock *ResLoopBB = BasicBlock::Create( |
| 279 | Context&: Ctx, Name: "loop-memcpy-residual" , Parent: PreLoopBB->getParent(), InsertBefore: PostLoopBB); |
| 280 | // Residual loop header. |
| 281 | BasicBlock * = BasicBlock::Create( |
| 282 | Context&: Ctx, Name: "loop-memcpy-residual-header" , Parent: PreLoopBB->getParent(), InsertBefore: nullptr); |
| 283 | |
| 284 | // Need to update the pre-loop basic block to branch to the correct place. |
| 285 | // branch to the main loop if the count is non-zero, branch to the residual |
| 286 | // loop if the copy size is smaller then 1 iteration of the main loop but |
| 287 | // non-zero and finally branch to after the residual loop if the memcpy |
| 288 | // size is zero. |
| 289 | ConstantInt *Zero = ConstantInt::get(Ty: ILengthType, V: 0U); |
| 290 | PLBuilder.CreateCondBr(Cond: PLBuilder.CreateICmpNE(LHS: RuntimeLoopBytes, RHS: Zero), |
| 291 | True: LoopBB, False: ResHeaderBB); |
| 292 | PreLoopBB->getTerminator()->eraseFromParent(); |
| 293 | |
| 294 | LoopBuilder.CreateCondBr( |
| 295 | Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: RuntimeLoopBytes), True: LoopBB, |
| 296 | False: ResHeaderBB); |
| 297 | |
| 298 | // Determine if we need to branch to the residual loop or bypass it. |
| 299 | IRBuilder<> RHBuilder(ResHeaderBB); |
| 300 | RHBuilder.CreateCondBr(Cond: RHBuilder.CreateICmpNE(LHS: RuntimeResidualBytes, RHS: Zero), |
| 301 | True: ResLoopBB, False: PostLoopBB); |
| 302 | |
| 303 | // Copy the residual with single byte load/store loop. |
| 304 | IRBuilder<> ResBuilder(ResLoopBB); |
| 305 | PHINode *ResidualIndex = |
| 306 | ResBuilder.CreatePHI(Ty: CopyLenType, NumReservedValues: 2, Name: "residual-loop-index" ); |
| 307 | ResidualIndex->addIncoming(V: Zero, BB: ResHeaderBB); |
| 308 | |
| 309 | Value *FullOffset = ResBuilder.CreateAdd(LHS: RuntimeLoopBytes, RHS: ResidualIndex); |
| 310 | Value *SrcGEP = ResBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: FullOffset); |
| 311 | LoadInst *Load = ResBuilder.CreateAlignedLoad(Ty: ResLoopOpType, Ptr: SrcGEP, |
| 312 | Align: ResSrcAlign, isVolatile: SrcIsVolatile); |
| 313 | if (!CanOverlap) { |
| 314 | // Set alias scope for loads. |
| 315 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, |
| 316 | Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 317 | } |
| 318 | Value *DstGEP = ResBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: FullOffset); |
| 319 | StoreInst *Store = |
| 320 | ResBuilder.CreateAlignedStore(Val: Load, Ptr: DstGEP, Align: ResDstAlign, isVolatile: DstIsVolatile); |
| 321 | if (!CanOverlap) { |
| 322 | // Indicate that stores don't overlap loads. |
| 323 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 324 | } |
| 325 | if (AtomicElementSize) { |
| 326 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 327 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 328 | } |
| 329 | Value *ResNewIndex = ResBuilder.CreateAdd( |
| 330 | LHS: ResidualIndex, RHS: ConstantInt::get(Ty: CopyLenType, V: ResLoopOpSize)); |
| 331 | ResidualIndex->addIncoming(V: ResNewIndex, BB: ResLoopBB); |
| 332 | |
| 333 | // Create the loop branch condition. |
| 334 | ResBuilder.CreateCondBr( |
| 335 | Cond: ResBuilder.CreateICmpULT(LHS: ResNewIndex, RHS: RuntimeResidualBytes), True: ResLoopBB, |
| 336 | False: PostLoopBB); |
| 337 | } else { |
| 338 | // In this case the loop operand type was a byte, and there is no need for a |
| 339 | // residual loop to copy the remaining memory after the main loop. |
| 340 | // We do however need to patch up the control flow by creating the |
| 341 | // terminators for the preloop block and the memcpy loop. |
| 342 | ConstantInt *Zero = ConstantInt::get(Ty: ILengthType, V: 0U); |
| 343 | PLBuilder.CreateCondBr(Cond: PLBuilder.CreateICmpNE(LHS: RuntimeLoopBytes, RHS: Zero), |
| 344 | True: LoopBB, False: PostLoopBB); |
| 345 | PreLoopBB->getTerminator()->eraseFromParent(); |
| 346 | LoopBuilder.CreateCondBr( |
| 347 | Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: RuntimeLoopBytes), True: LoopBB, |
| 348 | False: PostLoopBB); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | // If \p Addr1 and \p Addr2 are pointers to different address spaces, create an |
| 353 | // addresspacecast to obtain a pair of pointers in the same addressspace. The |
| 354 | // caller needs to ensure that addrspacecasting is possible. |
| 355 | // No-op if the pointers are in the same address space. |
| 356 | static std::pair<Value *, Value *> |
| 357 | tryInsertCastToCommonAddrSpace(IRBuilderBase &B, Value *Addr1, Value *Addr2, |
| 358 | const TargetTransformInfo &TTI) { |
| 359 | Value *ResAddr1 = Addr1; |
| 360 | Value *ResAddr2 = Addr2; |
| 361 | |
| 362 | unsigned AS1 = cast<PointerType>(Val: Addr1->getType())->getAddressSpace(); |
| 363 | unsigned AS2 = cast<PointerType>(Val: Addr2->getType())->getAddressSpace(); |
| 364 | if (AS1 != AS2) { |
| 365 | if (TTI.isValidAddrSpaceCast(FromAS: AS2, ToAS: AS1)) |
| 366 | ResAddr2 = B.CreateAddrSpaceCast(V: Addr2, DestTy: Addr1->getType()); |
| 367 | else if (TTI.isValidAddrSpaceCast(FromAS: AS1, ToAS: AS2)) |
| 368 | ResAddr1 = B.CreateAddrSpaceCast(V: Addr1, DestTy: Addr2->getType()); |
| 369 | else |
| 370 | llvm_unreachable("Can only lower memmove between address spaces if they " |
| 371 | "support addrspacecast" ); |
| 372 | } |
| 373 | return {ResAddr1, ResAddr2}; |
| 374 | } |
| 375 | |
| 376 | // Lower memmove to IR. memmove is required to correctly copy overlapping memory |
| 377 | // regions; therefore, it has to check the relative positions of the source and |
| 378 | // destination pointers and choose the copy direction accordingly. |
| 379 | // |
| 380 | // The code below is an IR rendition of this C function: |
| 381 | // |
| 382 | // void* memmove(void* dst, const void* src, size_t n) { |
| 383 | // unsigned char* d = dst; |
| 384 | // const unsigned char* s = src; |
| 385 | // if (s < d) { |
| 386 | // // copy backwards |
| 387 | // while (n--) { |
| 388 | // d[n] = s[n]; |
| 389 | // } |
| 390 | // } else { |
| 391 | // // copy forward |
| 392 | // for (size_t i = 0; i < n; ++i) { |
| 393 | // d[i] = s[i]; |
| 394 | // } |
| 395 | // } |
| 396 | // return dst; |
| 397 | // } |
| 398 | // |
| 399 | // If the TargetTransformInfo specifies a wider MemcpyLoopLoweringType, it is |
| 400 | // used for the memory accesses in the loops. Then, additional loops with |
| 401 | // byte-wise accesses are added for the remaining bytes. |
| 402 | static void createMemMoveLoopUnknownSize(Instruction *InsertBefore, |
| 403 | Value *SrcAddr, Value *DstAddr, |
| 404 | Value *CopyLen, Align SrcAlign, |
| 405 | Align DstAlign, bool SrcIsVolatile, |
| 406 | bool DstIsVolatile, |
| 407 | const TargetTransformInfo &TTI) { |
| 408 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 409 | BasicBlock *OrigBB = InsertBefore->getParent(); |
| 410 | Function *F = OrigBB->getParent(); |
| 411 | const DataLayout &DL = F->getDataLayout(); |
| 412 | LLVMContext &Ctx = OrigBB->getContext(); |
| 413 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 414 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 415 | |
| 416 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType(Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, |
| 417 | SrcAlign, DestAlign: DstAlign); |
| 418 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 419 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 420 | bool LoopOpIsInt8 = LoopOpType == Int8Type; |
| 421 | |
| 422 | // If the memory accesses are wider than one byte, residual loops with |
| 423 | // i8-accesses are required to move remaining bytes. |
| 424 | bool RequiresResidual = !LoopOpIsInt8; |
| 425 | |
| 426 | Type *ResidualLoopOpType = Int8Type; |
| 427 | unsigned ResidualLoopOpSize = DL.getTypeStoreSize(Ty: ResidualLoopOpType); |
| 428 | |
| 429 | // Calculate the loop trip count and remaining bytes to copy after the loop. |
| 430 | IntegerType *ILengthType = cast<IntegerType>(Val: TypeOfCopyLen); |
| 431 | ConstantInt *CILoopOpSize = ConstantInt::get(Ty: ILengthType, V: LoopOpSize); |
| 432 | ConstantInt *CIResidualLoopOpSize = |
| 433 | ConstantInt::get(Ty: ILengthType, V: ResidualLoopOpSize); |
| 434 | ConstantInt *Zero = ConstantInt::get(Ty: ILengthType, V: 0); |
| 435 | |
| 436 | IRBuilder<> PLBuilder(InsertBefore); |
| 437 | |
| 438 | Value *RuntimeLoopBytes = CopyLen; |
| 439 | Value *RuntimeLoopRemainder = nullptr; |
| 440 | Value *SkipResidualCondition = nullptr; |
| 441 | if (RequiresResidual) { |
| 442 | RuntimeLoopRemainder = getRuntimeLoopRemainder(DL, B&: PLBuilder, Len: CopyLen, |
| 443 | OpSize: CILoopOpSize, OpSizeVal: LoopOpSize); |
| 444 | RuntimeLoopBytes = getRuntimeLoopBytes(DL, B&: PLBuilder, Len: CopyLen, OpSize: CILoopOpSize, |
| 445 | OpSizeVal: LoopOpSize, RTLoopRemainder: RuntimeLoopRemainder); |
| 446 | SkipResidualCondition = |
| 447 | PLBuilder.CreateICmpEQ(LHS: RuntimeLoopRemainder, RHS: Zero, Name: "skip_residual" ); |
| 448 | } |
| 449 | Value *SkipMainCondition = |
| 450 | PLBuilder.CreateICmpEQ(LHS: RuntimeLoopBytes, RHS: Zero, Name: "skip_main" ); |
| 451 | |
| 452 | // Create the a comparison of src and dst, based on which we jump to either |
| 453 | // the forward-copy part of the function (if src >= dst) or the backwards-copy |
| 454 | // part (if src < dst). |
| 455 | // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else |
| 456 | // structure. Its block terminators (unconditional branches) are replaced by |
| 457 | // the appropriate conditional branches when the loop is built. |
| 458 | // If the pointers are in different address spaces, they need to be converted |
| 459 | // to a compatible one. Cases where memory ranges in the different address |
| 460 | // spaces cannot overlap are lowered as memcpy and not handled here. |
| 461 | auto [CmpSrcAddr, CmpDstAddr] = |
| 462 | tryInsertCastToCommonAddrSpace(B&: PLBuilder, Addr1: SrcAddr, Addr2: DstAddr, TTI); |
| 463 | Value *PtrCompare = |
| 464 | PLBuilder.CreateICmpULT(LHS: CmpSrcAddr, RHS: CmpDstAddr, Name: "compare_src_dst" ); |
| 465 | Instruction *ThenTerm, *ElseTerm; |
| 466 | SplitBlockAndInsertIfThenElse(Cond: PtrCompare, SplitBefore: InsertBefore->getIterator(), |
| 467 | ThenTerm: &ThenTerm, ElseTerm: &ElseTerm); |
| 468 | |
| 469 | // If the LoopOpSize is greater than 1, each part of the function consists of |
| 470 | // four blocks: |
| 471 | // memmove_copy_backwards: |
| 472 | // skip the residual loop when 0 iterations are required |
| 473 | // memmove_bwd_residual_loop: |
| 474 | // copy the last few bytes individually so that the remaining length is |
| 475 | // a multiple of the LoopOpSize |
| 476 | // memmove_bwd_middle: skip the main loop when 0 iterations are required |
| 477 | // memmove_bwd_main_loop: the actual backwards loop BB with wide accesses |
| 478 | // memmove_copy_forward: skip the main loop when 0 iterations are required |
| 479 | // memmove_fwd_main_loop: the actual forward loop BB with wide accesses |
| 480 | // memmove_fwd_middle: skip the residual loop when 0 iterations are required |
| 481 | // memmove_fwd_residual_loop: copy the last few bytes individually |
| 482 | // |
| 483 | // The main and residual loop are switched between copying forward and |
| 484 | // backward so that the residual loop always operates on the end of the moved |
| 485 | // range. This is based on the assumption that buffers whose start is aligned |
| 486 | // with the LoopOpSize are more common than buffers whose end is. |
| 487 | // |
| 488 | // If the LoopOpSize is 1, each part of the function consists of two blocks: |
| 489 | // memmove_copy_backwards: skip the loop when 0 iterations are required |
| 490 | // memmove_bwd_main_loop: the actual backwards loop BB |
| 491 | // memmove_copy_forward: skip the loop when 0 iterations are required |
| 492 | // memmove_fwd_main_loop: the actual forward loop BB |
| 493 | BasicBlock *CopyBackwardsBB = ThenTerm->getParent(); |
| 494 | CopyBackwardsBB->setName("memmove_copy_backwards" ); |
| 495 | BasicBlock *CopyForwardBB = ElseTerm->getParent(); |
| 496 | CopyForwardBB->setName("memmove_copy_forward" ); |
| 497 | BasicBlock *ExitBB = InsertBefore->getParent(); |
| 498 | ExitBB->setName("memmove_done" ); |
| 499 | |
| 500 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 501 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 502 | |
| 503 | // Accesses in the residual loops do not share the same alignment as those in |
| 504 | // the main loops. |
| 505 | Align ResidualSrcAlign(commonAlignment(A: PartSrcAlign, Offset: ResidualLoopOpSize)); |
| 506 | Align ResidualDstAlign(commonAlignment(A: PartDstAlign, Offset: ResidualLoopOpSize)); |
| 507 | |
| 508 | // Copying backwards. |
| 509 | { |
| 510 | BasicBlock *MainLoopBB = BasicBlock::Create( |
| 511 | Context&: F->getContext(), Name: "memmove_bwd_main_loop" , Parent: F, InsertBefore: CopyForwardBB); |
| 512 | |
| 513 | // The predecessor of the memmove_bwd_main_loop. Updated in the |
| 514 | // following if a residual loop is emitted first. |
| 515 | BasicBlock *PredBB = CopyBackwardsBB; |
| 516 | |
| 517 | if (RequiresResidual) { |
| 518 | // backwards residual loop |
| 519 | BasicBlock *ResidualLoopBB = BasicBlock::Create( |
| 520 | Context&: F->getContext(), Name: "memmove_bwd_residual_loop" , Parent: F, InsertBefore: MainLoopBB); |
| 521 | IRBuilder<> ResidualLoopBuilder(ResidualLoopBB); |
| 522 | PHINode *ResidualLoopPhi = ResidualLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0); |
| 523 | Value *ResidualIndex = ResidualLoopBuilder.CreateSub( |
| 524 | LHS: ResidualLoopPhi, RHS: CIResidualLoopOpSize, Name: "bwd_residual_index" ); |
| 525 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 526 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, |
| 527 | // i.e., we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, |
| 528 | // use byte offsets computed from the TypeStoreSize. |
| 529 | Value *LoadGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, |
| 530 | IdxList: ResidualIndex); |
| 531 | Value *Element = ResidualLoopBuilder.CreateAlignedLoad( |
| 532 | Ty: ResidualLoopOpType, Ptr: LoadGEP, Align: ResidualSrcAlign, isVolatile: SrcIsVolatile, |
| 533 | Name: "element" ); |
| 534 | Value *StoreGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, |
| 535 | IdxList: ResidualIndex); |
| 536 | ResidualLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, |
| 537 | Align: ResidualDstAlign, isVolatile: DstIsVolatile); |
| 538 | |
| 539 | // After the residual loop, go to an intermediate block. |
| 540 | BasicBlock *IntermediateBB = BasicBlock::Create( |
| 541 | Context&: F->getContext(), Name: "memmove_bwd_middle" , Parent: F, InsertBefore: MainLoopBB); |
| 542 | // Later code expects a terminator in the PredBB. |
| 543 | IRBuilder<> IntermediateBuilder(IntermediateBB); |
| 544 | IntermediateBuilder.CreateUnreachable(); |
| 545 | ResidualLoopBuilder.CreateCondBr( |
| 546 | Cond: ResidualLoopBuilder.CreateICmpEQ(LHS: ResidualIndex, RHS: RuntimeLoopBytes), |
| 547 | True: IntermediateBB, False: ResidualLoopBB); |
| 548 | |
| 549 | ResidualLoopPhi->addIncoming(V: ResidualIndex, BB: ResidualLoopBB); |
| 550 | ResidualLoopPhi->addIncoming(V: CopyLen, BB: CopyBackwardsBB); |
| 551 | |
| 552 | // How to get to the residual: |
| 553 | BranchInst::Create(IfTrue: IntermediateBB, IfFalse: ResidualLoopBB, Cond: SkipResidualCondition, |
| 554 | InsertBefore: ThenTerm->getIterator()); |
| 555 | ThenTerm->eraseFromParent(); |
| 556 | |
| 557 | PredBB = IntermediateBB; |
| 558 | } |
| 559 | |
| 560 | // main loop |
| 561 | IRBuilder<> MainLoopBuilder(MainLoopBB); |
| 562 | PHINode *MainLoopPhi = MainLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0); |
| 563 | Value *MainIndex = |
| 564 | MainLoopBuilder.CreateSub(LHS: MainLoopPhi, RHS: CILoopOpSize, Name: "bwd_main_index" ); |
| 565 | Value *LoadGEP = |
| 566 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: MainIndex); |
| 567 | Value *Element = MainLoopBuilder.CreateAlignedLoad( |
| 568 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 569 | Value *StoreGEP = |
| 570 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: MainIndex); |
| 571 | MainLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 572 | isVolatile: DstIsVolatile); |
| 573 | MainLoopBuilder.CreateCondBr(Cond: MainLoopBuilder.CreateICmpEQ(LHS: MainIndex, RHS: Zero), |
| 574 | True: ExitBB, False: MainLoopBB); |
| 575 | MainLoopPhi->addIncoming(V: MainIndex, BB: MainLoopBB); |
| 576 | MainLoopPhi->addIncoming(V: RuntimeLoopBytes, BB: PredBB); |
| 577 | |
| 578 | // How to get to the main loop: |
| 579 | Instruction *PredBBTerm = PredBB->getTerminator(); |
| 580 | BranchInst::Create(IfTrue: ExitBB, IfFalse: MainLoopBB, Cond: SkipMainCondition, |
| 581 | InsertBefore: PredBBTerm->getIterator()); |
| 582 | PredBBTerm->eraseFromParent(); |
| 583 | } |
| 584 | |
| 585 | // Copying forward. |
| 586 | // main loop |
| 587 | { |
| 588 | BasicBlock *MainLoopBB = |
| 589 | BasicBlock::Create(Context&: F->getContext(), Name: "memmove_fwd_main_loop" , Parent: F, InsertBefore: ExitBB); |
| 590 | IRBuilder<> MainLoopBuilder(MainLoopBB); |
| 591 | PHINode *MainLoopPhi = |
| 592 | MainLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0, Name: "fwd_main_index" ); |
| 593 | Value *LoadGEP = |
| 594 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: MainLoopPhi); |
| 595 | Value *Element = MainLoopBuilder.CreateAlignedLoad( |
| 596 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 597 | Value *StoreGEP = |
| 598 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: MainLoopPhi); |
| 599 | MainLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 600 | isVolatile: DstIsVolatile); |
| 601 | Value *MainIndex = MainLoopBuilder.CreateAdd(LHS: MainLoopPhi, RHS: CILoopOpSize); |
| 602 | MainLoopPhi->addIncoming(V: MainIndex, BB: MainLoopBB); |
| 603 | MainLoopPhi->addIncoming(V: Zero, BB: CopyForwardBB); |
| 604 | |
| 605 | Instruction *CopyFwdBBTerm = CopyForwardBB->getTerminator(); |
| 606 | BasicBlock *SuccessorBB = ExitBB; |
| 607 | if (RequiresResidual) |
| 608 | SuccessorBB = |
| 609 | BasicBlock::Create(Context&: F->getContext(), Name: "memmove_fwd_middle" , Parent: F, InsertBefore: ExitBB); |
| 610 | |
| 611 | // leaving or staying in the main loop |
| 612 | MainLoopBuilder.CreateCondBr( |
| 613 | Cond: MainLoopBuilder.CreateICmpEQ(LHS: MainIndex, RHS: RuntimeLoopBytes), True: SuccessorBB, |
| 614 | False: MainLoopBB); |
| 615 | |
| 616 | // getting in or skipping the main loop |
| 617 | BranchInst::Create(IfTrue: SuccessorBB, IfFalse: MainLoopBB, Cond: SkipMainCondition, |
| 618 | InsertBefore: CopyFwdBBTerm->getIterator()); |
| 619 | CopyFwdBBTerm->eraseFromParent(); |
| 620 | |
| 621 | if (RequiresResidual) { |
| 622 | BasicBlock *IntermediateBB = SuccessorBB; |
| 623 | IRBuilder<> IntermediateBuilder(IntermediateBB); |
| 624 | BasicBlock *ResidualLoopBB = BasicBlock::Create( |
| 625 | Context&: F->getContext(), Name: "memmove_fwd_residual_loop" , Parent: F, InsertBefore: ExitBB); |
| 626 | IntermediateBuilder.CreateCondBr(Cond: SkipResidualCondition, True: ExitBB, |
| 627 | False: ResidualLoopBB); |
| 628 | |
| 629 | // Residual loop |
| 630 | IRBuilder<> ResidualLoopBuilder(ResidualLoopBB); |
| 631 | PHINode *ResidualLoopPhi = |
| 632 | ResidualLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0, Name: "fwd_residual_index" ); |
| 633 | Value *LoadGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, |
| 634 | IdxList: ResidualLoopPhi); |
| 635 | Value *Element = ResidualLoopBuilder.CreateAlignedLoad( |
| 636 | Ty: ResidualLoopOpType, Ptr: LoadGEP, Align: ResidualSrcAlign, isVolatile: SrcIsVolatile, |
| 637 | Name: "element" ); |
| 638 | Value *StoreGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, |
| 639 | IdxList: ResidualLoopPhi); |
| 640 | ResidualLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, |
| 641 | Align: ResidualDstAlign, isVolatile: DstIsVolatile); |
| 642 | Value *ResidualIndex = |
| 643 | ResidualLoopBuilder.CreateAdd(LHS: ResidualLoopPhi, RHS: CIResidualLoopOpSize); |
| 644 | ResidualLoopBuilder.CreateCondBr( |
| 645 | Cond: ResidualLoopBuilder.CreateICmpEQ(LHS: ResidualIndex, RHS: CopyLen), True: ExitBB, |
| 646 | False: ResidualLoopBB); |
| 647 | ResidualLoopPhi->addIncoming(V: ResidualIndex, BB: ResidualLoopBB); |
| 648 | ResidualLoopPhi->addIncoming(V: RuntimeLoopBytes, BB: IntermediateBB); |
| 649 | } |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | // Similar to createMemMoveLoopUnknownSize, only the trip counts are computed at |
| 654 | // compile time, obsolete loops and branches are omitted, and the residual code |
| 655 | // is straight-line code instead of a loop. |
| 656 | static void createMemMoveLoopKnownSize(Instruction *InsertBefore, |
| 657 | Value *SrcAddr, Value *DstAddr, |
| 658 | ConstantInt *CopyLen, Align SrcAlign, |
| 659 | Align DstAlign, bool SrcIsVolatile, |
| 660 | bool DstIsVolatile, |
| 661 | const TargetTransformInfo &TTI) { |
| 662 | // No need to expand zero length moves. |
| 663 | if (CopyLen->isZero()) |
| 664 | return; |
| 665 | |
| 666 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 667 | BasicBlock *OrigBB = InsertBefore->getParent(); |
| 668 | Function *F = OrigBB->getParent(); |
| 669 | const DataLayout &DL = F->getDataLayout(); |
| 670 | LLVMContext &Ctx = OrigBB->getContext(); |
| 671 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 672 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 673 | |
| 674 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType(Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, |
| 675 | SrcAlign, DestAlign: DstAlign); |
| 676 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 677 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 678 | |
| 679 | // Calculate the loop trip count and remaining bytes to copy after the loop. |
| 680 | uint64_t BytesCopiedInLoop = alignDown(Value: CopyLen->getZExtValue(), Align: LoopOpSize); |
| 681 | uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopiedInLoop; |
| 682 | |
| 683 | IntegerType *ILengthType = cast<IntegerType>(Val: TypeOfCopyLen); |
| 684 | ConstantInt *Zero = ConstantInt::get(Ty: ILengthType, V: 0); |
| 685 | ConstantInt *LoopBound = ConstantInt::get(Ty: ILengthType, V: BytesCopiedInLoop); |
| 686 | ConstantInt *CILoopOpSize = ConstantInt::get(Ty: ILengthType, V: LoopOpSize); |
| 687 | |
| 688 | IRBuilder<> PLBuilder(InsertBefore); |
| 689 | |
| 690 | auto [CmpSrcAddr, CmpDstAddr] = |
| 691 | tryInsertCastToCommonAddrSpace(B&: PLBuilder, Addr1: SrcAddr, Addr2: DstAddr, TTI); |
| 692 | Value *PtrCompare = |
| 693 | PLBuilder.CreateICmpULT(LHS: CmpSrcAddr, RHS: CmpDstAddr, Name: "compare_src_dst" ); |
| 694 | Instruction *ThenTerm, *ElseTerm; |
| 695 | SplitBlockAndInsertIfThenElse(Cond: PtrCompare, SplitBefore: InsertBefore->getIterator(), |
| 696 | ThenTerm: &ThenTerm, ElseTerm: &ElseTerm); |
| 697 | |
| 698 | BasicBlock *CopyBackwardsBB = ThenTerm->getParent(); |
| 699 | BasicBlock *CopyForwardBB = ElseTerm->getParent(); |
| 700 | BasicBlock *ExitBB = InsertBefore->getParent(); |
| 701 | ExitBB->setName("memmove_done" ); |
| 702 | |
| 703 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 704 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 705 | |
| 706 | // Helper function to generate a load/store pair of a given type in the |
| 707 | // residual. Used in the forward and backward branches. |
| 708 | auto GenerateResidualLdStPair = [&](Type *OpTy, IRBuilderBase &Builder, |
| 709 | uint64_t &BytesCopied) { |
| 710 | Align ResSrcAlign(commonAlignment(A: SrcAlign, Offset: BytesCopied)); |
| 711 | Align ResDstAlign(commonAlignment(A: DstAlign, Offset: BytesCopied)); |
| 712 | |
| 713 | unsigned OperandSize = DL.getTypeStoreSize(Ty: OpTy); |
| 714 | |
| 715 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 716 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e., |
| 717 | // we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use |
| 718 | // byte offsets computed from the TypeStoreSize. |
| 719 | Value *SrcGEP = Builder.CreateInBoundsGEP( |
| 720 | Ty: Int8Type, Ptr: SrcAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 721 | LoadInst *Load = |
| 722 | Builder.CreateAlignedLoad(Ty: OpTy, Ptr: SrcGEP, Align: ResSrcAlign, isVolatile: SrcIsVolatile); |
| 723 | Value *DstGEP = Builder.CreateInBoundsGEP( |
| 724 | Ty: Int8Type, Ptr: DstAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 725 | Builder.CreateAlignedStore(Val: Load, Ptr: DstGEP, Align: ResDstAlign, isVolatile: DstIsVolatile); |
| 726 | BytesCopied += OperandSize; |
| 727 | }; |
| 728 | |
| 729 | // Copying backwards. |
| 730 | if (RemainingBytes != 0) { |
| 731 | CopyBackwardsBB->setName("memmove_bwd_residual" ); |
| 732 | uint64_t BytesCopied = BytesCopiedInLoop; |
| 733 | |
| 734 | // Residual code is required to move the remaining bytes. We need the same |
| 735 | // instructions as in the forward case, only in reverse. So we generate code |
| 736 | // the same way, except that we change the IRBuilder insert point for each |
| 737 | // load/store pair so that each one is inserted before the previous one |
| 738 | // instead of after it. |
| 739 | IRBuilder<> BwdResBuilder(CopyBackwardsBB, |
| 740 | CopyBackwardsBB->getFirstNonPHIIt()); |
| 741 | SmallVector<Type *, 5> RemainingOps; |
| 742 | TTI.getMemcpyLoopResidualLoweringType(OpsOut&: RemainingOps, Context&: Ctx, RemainingBytes, |
| 743 | SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign: PartSrcAlign, |
| 744 | DestAlign: PartDstAlign); |
| 745 | for (auto *OpTy : RemainingOps) { |
| 746 | // reverse the order of the emitted operations |
| 747 | BwdResBuilder.SetInsertPoint(TheBB: CopyBackwardsBB, |
| 748 | IP: CopyBackwardsBB->getFirstNonPHIIt()); |
| 749 | GenerateResidualLdStPair(OpTy, BwdResBuilder, BytesCopied); |
| 750 | } |
| 751 | } |
| 752 | if (BytesCopiedInLoop != 0) { |
| 753 | BasicBlock *LoopBB = CopyBackwardsBB; |
| 754 | BasicBlock *PredBB = OrigBB; |
| 755 | if (RemainingBytes != 0) { |
| 756 | // if we introduce residual code, it needs its separate BB |
| 757 | LoopBB = CopyBackwardsBB->splitBasicBlock( |
| 758 | I: CopyBackwardsBB->getTerminator(), BBName: "memmove_bwd_loop" ); |
| 759 | PredBB = CopyBackwardsBB; |
| 760 | } else { |
| 761 | CopyBackwardsBB->setName("memmove_bwd_loop" ); |
| 762 | } |
| 763 | IRBuilder<> LoopBuilder(LoopBB->getTerminator()); |
| 764 | PHINode *LoopPhi = LoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0); |
| 765 | Value *Index = LoopBuilder.CreateSub(LHS: LoopPhi, RHS: CILoopOpSize, Name: "bwd_index" ); |
| 766 | Value *LoadGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: Index); |
| 767 | Value *Element = LoopBuilder.CreateAlignedLoad( |
| 768 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 769 | Value *StoreGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: Index); |
| 770 | LoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 771 | isVolatile: DstIsVolatile); |
| 772 | |
| 773 | // Replace the unconditional branch introduced by |
| 774 | // SplitBlockAndInsertIfThenElse to turn LoopBB into a loop. |
| 775 | Instruction *UncondTerm = LoopBB->getTerminator(); |
| 776 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpEQ(LHS: Index, RHS: Zero), True: ExitBB, |
| 777 | False: LoopBB); |
| 778 | UncondTerm->eraseFromParent(); |
| 779 | |
| 780 | LoopPhi->addIncoming(V: Index, BB: LoopBB); |
| 781 | LoopPhi->addIncoming(V: LoopBound, BB: PredBB); |
| 782 | } |
| 783 | |
| 784 | // Copying forward. |
| 785 | BasicBlock *FwdResidualBB = CopyForwardBB; |
| 786 | if (BytesCopiedInLoop != 0) { |
| 787 | CopyForwardBB->setName("memmove_fwd_loop" ); |
| 788 | BasicBlock *LoopBB = CopyForwardBB; |
| 789 | BasicBlock *SuccBB = ExitBB; |
| 790 | if (RemainingBytes != 0) { |
| 791 | // if we introduce residual code, it needs its separate BB |
| 792 | SuccBB = CopyForwardBB->splitBasicBlock(I: CopyForwardBB->getTerminator(), |
| 793 | BBName: "memmove_fwd_residual" ); |
| 794 | FwdResidualBB = SuccBB; |
| 795 | } |
| 796 | IRBuilder<> LoopBuilder(LoopBB->getTerminator()); |
| 797 | PHINode *LoopPhi = LoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0, Name: "fwd_index" ); |
| 798 | Value *LoadGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: LoopPhi); |
| 799 | Value *Element = LoopBuilder.CreateAlignedLoad( |
| 800 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 801 | Value *StoreGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: LoopPhi); |
| 802 | LoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 803 | isVolatile: DstIsVolatile); |
| 804 | Value *Index = LoopBuilder.CreateAdd(LHS: LoopPhi, RHS: CILoopOpSize); |
| 805 | LoopPhi->addIncoming(V: Index, BB: LoopBB); |
| 806 | LoopPhi->addIncoming(V: Zero, BB: OrigBB); |
| 807 | |
| 808 | // Replace the unconditional branch to turn LoopBB into a loop. |
| 809 | Instruction *UncondTerm = LoopBB->getTerminator(); |
| 810 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpEQ(LHS: Index, RHS: LoopBound), True: SuccBB, |
| 811 | False: LoopBB); |
| 812 | UncondTerm->eraseFromParent(); |
| 813 | } |
| 814 | |
| 815 | if (RemainingBytes != 0) { |
| 816 | uint64_t BytesCopied = BytesCopiedInLoop; |
| 817 | |
| 818 | // Residual code is required to move the remaining bytes. In the forward |
| 819 | // case, we emit it in the normal order. |
| 820 | IRBuilder<> FwdResBuilder(FwdResidualBB->getTerminator()); |
| 821 | SmallVector<Type *, 5> RemainingOps; |
| 822 | TTI.getMemcpyLoopResidualLoweringType(OpsOut&: RemainingOps, Context&: Ctx, RemainingBytes, |
| 823 | SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign: PartSrcAlign, |
| 824 | DestAlign: PartDstAlign); |
| 825 | for (auto *OpTy : RemainingOps) |
| 826 | GenerateResidualLdStPair(OpTy, FwdResBuilder, BytesCopied); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr, |
| 831 | Value *CopyLen, Value *SetValue, Align DstAlign, |
| 832 | bool IsVolatile) { |
| 833 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 834 | BasicBlock *OrigBB = InsertBefore->getParent(); |
| 835 | Function *F = OrigBB->getParent(); |
| 836 | const DataLayout &DL = F->getDataLayout(); |
| 837 | BasicBlock *NewBB = |
| 838 | OrigBB->splitBasicBlock(I: InsertBefore, BBName: "split" ); |
| 839 | BasicBlock *LoopBB |
| 840 | = BasicBlock::Create(Context&: F->getContext(), Name: "loadstoreloop" , Parent: F, InsertBefore: NewBB); |
| 841 | |
| 842 | IRBuilder<> Builder(OrigBB->getTerminator()); |
| 843 | |
| 844 | Builder.CreateCondBr( |
| 845 | Cond: Builder.CreateICmpEQ(LHS: ConstantInt::get(Ty: TypeOfCopyLen, V: 0), RHS: CopyLen), True: NewBB, |
| 846 | False: LoopBB); |
| 847 | OrigBB->getTerminator()->eraseFromParent(); |
| 848 | |
| 849 | unsigned PartSize = DL.getTypeStoreSize(Ty: SetValue->getType()); |
| 850 | Align PartAlign(commonAlignment(A: DstAlign, Offset: PartSize)); |
| 851 | |
| 852 | IRBuilder<> LoopBuilder(LoopBB); |
| 853 | PHINode *LoopIndex = LoopBuilder.CreatePHI(Ty: TypeOfCopyLen, NumReservedValues: 0); |
| 854 | LoopIndex->addIncoming(V: ConstantInt::get(Ty: TypeOfCopyLen, V: 0), BB: OrigBB); |
| 855 | |
| 856 | LoopBuilder.CreateAlignedStore( |
| 857 | Val: SetValue, |
| 858 | Ptr: LoopBuilder.CreateInBoundsGEP(Ty: SetValue->getType(), Ptr: DstAddr, IdxList: LoopIndex), |
| 859 | Align: PartAlign, isVolatile: IsVolatile); |
| 860 | |
| 861 | Value *NewIndex = |
| 862 | LoopBuilder.CreateAdd(LHS: LoopIndex, RHS: ConstantInt::get(Ty: TypeOfCopyLen, V: 1)); |
| 863 | LoopIndex->addIncoming(V: NewIndex, BB: LoopBB); |
| 864 | |
| 865 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: CopyLen), True: LoopBB, |
| 866 | False: NewBB); |
| 867 | } |
| 868 | |
| 869 | template <typename T> |
| 870 | static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) { |
| 871 | if (SE) { |
| 872 | const SCEV *SrcSCEV = SE->getSCEV(V: Memcpy->getRawSource()); |
| 873 | const SCEV *DestSCEV = SE->getSCEV(V: Memcpy->getRawDest()); |
| 874 | if (SE->isKnownPredicateAt(Pred: CmpInst::ICMP_NE, LHS: SrcSCEV, RHS: DestSCEV, CtxI: Memcpy)) |
| 875 | return false; |
| 876 | } |
| 877 | return true; |
| 878 | } |
| 879 | |
| 880 | void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy, |
| 881 | const TargetTransformInfo &TTI, |
| 882 | ScalarEvolution *SE) { |
| 883 | bool CanOverlap = canOverlap(Memcpy, SE); |
| 884 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Memcpy->getLength())) { |
| 885 | createMemCpyLoopKnownSize( |
| 886 | /* InsertBefore */ Memcpy, |
| 887 | /* SrcAddr */ Memcpy->getRawSource(), |
| 888 | /* DstAddr */ Memcpy->getRawDest(), |
| 889 | /* CopyLen */ CI, |
| 890 | /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(), |
| 891 | /* DestAlign */ DstAlign: Memcpy->getDestAlign().valueOrOne(), |
| 892 | /* SrcIsVolatile */ Memcpy->isVolatile(), |
| 893 | /* DstIsVolatile */ Memcpy->isVolatile(), |
| 894 | /* CanOverlap */ CanOverlap, |
| 895 | /* TargetTransformInfo */ TTI); |
| 896 | } else { |
| 897 | createMemCpyLoopUnknownSize( |
| 898 | /* InsertBefore */ Memcpy, |
| 899 | /* SrcAddr */ Memcpy->getRawSource(), |
| 900 | /* DstAddr */ Memcpy->getRawDest(), |
| 901 | /* CopyLen */ Memcpy->getLength(), |
| 902 | /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(), |
| 903 | /* DestAlign */ DstAlign: Memcpy->getDestAlign().valueOrOne(), |
| 904 | /* SrcIsVolatile */ Memcpy->isVolatile(), |
| 905 | /* DstIsVolatile */ Memcpy->isVolatile(), |
| 906 | /* CanOverlap */ CanOverlap, |
| 907 | /* TargetTransformInfo */ TTI); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove, |
| 912 | const TargetTransformInfo &TTI) { |
| 913 | Value *CopyLen = Memmove->getLength(); |
| 914 | Value *SrcAddr = Memmove->getRawSource(); |
| 915 | Value *DstAddr = Memmove->getRawDest(); |
| 916 | Align SrcAlign = Memmove->getSourceAlign().valueOrOne(); |
| 917 | Align DstAlign = Memmove->getDestAlign().valueOrOne(); |
| 918 | bool SrcIsVolatile = Memmove->isVolatile(); |
| 919 | bool DstIsVolatile = SrcIsVolatile; |
| 920 | IRBuilder<> CastBuilder(Memmove); |
| 921 | |
| 922 | unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace(); |
| 923 | unsigned DstAS = DstAddr->getType()->getPointerAddressSpace(); |
| 924 | if (SrcAS != DstAS) { |
| 925 | if (!TTI.addrspacesMayAlias(AS0: SrcAS, AS1: DstAS)) { |
| 926 | // We may not be able to emit a pointer comparison, but we don't have |
| 927 | // to. Expand as memcpy. |
| 928 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: CopyLen)) { |
| 929 | createMemCpyLoopKnownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr, |
| 930 | CopyLen: CI, SrcAlign, DstAlign, SrcIsVolatile, |
| 931 | DstIsVolatile, |
| 932 | /*CanOverlap=*/false, TTI); |
| 933 | } else { |
| 934 | createMemCpyLoopUnknownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr, |
| 935 | CopyLen, SrcAlign, DstAlign, SrcIsVolatile, |
| 936 | DstIsVolatile, |
| 937 | /*CanOverlap=*/false, TTI); |
| 938 | } |
| 939 | |
| 940 | return true; |
| 941 | } |
| 942 | |
| 943 | if (!(TTI.isValidAddrSpaceCast(FromAS: DstAS, ToAS: SrcAS) || |
| 944 | TTI.isValidAddrSpaceCast(FromAS: SrcAS, ToAS: DstAS))) { |
| 945 | // We don't know generically if it's legal to introduce an |
| 946 | // addrspacecast. We need to know either if it's legal to insert an |
| 947 | // addrspacecast, or if the address spaces cannot alias. |
| 948 | LLVM_DEBUG( |
| 949 | dbgs() << "Do not know how to expand memmove between different " |
| 950 | "address spaces\n" ); |
| 951 | return false; |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: CopyLen)) { |
| 956 | createMemMoveLoopKnownSize( |
| 957 | /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen: CI, SrcAlign, DstAlign, |
| 958 | SrcIsVolatile, DstIsVolatile, TTI); |
| 959 | } else { |
| 960 | createMemMoveLoopUnknownSize( |
| 961 | /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign, |
| 962 | SrcIsVolatile, DstIsVolatile, TTI); |
| 963 | } |
| 964 | return true; |
| 965 | } |
| 966 | |
| 967 | void llvm::expandMemSetAsLoop(MemSetInst *Memset) { |
| 968 | createMemSetLoop(/* InsertBefore */ Memset, |
| 969 | /* DstAddr */ Memset->getRawDest(), |
| 970 | /* CopyLen */ Memset->getLength(), |
| 971 | /* SetValue */ Memset->getValue(), |
| 972 | /* Alignment */ DstAlign: Memset->getDestAlign().valueOrOne(), |
| 973 | IsVolatile: Memset->isVolatile()); |
| 974 | } |
| 975 | |
| 976 | void llvm::expandMemSetPatternAsLoop(MemSetPatternInst *Memset) { |
| 977 | createMemSetLoop(/* InsertBefore=*/Memset, |
| 978 | /* DstAddr=*/Memset->getRawDest(), |
| 979 | /* CopyLen=*/Memset->getLength(), |
| 980 | /* SetValue=*/Memset->getValue(), |
| 981 | /* Alignment=*/DstAlign: Memset->getDestAlign().valueOrOne(), |
| 982 | IsVolatile: Memset->isVolatile()); |
| 983 | } |
| 984 | |
| 985 | void llvm::expandAtomicMemCpyAsLoop(AnyMemCpyInst *AtomicMemcpy, |
| 986 | const TargetTransformInfo &TTI, |
| 987 | ScalarEvolution *SE) { |
| 988 | assert(AtomicMemcpy->isAtomic()); |
| 989 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: AtomicMemcpy->getLength())) { |
| 990 | createMemCpyLoopKnownSize( |
| 991 | /* InsertBefore */ AtomicMemcpy, |
| 992 | /* SrcAddr */ AtomicMemcpy->getRawSource(), |
| 993 | /* DstAddr */ AtomicMemcpy->getRawDest(), |
| 994 | /* CopyLen */ CI, |
| 995 | /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(), |
| 996 | /* DestAlign */ DstAlign: AtomicMemcpy->getDestAlign().valueOrOne(), |
| 997 | /* SrcIsVolatile */ AtomicMemcpy->isVolatile(), |
| 998 | /* DstIsVolatile */ AtomicMemcpy->isVolatile(), |
| 999 | /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec. |
| 1000 | /* TargetTransformInfo */ TTI, |
| 1001 | /* AtomicCpySize */ AtomicElementSize: AtomicMemcpy->getElementSizeInBytes()); |
| 1002 | } else { |
| 1003 | createMemCpyLoopUnknownSize( |
| 1004 | /* InsertBefore */ AtomicMemcpy, |
| 1005 | /* SrcAddr */ AtomicMemcpy->getRawSource(), |
| 1006 | /* DstAddr */ AtomicMemcpy->getRawDest(), |
| 1007 | /* CopyLen */ AtomicMemcpy->getLength(), |
| 1008 | /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(), |
| 1009 | /* DestAlign */ DstAlign: AtomicMemcpy->getDestAlign().valueOrOne(), |
| 1010 | /* SrcIsVolatile */ AtomicMemcpy->isVolatile(), |
| 1011 | /* DstIsVolatile */ AtomicMemcpy->isVolatile(), |
| 1012 | /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec. |
| 1013 | /* TargetTransformInfo */ TTI, |
| 1014 | /* AtomicCpySize */ AtomicElementSize: AtomicMemcpy->getElementSizeInBytes()); |
| 1015 | } |
| 1016 | } |
| 1017 | |