| 1 | //===-- MoveAutoInit.cpp - move auto-init inst closer to their use site----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass moves instruction maked as auto-init closer to the basic block that |
| 10 | // use it, eventually removing it from some control path of the function. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Utils/MoveAutoInit.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/Analysis/MemorySSA.h" |
| 18 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 19 | #include "llvm/Analysis/ValueTracking.h" |
| 20 | #include "llvm/IR/DebugInfo.h" |
| 21 | #include "llvm/IR/Dominators.h" |
| 22 | #include "llvm/IR/Instructions.h" |
| 23 | #include "llvm/IR/IntrinsicInst.h" |
| 24 | #include "llvm/Support/CommandLine.h" |
| 25 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | #define DEBUG_TYPE "move-auto-init" |
| 30 | |
| 31 | STATISTIC(NumMoved, "Number of instructions moved" ); |
| 32 | |
| 33 | static cl::opt<unsigned> MoveAutoInitThreshold( |
| 34 | "move-auto-init-threshold" , cl::Hidden, cl::init(Val: 128), |
| 35 | cl::desc("Maximum instructions to analyze per moved initialization" )); |
| 36 | |
| 37 | static bool hasAutoInitMetadata(const Instruction &I) { |
| 38 | return I.hasMetadata(KindID: LLVMContext::MD_annotation) && |
| 39 | any_of(Range: I.getMetadata(KindID: LLVMContext::MD_annotation)->operands(), |
| 40 | P: [](const MDOperand &Op) { return Op.equalsStr(Str: "auto-init" ); }); |
| 41 | } |
| 42 | |
| 43 | static std::optional<MemoryLocation> writeToAlloca(const Instruction &I) { |
| 44 | MemoryLocation ML; |
| 45 | if (auto *MI = dyn_cast<MemIntrinsic>(Val: &I)) |
| 46 | ML = MemoryLocation::getForDest(MI); |
| 47 | else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) |
| 48 | ML = MemoryLocation::get(SI); |
| 49 | else |
| 50 | return std::nullopt; |
| 51 | |
| 52 | if (isa<AllocaInst>(Val: getUnderlyingObject(V: ML.Ptr))) |
| 53 | return ML; |
| 54 | else |
| 55 | return {}; |
| 56 | } |
| 57 | |
| 58 | /// Finds a BasicBlock in the CFG where instruction `I` can be moved to while |
| 59 | /// not changing the Memory SSA ordering and being guarded by at least one |
| 60 | /// condition. |
| 61 | static BasicBlock *usersDominator(const MemoryLocation &ML, Instruction *I, |
| 62 | DominatorTree &DT, MemorySSA &MSSA) { |
| 63 | BasicBlock *CurrentDominator = nullptr; |
| 64 | MemoryUseOrDef &IMA = *MSSA.getMemoryAccess(I); |
| 65 | BatchAAResults AA(MSSA.getAA()); |
| 66 | |
| 67 | SmallPtrSet<MemoryAccess *, 8> Visited; |
| 68 | |
| 69 | auto AsMemoryAccess = [](User *U) { return cast<MemoryAccess>(Val: U); }; |
| 70 | SmallVector<MemoryAccess *> WorkList(map_range(C: IMA.users(), F: AsMemoryAccess)); |
| 71 | |
| 72 | while (!WorkList.empty()) { |
| 73 | MemoryAccess *MA = WorkList.pop_back_val(); |
| 74 | if (!Visited.insert(Ptr: MA).second) |
| 75 | continue; |
| 76 | |
| 77 | if (Visited.size() > MoveAutoInitThreshold) |
| 78 | return nullptr; |
| 79 | |
| 80 | bool FoundClobberingUser = false; |
| 81 | if (auto *M = dyn_cast<MemoryUseOrDef>(Val: MA)) { |
| 82 | Instruction *MI = M->getMemoryInst(); |
| 83 | |
| 84 | // If this memory instruction may not clobber `I`, we can skip it. |
| 85 | // LifetimeEnd is a valid user, but we do not want it in the user |
| 86 | // dominator. |
| 87 | if (AA.getModRefInfo(I: MI, OptLoc: ML) != ModRefInfo::NoModRef && |
| 88 | !MI->isLifetimeStartOrEnd() && MI != I) { |
| 89 | FoundClobberingUser = true; |
| 90 | CurrentDominator = CurrentDominator |
| 91 | ? DT.findNearestCommonDominator(A: CurrentDominator, |
| 92 | B: MI->getParent()) |
| 93 | : MI->getParent(); |
| 94 | } |
| 95 | } |
| 96 | if (!FoundClobberingUser) { |
| 97 | auto UsersAsMemoryAccesses = map_range(C: MA->users(), F: AsMemoryAccess); |
| 98 | append_range(C&: WorkList, R&: UsersAsMemoryAccesses); |
| 99 | } |
| 100 | } |
| 101 | return CurrentDominator; |
| 102 | } |
| 103 | |
| 104 | static bool runMoveAutoInit(Function &F, DominatorTree &DT, MemorySSA &MSSA) { |
| 105 | BasicBlock &EntryBB = F.getEntryBlock(); |
| 106 | SmallVector<std::pair<Instruction *, BasicBlock *>> JobList; |
| 107 | |
| 108 | // |
| 109 | // Compute movable instructions. |
| 110 | // |
| 111 | for (Instruction &I : EntryBB) { |
| 112 | if (!hasAutoInitMetadata(I)) |
| 113 | continue; |
| 114 | |
| 115 | std::optional<MemoryLocation> ML = writeToAlloca(I); |
| 116 | if (!ML) |
| 117 | continue; |
| 118 | |
| 119 | if (I.isVolatile()) |
| 120 | continue; |
| 121 | |
| 122 | BasicBlock *UsersDominator = usersDominator(ML: ML.value(), I: &I, DT, MSSA); |
| 123 | if (!UsersDominator) |
| 124 | continue; |
| 125 | |
| 126 | if (UsersDominator == &EntryBB) |
| 127 | continue; |
| 128 | |
| 129 | // Traverse the CFG to detect cycles `UsersDominator` would be part of. |
| 130 | SmallPtrSet<BasicBlock *, 8> TransitiveSuccessors; |
| 131 | SmallVector<BasicBlock *> WorkList(successors(BB: UsersDominator)); |
| 132 | bool HasCycle = false; |
| 133 | while (!WorkList.empty()) { |
| 134 | BasicBlock *CurrBB = WorkList.pop_back_val(); |
| 135 | if (CurrBB == UsersDominator) |
| 136 | // No early exit because we want to compute the full set of transitive |
| 137 | // successors. |
| 138 | HasCycle = true; |
| 139 | for (BasicBlock *Successor : successors(BB: CurrBB)) { |
| 140 | if (!TransitiveSuccessors.insert(Ptr: Successor).second) |
| 141 | continue; |
| 142 | WorkList.push_back(Elt: Successor); |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | // Don't insert if that could create multiple execution of I, |
| 147 | // but we can insert it in the non back-edge predecessors, if it exists. |
| 148 | if (HasCycle) { |
| 149 | BasicBlock *UsersDominatorHead = UsersDominator; |
| 150 | while (BasicBlock *UniquePredecessor = |
| 151 | UsersDominatorHead->getUniquePredecessor()) |
| 152 | UsersDominatorHead = UniquePredecessor; |
| 153 | |
| 154 | if (UsersDominatorHead == &EntryBB) |
| 155 | continue; |
| 156 | |
| 157 | BasicBlock *DominatingPredecessor = nullptr; |
| 158 | for (BasicBlock *Pred : predecessors(BB: UsersDominatorHead)) { |
| 159 | // If one of the predecessor of the dominator also transitively is a |
| 160 | // successor, moving to the dominator would do the inverse of loop |
| 161 | // hoisting, and we don't want that. |
| 162 | if (TransitiveSuccessors.count(Ptr: Pred)) |
| 163 | continue; |
| 164 | |
| 165 | if (!DT.isReachableFromEntry(A: Pred)) |
| 166 | continue; |
| 167 | |
| 168 | DominatingPredecessor = |
| 169 | DominatingPredecessor |
| 170 | ? DT.findNearestCommonDominator(A: DominatingPredecessor, B: Pred) |
| 171 | : Pred; |
| 172 | } |
| 173 | |
| 174 | if (!DominatingPredecessor || DominatingPredecessor == &EntryBB) |
| 175 | continue; |
| 176 | |
| 177 | UsersDominator = DominatingPredecessor; |
| 178 | } |
| 179 | |
| 180 | // CatchSwitchInst blocks can only have one instruction, so they are not |
| 181 | // good candidates for insertion. |
| 182 | while (isa<CatchSwitchInst>(Val: UsersDominator->getFirstNonPHIIt())) { |
| 183 | for (BasicBlock *Pred : predecessors(BB: UsersDominator)) |
| 184 | if (DT.isReachableFromEntry(A: Pred)) |
| 185 | UsersDominator = DT.findNearestCommonDominator(A: UsersDominator, B: Pred); |
| 186 | } |
| 187 | |
| 188 | // We finally found a place where I can be moved while not introducing extra |
| 189 | // execution, and guarded by at least one condition. |
| 190 | if (UsersDominator != &EntryBB) |
| 191 | JobList.emplace_back(Args: &I, Args&: UsersDominator); |
| 192 | } |
| 193 | |
| 194 | // |
| 195 | // Perform the actual substitution. |
| 196 | // |
| 197 | if (JobList.empty()) |
| 198 | return false; |
| 199 | |
| 200 | MemorySSAUpdater MSSAU(&MSSA); |
| 201 | |
| 202 | // Reverse insertion to respect relative order between instructions: |
| 203 | // if two instructions are moved from the same BB to the same BB, we insert |
| 204 | // the second one in the front, then the first on top of it. |
| 205 | for (auto &Job : reverse(C&: JobList)) { |
| 206 | Job.first->moveBefore(BB&: *Job.second, I: Job.second->getFirstInsertionPt()); |
| 207 | MSSAU.moveToPlace(What: MSSA.getMemoryAccess(I: Job.first), BB: Job.first->getParent(), |
| 208 | Where: MemorySSA::InsertionPlace::Beginning); |
| 209 | } |
| 210 | |
| 211 | if (VerifyMemorySSA) |
| 212 | MSSA.verifyMemorySSA(); |
| 213 | |
| 214 | NumMoved += JobList.size(); |
| 215 | |
| 216 | return true; |
| 217 | } |
| 218 | |
| 219 | PreservedAnalyses MoveAutoInitPass::run(Function &F, |
| 220 | FunctionAnalysisManager &AM) { |
| 221 | |
| 222 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 223 | auto &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA(); |
| 224 | if (!runMoveAutoInit(F, DT, MSSA)) |
| 225 | return PreservedAnalyses::all(); |
| 226 | |
| 227 | PreservedAnalyses PA; |
| 228 | PA.preserve<DominatorTreeAnalysis>(); |
| 229 | PA.preserve<MemorySSAAnalysis>(); |
| 230 | PA.preserveSet<CFGAnalyses>(); |
| 231 | return PA; |
| 232 | } |
| 233 | |